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Abstract

In this paper, a general hybrid epidemic model with multiple and non-periodic pulses
in an environmental period is investigated. The definition and computation for the
basic reproductive number Ry are established. The published periodic research model
(Yang, Xiao in Nonlinear Anal., Real World Appl. 52:224-234, 2012) can be considered
as a special case of the new established model.
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1 Introduction
The basic reproductive number Ry is a measure of how many secondary hosts will become
infected if one initial host is infected in a naive population [2]. In the past decades, Ry
became one of the most important key parameters in mathematical epidemiology and was
widely used in the study of epidemiology and within-host pathogen dynamics [3, 4]. It was
established firstly in 1925 by Dublin and Lotka [5] and introduced as the “net reproduction
rate” in human demography. For multistate stable population model, Inaba [6] defined Ry
as a spectral radius of the net reproductive matrix. Based on the next generation operator,
Diekmann et al. [7] defined R, for heterogeneous population in a constant environment.
For autonomous epidemic models, Van den Driessche and Watmough [8] investigated a
method to calculate R as the spectral radius of the next generation matrix. In 2006, Bacaér
and Guernaoui [9] extended Ry to the case of a periodic environment. Furthermore, Wang
and Zhao [10] took the calculation of R, given in [8] for periodic systems as the spectral
radius of the next infection operator. Based on the main results in [11], Wang and Zhao
[12] defined the next infection operator as Ry for a nonlocal and time-delayed reaction-
diffusion model of dengue fever. Ry and its computation formulae for a large class of time-
delayed compartmental population models in a periodic environment were set up in [13].
It is well known that many natural phenomena and human activities have exhibited im-
pulsive effects on the field of epidemiology. Recently, impulsive control problems in the
application of epidemics, such as pulse vaccination [14-16] and pulse culling (roguing)
[17], have received tremendous attention by many authors. Based on the spectral radius
of the next infection operator, Yang and Xiao [18] gave the definition of R, for general
impulsive epidemic models with periodic pulses on both infected and uninfected com-
partments. And then they [1] established Ry and its calculation. However, the pulses are
applied with the same time interval. An interesting question arises how R, can be defined
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and calculated for impulsive epidemic models with pulses at various time intervals in an
environmental period. The present research intends to establish the theory of Ry for such
hybrid models.

The paper is organized as follows. In the next section, some basic notations and useful
results for a general linear hybrid system are given. In Sect. 3, the definition and compu-
tation of Ry for a general hybrid epidemic model are established. In Sect. 4, two examples

to show the application are presented. A brief conclusion is given in the last section.

2 Some useful results for a general linear impulsive system
In order to obtain Ry for a general nonautonomous impulsive system, we firstly give some
useful results for a general linear impulsive system. The homogeneous linear impulsive

differential system is considered as follows:

x(t) = A(O)x(t), t#t
x(t7) = Prx(ty), t=t,keN,N={0,1,...}, (2.1)

x(tg) = %o, th >0,

which satisfies the following three conditions.
(Cy) A()) € PC(R,R™"), A(t + ) = A(t), here w > 0 is the environmental period, PC
means piecewise continuous.
(Cy) Py € R, detPy # 0, Py = I, where I is an n x n identity matrix, # < tx41, and
limg_, o0 £ = +00.
(C3) There exists a positive integer g such that Pr,; = Pk, tg.q = tx + w for any k € N.

Set W, (t,s) (t > s) be the evolution operator of the linear w-periodic system
x(¢) = A(t)x(t), xeR"
That is, for each s € R, the following equalities hold:
Wa(t,s) = A()Wa(t,9), Wyuls,8) =1,

where [ is an n x n identity matrix.
For any matrix B € R"*", let r(B) be the spectral radius of B. Throughout this paper, we

denote

q

¢APk (a)) = H(Pq—nl “IJA(tq—Hl, tq—i))~ (22)
i=1

Since ®4p, (w) is a nonnegative matrix, then r(®p, ()) is the principal eigenvalue of
®4p, (w), in the sense that it is simple and admits an eigenvector v* > 0, i.e., v* € IntR’.

Some useful results for model (2.1) are below.

Theorem 2.1 If n = (1/w) Inr(®4p, (w)), then there exists a positive w-periodic function
v(£) such that exp (nt)v(¢) is a solution of system (2.1).
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Proof Let v* > 0 be an eigenvector associated with the principal eigenvalue r(®4p, (w)).
By the change of variable x(¢) = exp (n£)v(¢), the impulsive linear system (2.1) is reduced
to the following system:

v(t) = Ay —nv = (A@) —nD)v(8), tFt k€L,
v(t*) = Pru(y), t=t. (2.3)
V(tS) =v5, to > 0.

For any ¢ > £y, there exist two nonnegative integers / and m (0 < m < g) such that lw + ¢, <

t <lw+ ty,1. Solving (2.3), for lw + t,, < t < lw + t,41, we get

v(t) = Wyt o + L) (l_[ (Pm-i+1‘pA-n1(tm-i+1; tm—i)))

i=1

!
X (Pa-ppp, (@) V¥ (2.4)
It is easy to see that

Da—ynp, () = exp (-nw) P 4p, (@). (2.5)

From (2.4), (2.5), and 1 = (1/w) Inr(® 4p, ()), the following formula can be derived:

n+l
D_pnp (@) v*

n

= (Pu-nnp, (@) exp (-nw) P ap, (w)V*

exp (-nw)r(Pap, (w))v*

)
)
@)’
(@)

Thus, v(¢) is a positive w-periodic solution of system (2.3) and exp (n¢)v(t) is a solution of

system (2.1). This completes the proof. O

Theorem 2.2 If r(®4p, (w)) < 1, then the trivial solution of system (2.1) is asymptotically
stable.

Using a method similar to that in [19], this result can be easily proved, not shown in this

paper.

3 The basic reproductive number for a general hybrid epidemic system
Consider an impulsive differential system with non-periodic pulses in an environment

period:

x(t) :f(t:x): t?-/tk,t eR,
Ax(tr) = Ox(x(tr)), t=t,keN, (3.1)

x(t5) = %o, tp >0,
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where f: R* x Q — R” is an w-periodic vector function, here Q € R” is an open set,
Ax(t) = x(t7) — x(ti), 2(t7) = limy,_ o+ x(tx + h).

The existence and uniqueness of the solution for system (3.1) can be found in [20].

We write x = (x1,%,...,%,)7, here T denotes the transpose. For a compartmental epi-
demic model, we can split the compartments by two types with the first 1 compartments
{x1,%9,...,%,} the infected individuals, and {x,,+1, %42, . . ., %, } the uninfected individuals.
Denote X = (X1,...,%m), ¥ = Xyis15 - - ., %,). Define

Xs={x>0|x;=0,i=1,...,m}.

Set w(tf) = w(tx) + Or(x(tr)) := Pr(x(tx)), where ¢ : Q@ — Q, ¢y € CU(, Q).
Taking the symbol in [1, 10], we can rewrite the vector field of (3.1) as

x(t) = F(t,x(t) - V(t,x(2), t#tkeN,
X(t) = hi(x(t0)),
Y (t;) = gr(x(tr)),

x(t5) = xo, tp =0,

t=t,keN, (3.2)

where ¥ (¢,x) is the newly infected rate, 'V represents the net transfer rate out of compart-
ments, ¢x = (i, g)T, e = (Pktr--or Pom)r Gk = Dk(ms1)s - - -» Pkn)- We assume that system
(3.2) has a disease-free periodic solution x*(¢) = (0,...,0,%5,,,(£),...,x5(t)) over the time
interval (nw, (n + 1)w] with x7(¢) >0, m + 1 < i < n, for all ¢. In addition, eight assump-
tions, similar to those by Yang and Xiao [1], are made as follows:
(H1) Ifx; > 0, then the functions F;(t,x), V; (¢,%), and V; (¢,x) are nonnegative and con-
tinuous on R x R” and continuously differential with respect tox fori=1,...,n.
(Ha) Ifx; =0, then V; = 0. Particularly, if x € X, then V7 =0fori=1,...,m.
(H3) F=0ifi>m.
(Ha) Ifx € X,, then Fi(x) = V/(x) =0fori=1,...,m.
(Hs) The pulses on the infected compartments must be uncoupled with the uninfected
compartments, that is, s (x(t)) is essentially 7 (X (tx)).
(Hs) For any positive integer k, there exists a positive integer g such that fx., = & + o,
Hierg(x) = hp(%), grq(%) = gi(x), and /1 (0) = 0.
(Hy) r(®Pumq, (@) < 1, where @, (@) = 1L, (Qqoiv1 Par(tg-is1, t4-i)), and P, (¢) is the
fundamental solution matrix of the following impulsive system:

Z(t) = M@®)Z, tZt,keN,
Z(tf) = QuZ(te), t=tr,keN,

where

M) - <aﬁ<t,x*(t))>
m+1<ij<n

(09" (2))
ax/ Qk - (T)m+l§i,j§n.

(Hg) V(qupk (w)) < 1, where

V(t):<avi(t,x*(t))) ’ Pk:(aqski(x*(t») ' 33)
1<ij<m 1<ij<m

8x,» ij
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We let

F(t) = (7337"(':”‘*“))) . (3.4)
0%; 1<ij<m

In the following, we study the threshold dynamics of model (3.1). It indicates that its
basic reproductive number can be defined as the spectral radius of the next infection op-
erator as that in periodic environments, see [10].

Apparently, the matrices Pr and Q (k € N) are constant matrices. F(¢) is nonnegative,
and —V/(¢) is cooperative in the sense that the off-diagonal elements of —V/(£) are nonneg-
ative.

Denote Y (¢,s) to be the evolution operator of the following system:

y@) =-V(@)y, tH#t,keN,
y(&) = Pey(t), t=tr,keN.

(3.5)

From assumption (Hg) and Theorem 2.2, we know that the trivial solution of the impulsive
differential system (3.5) is asymptotically stable.

Define C,, as the ordered Banach space of all w-periodic functions from R to R™, which
is equipped with maximum norm || - [|. Denote C}, = {¢ € C,, : ¢(t) > 0,¢ € R} as the
initial distribution of infectious individuals. Following the idea in [1], we define the next

infection operator L:

(Lg)®) = lim_ / t Y(t,)E(s)p(s)ds, VteR,peC’. (3.6)

Obviously, the next infection operator L is well defined, positive, continuous, and compact
on the domain. Then we define the basic reproductive number of (3.2) as the spectral
radius of L, that is,

Ro = V(L)

In order to calculate Ry, we consider an auxiliary linear impulsive system with non-

periodic pulses in an environmental period

U@ =[-ve) + L2ue), t#u.keN,
U(t™) = P U(), t=t,keN,

(3.7)

where A € (0,00). Let U(t,s, 1), t > s, s € R be the evolution operator of system (3.7). Thus
U(w,0,1) = <I>(§_V)Pk(a)).

By the constant-variation formula for linear impulsive periodic equations (see [10]), we
can prove the following result and obtain a numerical method to calculate the basic re-
productive number for the hybrid epidemic system (3.1).

Theorem 3.1 Assume that (H1)—(Hs) hold, we have the following statements.
(i) Ifr(CI>(§_V)Pk(a))) =1 has a positive solution ,o, then \y is an eigenvalue of L, and
hence Ry > 0.
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(i) IfRo > 0, then A = Ry is the unique solution ofr(dJ(‘ng)Pk(w)) =1.
(ili) Ro =0 if and only ij"r(¢(§_V)Pk (w)) <1 forall »>0.

According to the results of Theorem 3.1, we obtain that R, for the general hybrid epi-
demic model (3.2) is the positive solution of ’”(q)(f—v) e (w)) = 1. In the following, we show
that the basic reproductive number serves as a threshold value for the local stability of the
disease-free periodic solution x*(t) of (3.2).

Theorem 3.2 Assume that (H,)—(Hs) hold. The following statements are valid:
() Ro =1 ifand only if r(®r_y)p, (@) = 1.
(ii) Ro>1ifand only if r(®F_vyp, (@) > 1.
(iii) Ro <1 ifand only if r(®E_v)p, (®)) < 1.
The disease-free periodic solution x*(t) is asymptotically stable if Ry < 1, and unstable if
Ry>1.

Using a similar method of Theorem 2.2 in [10], this result can be easily proved, not
shown in this paper.

Remark 3.1 In [1], Yang and Xiao considered a nonlinear impulsive system, in which the
pulse period is equal to the environmental period. If we take g = 1, then model (3.1) yields
the model that was studied in [1]. From (2.2), we have ®_yp, (w) = P1V_y(®,0) if g = 1,
which is consistent with the result of the literature. It indicates that here a more general
model is established including the previous model as a special case.

4 Examples
We give two examples to illustrate the calculation of Ry for impulsive nonautonomous
model using Theorem 3.1.

Example 1 Barbour’s schistosomiasis model with seasonal fluctuations was proposed and
studied in [21]. Incorporating impulsive snail-killing strategy, we consider Barbour’s schis-
tosomiasis model with periodic infection rates and impulsive control strategy:

M(t) = a(t) Ay(1 — M) — gM,
3(£) = () ZM(1 - y) — 1y,
M(t") = M(¢),

y(E*) = (1= 6)y(8),

L # b,
(4.1)

t=1I,

where M and y denote the prevalence of infection in humans and the prevalence of infec-
tion in snails, respectively. a and b are infection rates, g is the recovery rate for definitive
host infections, A and X are the densities of infected snails and definitive hosts, respec-
tively. u is per capita death rate of infected snails. For snail control, we assume spraying
pesticide twice a year, that is, g = 2 and w = 1 (year). We also assume that £, = tx, Ok = 6k,
and a(t) and b(t) are nonnegative piecewise continuous functions with period 1.

System (4.1) has a disease-free periodic solution (0, 0). For system (4.1), we have

Ftx) < (@O0 -M) vt = ().
’ b(t)EZM(1-y) )’ ’ 1Ly
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Then, from (3.3) and (3.4), we get

B 0 a()A (g0
r-(,5"02). v (£2).

1 1
P = o) P, = o)
01-6, 01-6,

Obviously, assumptions (H;)—(Hg) hold. According to Theorem 3.1, we know that
the basic reproductive number R, for system (4.1) is a solution of the polynomial
’"(CD(%V)pk (w)) = 1, where

PE_yyp, (w) = P2d>§7v(t2, tl)P1¢§,v(t1, to),

and CD(%V) P (¢,s) (£ > s) is the evolution operator of the system

. —g a(t)A

Uut) = . U@, tftkeN,
b E -

Uu(tt) = PU(), t=ti,keN.

We use the same parameter values in [21] with system (4.1), which are g = 0.25, u =2,
A =133.5, ¥ = 0.017, a(t) = Falsin(rt)|, b(t) = Tb|sin(rt)|, a = 0.621,b = 49.056. The
control parameter values are chosen as 6; = 0.6, 6, = 0.5, t, = 0.3,# = 0.5, by numerical

calculation, we get Ry = 0.752.

Example 2 We propose an SIRS epidemic model with pulse vaccination and seasonality,

in which non-periodic pulses in an environmental period are considered.

$(t) = (u - (1= 0)ul)(1 - p) — £95 — uS + 5R,

T+o(t
I(t) = ﬁg)(f)ls—ul—yl+(l—o)ul(, tZt,keN,
R@)=(n-(1-o)uDp+yI-(u+d)R,
S(t*) = (1 -61)S(8),
1(¢7) = 1(2), t=ti,keN,

R(t*) = R(t) + 6k S(2),

(4.2)

where S, I, and R denote the number of susceptible, infected, and removed individuals,
respectively. i is the natural birth rate and death rate, o is a probability that a child is born

from an infectious mother and is also susceptible, y and § are the transmission rates, p is

B)SI
1+a(t)S

rate) and «/(¢) are two periodic continuous functions with period w, 6 is the vaccination

the continuous first vaccination rate, is the saturation incidence, where B(¢) (contact
rate at time ¢ = ;. We assume that there exists a positive integer g such that 6., = 6,
tkeg = tk + @ for any k € N. Model (4.2) was proposed in [22] where the pulse vaccination

is periodic.

Page 7 of 9
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First, we can easily know that system (4.2) has a disease-free periodic solution (5*(t), 0,
R*(t)). And from the definition of F(t), V/(¢), and the impulsive matrix Pk, we can get

Fy . PS5O

=——"— V() = , Pr=1.
1+a()s* (@) O =y+on k

It follows from Theorem 3.1 that the basic reproductive number Ry is the solution of the
polynomial 7(®(§_v)pk(w)) =1, where ® ¢ V)P (w) = U(w, 0, 1), and U(t,0, 1) is the evolu-

E_
tion operator of the system

o BH)S* (1)
U(t) = (—()/ +O'//L) + m)”(t)

Thus,

“f BES @)
r(q)(g_V)Pk(a))) =exp (\/0 (m —()/ +O'/,L)) dt)

Solving the following equation about A:

©/ BBSHD)
P (/o (m ras @) ‘””) ‘”) =t

we have the basic reproductive number

a1 © B()S*(t)
Toly+on) o 1+a@S(@)

This is consistent with the result of [22] when pulse intervals are equal.

5 Conclusion

In this paper, we have given the definition and calculation of the basic reproductive num-
ber Ry for the hybrid epidemic model, in which multiple and non-periodic pulses in an
environmental period are taken into consideration. It extends the results of the published
research model [1]. Under assumptions (H;)—(Hg), we have established the criteria (i.e.,
Ry < 1) to ensure the local stability of the disease-free periodic solution.
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