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Abstract
A generalized eco-epidemiological system with prey refuge is proposed in this paper.
The saturation incidence kinetics and a generalized functional response are used to
describe the contact process and the predation process, respectively. Based on
mathematical issue, the local and global stability properties, Hopf bifurcation, and
permanence of the dynamical system are investigated. Based on the ecological
aspects, the impact of prey refuge on the dynamical consequences of the
eco-epidemiological system and the mechanism of prey refuge are discussed. The
results reveal that the stabilizing and destabilizing effects occur under some certain
conditions. Based on epidemiological issue, the controlling strategies of the infectious
disease are proposed. The results show that the prey refuge can control the spread of
disease by the relative level of prey refuge. This study has resolved some basic and
interesting issues for an eco-epidemiological system with a generalized response
function and the effect of prey refuge.
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1 Introduction
Eco-epidemiological systems, which are applied to describe predator and prey interactions
with diseases in one population or both populations, have become important tools in ana-
lyzing the spread and control of infectious diseases, and hence have received much atten-
tion since the Kermac–Mckendric SIR model was proposed [1–10]. In eco-epidemiology,
researchers study an ecological system with disease either in prey or in predator or in
both populations [10–16]. Anderson and May [1] proposed an animal (predator) and
plant (prey) model with infectious diseases and investigated the invasion, persistence, and
spread of diseases. Chattopadhyay et al. investigated a predator–prey system with dis-
ease in the prey [4], and then applied their research to study the pelicans at risk in the
Salton sea [5]. Saifuddin et al. [13] explored an eco-epidemiological system with disease
in the prey and weak Allee in predator, and considered the complex dynamics including
stability properties and bifurcations. Bairagi et al. [10] noticed the fact that the functional
response plays an important role in determining the dynamical consequences of the popu-
lation interactions, and hence conducted a comparative research on the stability aspects of
a predator–prey system with a class of functional responses. Besides the published works
mentioned above, more and more researchers have focused on the population interactions
with diseases in prey or predator or both populations [1–16].
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However, most of published research on eco-epidemiological systems incorporated a
certain response function (e.g., Holling type functional response, Beddington–DeAngelis
functional response) and a certain incidence rate (e.g., bilinear incidence, standard inci-
dence, and saturation incidence), and investigated the dynamical behaviors of the con-
sidered systems [10, 11, 14–16]. As far as we know, few works have focused on a model
with a generalized functional response and obtained a generalized conclusion. Motivated
by these, in this paper we will propose a class of eco-epidemiological systems. That is to
say, a generalized functional response is incorporated into an eco-epidemiological model
with saturation incidence. Hence, the existing eco-epidemiological models become some
special cases of ours.

In fact, there exist many ecological effects which influence the dynamical consequences
of the species interactions, such as the effect of Allee effect, habitat complexity, harvest-
ing, and prey refuge [17–19]. For the effect of prey refuge, the theoretical research and the
field observations give a general conclusion that prey refuge can stabilize or destabilize the
considered predation systems, and can prevent the prey extinction [16–36]. Here, the sta-
bilizing effect means that the interior equilibrium point changes from an unstable state to
a stable state due to increase in the degree of prey refuge [16, 21, 26]. Otherwise, the desta-
bilizing effect is observed [19, 35]. For examples, Gonzalez–Olivares and Ramos–Jiliberto
[21], and Ruxton [16] proposed two continuous-time predator–prey systems with the as-
sumption that a constant proportion of prey could move to refuges. Their studies found
a stabilizing effect on the dynamical consequences of the considered systems. The stabi-
lizing effect was also observed in a generalized predator–prey system under some certain
conditions [18, 19]. Most interestingly and importantly, Ma et al. [18, 19] proposed two
generalized predator–prey systems incorporating prey refuge and observed a destabiliz-
ing effect. The above cited references reveal that the functional response of predator to
prey population plays an important role in determining dynamical consequences of the
interacting populations. However, few studies incorporate the effect of prey refuge into
eco-epidemiological systems. Hence, this paper incorporates prey refuge into a species
interaction with disease in prey.

Motivated by above analyses, in this paper we present a generalized eco-epidemiological
system with the effect of prey refuge and the saturation incidence, and focus on the dynam-
ical consequences of the proposed system and the explanations of the realistic meanings.

2 Model formulation
The basic model comprises two population subclasses: (i) prey population with density
N(t) and (ii) predators with density Y (t), and is based on the following generalized preda-
tion model:

Ṅ(t) = rN
(

1 –
N
K

)
– cYϕ

(
(1 – γ )N

)
,

Ẏ (t) = ecYϕ
(
(1 – γ )N

)
– d2Y ,

(2.1)

where all parameters are positive and have the following ecological meanings: r is the
intrinsic growth rate of prey population, K is the environmental carrying capacity of prey
population, c is the predation coefficients of predators to prey population, d2 is the natural
death rate of predators, e is the conversion efficiency, γ (0 < γ < 1) denotes that a constant
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proportion of prey use refuges. The function ϕ(N) denotes the functional response of
predators and satisfies the following assumptions:

ϕ(0) = 0, ϕ′(N) > 0 (N > 0).

Furthermore, it is assumed that the prey population (N(t)) is divided into two subclasses:
the susceptible prey (S(t)) and the infected prey (I(t)) due to infectious disease. Beside, this
paper gives the following assumptions:

(1) The susceptible prey is capable of reproducing only and the infected prey is
removed by death at a natural rate d1.

(2) The disease is spread only among the prey population and the disease is not
genetically inherited. The infected prey does not become immune.

(3) Susceptible prey becomes infected with the saturation incidence kinetics βSI
α+I , where

β measures the force of infection and α is the inhibition effect.
(4) Predators consume susceptible and infected prey with predation coefficients c1 and

c2, respectively. The consumed prey is converted into predator with efficiency e.
Combining the generalized predation model (2.1) and the above assumptions, a gener-

alized eco-epidemiological system with prey refuge and disease in prey is proposed by the
following equations:

Ṡ(t) = rS
(

1 –
S + I

K

)
–

βSI
α + I

– c1Yϕ
(
(1 – γ )S

)
,

İ(t) =
βSI
α + I

– d1I – c2Yϕ
(
(1 – γ )I

)
,

Ẏ (t) = ec1Yϕ
(
(1 – γ )S

)
+ ec2Yϕ

(
(1 – γ )I

)
– d2Y ,

(2.2)

with the initial conditions

S(0) = S0 > 0; I(0) = I0 > 0; Y (0) = Y0 > 0. (2.3)

Using the following change of variables

� :
(
R+

0
)3 → (

R+
0
)3, �(S, I, Y ) =

(
S̄

(1 – γ )
,

Ī
(1 – γ )

,
Ȳ

(1 – γ )

)

and rewriting system (2.1) with (S, I, Y ), the following system can be obtained:

Ṡ(t) = rS
(

1 –
S + I

(1 – γ )K

)
–

βSI
α(1 – γ ) + I

– c1Yϕ(S),

İ(t) =
βSI

α(1 – γ ) + I
– d1I – c2Yϕ(I),

Ẏ (t) = ec1Yϕ(S) + ec2Yϕ(I) – d2Y .

(2.4)
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3 Equilibria
All equilibrium points of system (2.4) can be obtained by solving the following equations:

⎧⎪⎪⎨
⎪⎪⎩

rS(1 – S+I
(1–γ )K ) – βSI

α(1–γ )+I – c1Yϕ(S) = 0,
βSI

α(1–γ )+I – d1I – c2Yϕ(I) = 0,

ec1Yϕ(S) + ec2Yϕ(I) – d2Y = 0.

(3.1)

(1) The trivial equilibrium point E0(0, 0, 0).
(2) The equilibrium point in the absence of the infected prey and predators

E1((1 – γ )K , 0, 0).
(3) The disease-free equilibrium point E2(S̃, 0, Ỹ ), where

S̃ = ϕ–1
(

d2

ec1

)
, Ỹ =

erS̃
d2

(
1 –

S̃
(1 – γ )K

)
.

If γ < 1 – 1
K ϕ–1( d2

ec1
), then the disease-free equilibrium point E2(S̃, 0, Ỹ ) has its

ecological meanings.
(4) The coexisting equilibrium point E3(S∗, I∗, Y ∗), where

S∗ =
(d1I∗ + c2Y ∗ϕ(I∗) + I∗)((1 – γ )α + I∗)

βI∗ ,

I∗ = ϕ–1
(

d2 – ec1ϕ(S∗)
ec2

)
,

Y ∗ =
rS∗(1 – S∗+I∗

(1–γ )K )S∗ – I∗ – d1I∗

c1ϕ(S∗) + c2ϕ(I∗)
.

If 0 < γ < 1 – rS∗(S∗+I∗)
K (rS∗–d1I∗) , then the equilibrium point E3(S∗, I∗, Y ∗) is a positive

equilibrium point. Otherwise, it has no ecological meanings anymore.

4 Stability property
4.1 Stability of the disease-free equilibrium
4.1.1 Local stability of the disease-free equilibrium
In this section, we study the local stability properties of the equilibrium points of system
(2.4). Especially, the local stability analysis for the disease-free equilibrium E2(S̃, 0, Ỹ ) is
investigated in this section.

Firstly, it is easy to show that the trivial equilibrium point E0(0, 0, 0) is a saddle point and
the equilibrium point E1((1 – γ )K , 0, 0) is stable if β < αd1

K and γ > 1 – 1
K ϕ–1( d2

ec1
).

Again, the roots of the characteristic equation of the community matrix corresponding
to E2(S̃, 0, Ỹ ) are βS̃

α
– d1 – c2(1 – γ )ϕ′(0)Ỹ and the roots of the following equation:

λ2 – Aλ + B = 0, (4.1)

where

A = r
(

1 –
2S̃

(1 – γ )K

)
– c1(1 – γ )ϕ′((1 – γ )S̃

)
Ỹ
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and

B = c2
1e(1 – γ )ϕ′((1 – γ )S̃

)
ϕ
(
(1 – γ )S̃

)
Ỹ > 0.

Hence, the roots of Eq. (4.1) will have negative real parts if A < 0, which implies that

[
d2 – ec1ϕ

′
(

ϕ–1
(

d2

ec1

))
ϕ–1

(
d2

ec1

)]

–
S̃

(1 – γ )K

[
2d2 – ec1ϕ

′
(

ϕ–1
(

d2

ec1

))
ϕ–1

(
d2

ec1

)]
< 0.

Therefore, the disease-free equilibrium point E2(S̃, 0, Ỹ ) is locally asymptotically stable
iff

βS̃
α

– d1 – c2(1 – γ )ϕ′(0)Ỹ < 0 (4.2)

and

[
d2 – ec1ϕ

′
(

ϕ–1
(

d2

ec1

))
ϕ–1

(
d2

ec1

)]

–
S̃

(1 – γ )K

[
2d2 – ec1ϕ

′
(

ϕ–1
(

d2

ec1

))
ϕ–1

(
d2

ec1

)]
< 0. (4.3)

Inequality (4.2) is equivalent to the following term:

γ < 1 –
ϕ–1( d2

ec1
)

αK

[
βd2K + αc2erϕ′(0)ϕ–1( d2

ec1
)

d1d2 + c2erϕ–1( d2
ec1

)

]
. (4.4)

Furthermore, inequality (4.2) is equivalent to the following cases:
(1) If d2

c1ϕ′(ϕ–1( d2
ec1

))ϕ–1( d2
ec1

)
< e < 2d2

c1ϕ′(ϕ–1( d2
ec1

))ϕ–1( d2
ec1

)
, then inequality (4.3) always holds.

(2) If e < d2
c1ϕ′(ϕ–1( d2

ec1
))ϕ–1( d2

ec1
)
, then inequality (4.3) holds when

γ > 1 –
ϕ–1( d2

ec1
)

K [
2d2–ec1ϕ′(ϕ–1( d2

ec1
))ϕ–1( d2

ec1
)

d2–ec1ϕ′(ϕ–1( d2
ec1

))ϕ–1( d2
ec1

)
].

(3) If e > 2d2
c1ϕ′(ϕ–1( d2

ec1
))ϕ–1( d2

ec1
)
, then inequality (4.3) holds when

γ < 1 –
ϕ–1( d2

ec1
)

K [
2d2–ec1ϕ′(ϕ–1( d2

ec1
))ϕ–1( d2

ec1
)

d2–ec1ϕ′(ϕ–1( d2
ec1

))ϕ–1( d2
ec1

)
].

Next, define

E =
d2

c1ϕ′(ϕ–1( d2
ec1

))ϕ–1( d2
ec1

)
,

E =
2d2

c1ϕ′(ϕ–1( d2
ec1

))ϕ–1( d2
ec1

)
,

K1 =
2d2 – ec1ϕ

′(ϕ–1( d2
ec1

))ϕ–1( d2
ec1

)

d2 – ec1ϕ′(ϕ–1( d2
ec1

))ϕ–1( d2
ec1

)
,
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K2 =
αec2rϕ′(0)ϕ–1( d2

ec1
)

d2 – ec1ϕ′(ϕ–1( d2
ec1

))ϕ–1( d2
ec1

)
,

K3 =
βd2K + αc2erϕ′(0)ϕ–1( d2

ec1
)

d1d2 + c2erϕ–1( d2
ec1

)
,

B =
αd1

K
, B =

αd1K1

K
+ K2.

According to the above analyses, the following conclusions are obtained.

Theorem 4.1 Supposing that B < β < B and e < E, we have

(1) If 0 < γ < 1 –
K1

K
ϕ–1( d2

ec1
), then the disease-free equilibrium E2(S̃, 0, Ỹ ) is unstable;

(2) If 1 –
K1

K
ϕ–1( d2

ec1
) < γ < 1 – K3

αK ϕ–1( d2
ec1

), then the disease-free equilibrium E2(S̃, 0, Ỹ ) is
locally asymptotically stable;

(3) If 1 – K3
αK ϕ–1( d2

ec1
) < γ < 1 – 1

αK ϕ–1( d2
ec1

), then the disease-free equilibrium E2(S̃, 0, Ỹ ) is
unstable.

Theorem 4.2 Assuming that B < β < B and e > E, we obtain
(1) If 0 < γ < 1 – K3

αK ϕ–1( d2
ec1

), then the disease-free equilibrium E2(S̃, 0, Ỹ ) is locally
asymptotically stable;

(2) If 1 – K3
αK ϕ–1( d2

ec1
) < γ < 1 – 1

αK ϕ–1( d2
ec1

), then the disease-free equilibrium E2(S̃, 0, Ỹ ) is
unstable.

Theorem 4.3 Assuming that β < B and e < E, we obtain

(1) If 0 < γ < 1 –
K1

K
ϕ–1( d2

ec1
), then the disease-free equilibrium E2(S̃, 0, Ỹ ) is unstable;

(2) If 1 –
K1

K
ϕ–1( d2

ec1
) < γ < 1 – 1

αK ϕ–1( d2
ec1

), then the disease-free equilibrium E2(S̃, 0, Ỹ ) is
locally asymptotically stable.

Theorem 4.4 Supposing that e > E and β > B or E < e < E and β > B, we have
(1) If 0 < γ < 1 – K3

αK ϕ–1( d2
ec1

), then the disease-free equilibrium E2(S̃, 0, Ỹ ) is locally
asymptotically stable;

(2) If 1 – K3
αK ϕ–1( d2

ec1
) < γ < 1 – 1

αK ϕ–1( d2
ec1

), then the disease-free equilibrium E2(S̃, 0, Ỹ ) is
unstable.

Theorem 4.5 Supposing that β < B and e > E, we have

(1) If 0 < γ < 1 –
K1

K
ϕ–1( d2

ec1
), then the disease-free equilibrium E2(S̃, 0, Ỹ ) is locally

asymptotically stable;

(2) If 1 –
K1

K
ϕ–1( d2

ec1
) < γ < 1 – 1

αK ϕ–1( d2
ec1

), then the disease-free equilibrium E2(S̃, 0, Ỹ ) is
unstable.

Theorem 4.6 Assuming that β < B and E < e < E, we have that the disease-free equilibrium
E2(S̃, 0, Ỹ ) is always locally asymptotically stable.

Next, three tables are given to list the above results. Define the following notations:

M1 = 1 –
K1

K
ϕ–1

(
d2

ec1

)
, M2 = 1 –

K3

αK
ϕ–1

(
d2

ec1

)
, M3 = 1 –

1
αK

ϕ–1
(

d2

ec1

)
,
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Table 1 The stability properties of the disease-free equilibrium point when e < E

Stability γ

β (0,M1) (M1,M2) (M2,M3)

(0,B) U. S. S. S.
(B,B) U. S. S. U. S.
(B, 1) U. D. U. D. U. D.

Table 2 The stability properties of the disease-free equilibrium point when E < e < E

Stability γ

β (0,M1) (M1,M2) (M2,M3)

(0,B) A. S. A. S. A. S.
(B,B) S. S. U. S.
(B, 1) S. S. U. S.

Table 3 The stability properties of the disease-free equilibrium point when e > E

Stability γ

β (0,M1) (M1,M2) (M2,M3)

(0,B) S. U. S. U. S.
(B,B) S. S. U. S.
(B, 1) S. S. U. S.

the conditions and conclusions of Theorem 4.1–Theorem 4.6 are listed in Table 1, Table 2,
and Table 3 in which

(1) S. means the disease-free equilibrium point E2(S̃, 0, Ỹ ) is stable;
(2) U .S. means the disease-free equilibrium point E2(S̃, 0, Ỹ ) is unstable;
(3) A.S. means the disease-free equilibrium point E2(S̃, 0, Ỹ ) is always stable;
(4) U .D. means the disease-free equilibrium point E2(S̃, 0, Ỹ ) is undefined.

Table 1 shows the stability properties of the disease-free equilibrium point E2(S̃, 0, Ỹ )
when e < E.

Table 2 shows the stability properties of the disease-free equilibrium point E2(S̃, 0, Ỹ )
when E < e < E.

Table 3 shows the stability properties of the disease-free equilibrium point E2(S̃, 0, Ỹ )
when e > E.

4.1.2 Global stability of the disease-free equilibrium
In this section, we consider the global stability of the disease-free equilibrium point
E2(S̃, 0, Ỹ ).

Theorem 4.7 If β > ᾱ(d1+ϕ′(0)c2)Ỹ
S̃ in which ᾱ = α(1 –γ ), then system (2.4) with initial condi-

tions (2.3) is to be globally asymptotically stable around the disease-free equilibrium point
E2(S̃, 0, Ỹ ) in the region �1 = {(S, I, Y )|S ≥ S̃, I ≥ 0, Y ≥ Ỹ }.
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Proof We rewrite system (2.4) with initial conditions (2.3) as the following form:

Ṡ(t) = SF1(S, I, Y ),

İ(t) = IF2(S, I, Y ),

Ẏ (t) = YF3(S, I, Y ),

(4.5)

where

F1(S, I, Y ) = r
(

1 –
S + I

(1 – γ )K

)
–

βI
α(1 – γ ) + I

– c1Yϕ(S)/S,

F2(S, I, Y ) =
βS

α(1 – γ ) + I
– d1 – c2Yϕ(I)/I,

F3(S, I, Y ) = ec1ϕ(S) + ec2ϕ(I) – d2.

Let us define

G1(I) = –F1(S̄, I, Ȳ ), G2(S) = F2(S, 0, Ȳ ), G3(Y ) = F1(S̄, 0, Y ) + F2(S̄, 0, Y ).

Next, we consider a Lyapunov function defined as follows:

V
(
S(t), I(t), Y (t)

)
=

∫ S

S̃

G2(u)
u

du +
∫ I

0

G1(v)
v

dv +
∫ Y

Ỹ

G3(w)
w

dw.

Now, by simple computation, we obtain that

dV
dt

= G1F2(S, I, Y ) + G2F1(S, I, Y ) + G3F3(S, I, Y )

= G1
(
F2(S, I, Y ) – F2(S, 0, Ȳ )

)
+ G2

(
F1(S, I, Y ) – F1(S̄, I, Ȳ )

)
+ G3

(
F3(S, I, Y )

+ G2F1(S̄, I, Ȳ ) + G1F2(S, 0, Ȳ )
)

+ G3F1(S̄, 0, Y ) – F1(S̄, 0, Y )

= G2

[
(S – S1)

∂F1

∂S
(S̄, I, Y ) + (Y – Y1)

∂F1

∂Y
(S, I, Ȳ )

]

+ G1

[
I
∂F2

∂I
(S, ¯̄I, Y ) + (Y – Y1)

∂F2

∂Y
(S, I, ¯̄Y )

]

+ G3

[
(S – S1)

∂F3

∂S
( ¯̄̄S, I, Y ) + I

∂F3

∂I
(S, ¯̄̄I, Y )

]
.

Again, we have

∂F1

∂S
= –

r
K

–
c1Yϕ′(S)S – ϕ(S)

S2 < 0,
∂F1

∂Y
= –c1ϕ(S) < 0,

∂F2

∂I
= –

ᾱβS
(ᾱ + I)2 –

c2Yϕ′(I)I – ϕ(I)
I2 < 0,

∂F2

∂Y
= –c2ϕ(I) < 0,

∂F3

∂S
= ec1ϕ

′(S) > 0,
∂F2

∂I
= ec2ϕ

′(I) > 0.
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Furthermore, we obtain that

G1(I) = –
[

r
(

1 –
S̃ + I

K

)
–

βI
ᾱ + I

–
c1Ỹϕ(S̃)

S̃

]
> 0

and

G2(S) =
βS
ᾱ

– d1 – ac2Ỹ ≥ βS̃
ᾱ

– d1 – ac2Ỹ ,

in which a = limx→0
ϕ(x)

x = ϕ′(0).
Thus, it is obtained that G2 > 0 while β > ᾱ(d1+ϕ′(0)c2)Ỹ

S̃
.

Therefore, dV
dt < 0 in the region � = {(S, I, Y )|S ≥ S̃, I ≥ 0, Y ≥ Ỹ }. Hence the theorem is

proved. �

4.2 Stability of the positive equilibrium
4.2.1 Local stability of the positive equilibrium
In this section, we consider the local stability of the positive equilibrium point E3(S∗, I∗,
Y ∗).

Theorem 4.8 If A1 < 0 and A1A2 < A3 < 0, then the positive equilibrium point E3(S∗, I∗, Y ∗)
is locally asymptotically stable.

Proof The characteristic equation of the community matrix corresponding to the positive
equilibrium point E3(S∗, I∗, Y ∗) is as follows:

λ3 – (a11 + a22)λ2 + (a11a22 – a12a21 – a13a31 – a23a32)λ

– (a11a23a32 + a13a31a22 – a21a13a32 – a12a23a31) = 0,

where

a11 = –
rS∗

K
– c1Y ∗(ϕ(

S∗) – ϕ′(S∗)),

a12 = –
rS∗

K
–

αβ(1 – γ )
((1 – γ )α + I∗)2 c1Y ∗(ϕ(

S∗) – ϕ′(S∗)), a13 = –c1ϕ
(
S∗),

a21 =
βI∗

(1 – γ )α + I∗ ,

a22 =
αβ(1 – γ )

((1 – γ )α + I∗)2 –
βS∗

(1 – γ )α + I∗ – c2Y ∗(ϕ(
I∗) – ϕ′(I∗)),

a23 = –c2ϕ
(
I∗),

a31 = ec1Y ∗ϕ′(S∗), a32 = ec2Y ∗ϕ′(I∗).

Now, define

A1 = a11 + a22, A2 = a11a22 – a12a21 – a13a31 – a23a32,

A3 = a11a23a32 + a13a31a22 – a21a13a32 – a12a23a31.
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Therefore, the characteristic equation of the positive equilibrium point E3(S∗, I∗, Y ∗) can
be rewritten as the following form:

λ3 – A1λ
2 + A2λ – A3 = 0.

According to Routh–Hurwitz’s criteria, the necessary and sufficient conditions for local
stability of positive point are A1 < 0 and A1A2 < A3 < 0. Hence the theorem is proved. �

4.2.2 Global stability of the positive equilibrium
In this section, we consider the global stability of the positive equilibrium point
E3(S∗, I∗, Y ∗).

Theorem 4.9 System (2.4) with initial conditions (2.3) is to be globally asymptotically
stable around the positive equilibrium point E3(S∗, I∗, Y ∗) in the region �2 = {(S, I, Y )|Y >
Y ∗, 0 < S < S∗, 0 < I < I∗orY < Y ∗, S > S∗, I > I∗}.

Proof We first choose a Lyapunov function which is defined as follows:

W
(
S(t), I(t), Y (t)

)
=

∫ S

S∗

u – S∗

u
du +

r
βK(α(1 – γ ) + I∗)

∫ I

I∗

v – I∗

v
dv +

∫ Y

Y∗

w – Y ∗

w
dw.

Now, by simple computation, we obtain that

dW
dt

=
S – S∗

S
dS
dt

+
r

βK(α(1 – γ ) + I∗)
I – I∗

I
dI
dt

+
Y – Y ∗

Y
dY
dt

=
(
S – S∗)[r

(
1 –

S + I
(1 – γ )K

)
–

βI
α(1 – γ ) + I

– c1Yϕ(S)/S
]

+
r

βK(α(1 – γ ) + I∗)
(
I – I∗)[ βS

α(1 – γ ) + I
– d1 – c2Yϕ(I)/I

]

+
(
Y – Y ∗)[ec1ϕ(S) + ec2ϕ(I) – d2

]

=
(
S – S∗)[r

(
1 –

S + I
(1 – γ )K

)
– r

(
1 –

S∗ + I∗

(1 – γ )K

)]

+
r

βK(α(1 – γ ) + I∗)
(
I – I∗)[ βS

α(1 – γ ) + I
–

βS∗

α(1 – γ ) + I∗

]

+
(
Y – Y ∗)[ec1ϕ(S) + ec2ϕ(I) – ec1ϕ

(
S∗) + ec2ϕ

(
I∗)]

= –
r
K

(
S – S∗)2 –

rS∗

K(α(1 – γ ) + I∗)
(
I – I∗)2

+ ec1ϕ
′(S∗)(S – S∗)(Y – Y ∗) + ec2ϕ

′(I∗)(I – I∗)(Y – Y ∗).

It is clear that dW
dt < 0 in �2. Hence the theorem is proved. �

5 Hopf bifurcation
In this section, we consider the Hopf bifurcation near the disease-free equilibrium
E2(S̃, 0, Ỹ ) of system (2.4).
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The characteristic equation of system (2.4) at the disease-free equilibrium E2(S̃, 0, Ỹ ) is
given by the following form:

λ3 –
(
A(γ ) + B(γ )

)
λ2 +

(
A(γ )B(γ ) + C(γ )

)
λ – A(γ )C(γ ) = 0, (5.1)

where

A(γ ) =
βS̃
α

– d1 – c2(1 – γ )ϕ′(0)Ỹ ,

B(γ ) = r
(

1 –
2S̃

(1 – γ )K

)
– c1(1 – γ )ϕ′((1 – γ )S̃

)
Ỹ ,

C(γ ) = c2
1e(1 – γ )ϕ′((1 – γ )S̃

)
ϕ
(
(1 – γ )S̃

)
Ỹ > 0.

It is noted that the expressions A(γ ), B(γ ), and C(γ ) are smooth functions of γ .
In order to determine the instability of system (2.4), let us consider γ (the effect of prey

refuge) as a bifurcation parameter. For this purpose, let us firstly give the following lemma.

Lemma 5.1 (Hopf bifurcation theorem [16]) If A(γ ), B(γ ), and C(γ ) are smooth functions
of γ in an open interval about γ ∈ R, such that the characteristic equation (5.1) has

(1) a pair of complex eigenvalues λ = p(γ ) ± iq(γ ) with p(γ ) and q(γ ) ∈ R, so that they
become purely imaginary at γ = γ0 and dp(γ )

dγ
|(γ = γ0) �= 0,

(2) the other eigenvalue is negative at γ = γ0,
then a Hopf bifurcation occurs around an equilibrium point of the considered system at
γ = γ0 (i.e., a stability change of an equilibrium point of the considered system accompanied
by the creation of a limit cycle at γ = γ0).

Based on Lemma 5.1, the following conclusion can be obtained.

Theorem 5.2 If A < 0 and B < 0, then system (2.4) possesses a Hopf bifurcation around the
disease-free equilibrium E2(S̃, 0, Ỹ ).

Proof Suppose the value γ0 is equal to

1 –
ϕ–1( d2

ec1
)

αK

[
βd2K + αc2erϕ′(0)ϕ–1( d2

ec1
)

d1d2 + c2erϕ–1( d2
ec1

)

]
,

or

1 –
ϕ–1( d2

ec1
)

K

[2d2 – ec1ϕ
′(ϕ–1( d2

ec1
))ϕ–1( d2

ec1
)

d2 – ec1ϕ′(ϕ–1( d2
ec1

))ϕ–1( d2
ec1

)

]
,

which are the roots of A = 0 or B = 0, respectively.
Firstly, for γ = γ0, the characteristic equation of system (2.4) at the disease-free equilib-

rium E2(S̃, 0, Ỹ ) becomes the following form:

(λ – A)
(
λ2 + C

)
= 0.
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It is clear that the roots of the above equation are λ1 = A < 0, λ2 = i
√

C, and λ1 = –i
√

C.
Hence, there exist a pair of purely imaginary eigenvalues and a strictly negative real

eigenvalue.
Secondly, for γ in a neighborhood of γ0, the roots have the form λ1 = A < 0, λ2 = p1(γ ) +

ip2(γ ) and λ3 = p1(γ ) – ip2(γ ) in which p1(γ ) and p2(γ ) are real.
Next, we shall verify the transversality condition:

d
dγ

(
Reλi(γ )

)|(γ = γ0) �= 0, i = 1, 2.

Substituting λ2 = p1(γ ) + ip2(γ ) into the characteristic Eq. (5.1), we get

(
p1(γ ) + ip2(γ )

)3 –
(
A(γ ) + B(γ )

)(
p1(γ ) + ip2(γ )

)2 +
(
A(γ )B(γ )

+ C(γ )
)(

p1(γ ) + ip2(γ )
)

– A(γ )C(γ ) = 0. (5.2)

Taking derivatives of both sides of (5.2) with respect to γ , we have

3
(
p1(γ ) + ip2(γ )

)2(p′
1(γ ) + ip′

2(γ )
)

–
(
A′(γ ) + B′(γ )

)(
p1(γ ) + ip2(γ )

)2

– 2
(
A(γ ) + B(γ )

)(
p1(γ ) + ip2(γ )

)(
p′

1(γ ) + ip′
2(γ )

)
+

(
A′(γ )B(γ ) + A(γ )B′(γ ) + C′(γ )

)(
p1(γ ) + ip2(γ )

)
+

(
A(γ )B(γ ) + C(γ )

)(
p′

1(γ ) + ip′
2(γ )

)
– A′(γ )C(γ ) – A(γ )C′(γ ) = 0. (5.3)

Comparing real and imaginary parts from both sides of Eq. (5.3), we obtain

(
3p2

1 – 3p2
2 – 2p1D1 + D2

)
p′

1 – (6p1p2 – 2p2D1)p′
2

+
(
p1p2 + P1D′

2 – P2
1D′

1 – D′
3
)

= 0,

(6p1p2 – 2p2D1)p′
1 –

(
3p2

1 – 3p2
2 – 2p1D1 + D2

)
p′

2 +
(
P2D′

2 – 2P1P1D′
1
)

= 0,

(5.4)

where

D1 = A(γ ) + B(γ ), D2 = A(γ )B(γ ) + C(γ ), D3 = A(γ )B(γ ).

Define E1 = (3p2
1 – 3p2

2 – 2p1D1 + D2), E2 = (6p1p2 – 2p2D1), E3 = (p1p2 + P1D′
2 – P2

1D′
1 – D′

3),
and E4 = (P2D′

2 – 2P1P1D′
1), then Eqs. (5.4) become of the following form:

E1p′
1 – E2p′

2 + E3 = 0,

E2p′
1 + E1p′

2 + E4 = 0.
(5.5)

The value of p′
1 can be obtained by solving Eqs. (5.5)

p′
1 =

E1E3 + E2E4

E2
1 + E2

1
.

For p1 = 0 and any other possible value of p2 at γ = γ0, the E1E3 + E2E4 is always unequal
to zero since D2D3

3D′
3+2D1D′

2
�= A2–4B

C2 .
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Therefore, λ1 = A < 0 and

d
dγ

(
Reλi(γ )

)|(γ = γ0) =
E1E3 + E2E4

E2
1 + E2

1
�= 0, i = 1, 2.

Hence, according to Lemma 5.1, the theorem is proved. �

6 Permanence
In this section, we prove the permanence of system (2.4) with initial conditions (2.3) under
the condition Xϕ′(X) < ϕ(X) (X > 0).

Definition 6.1 ([6]) If there exist positive constants mS , MS , mI , MI , mY , and MY such
that each solution (S(t), I(t), Y (t)) of system (2.4) satisfies

0 < mS ≤ lim inf
t→+∞ S(t) ≤ lim sup

t→+∞
S(t) ≤ MS,

0 < mI ≤ lim inf
t→+∞ I(t) ≤ lim sup

t→+∞
I(t) ≤ MI ,

0 < mY ≤ lim inf
t→+∞ Y (t) ≤ lim sup

t→+∞
Y (t) ≤ MY ,

then system (2.4) is permanent. Otherwise, it is non-permanent.
In order to consider the permanence of system (2.4), we consider the following auxiliary

system:

Ṡ(t) = rS
(

1 –
S + I

K

)
–

βSI
α + A

– c1BS,

İ(t) =
βSI

α + C
– dI – c2DI,

(6.1)

in which A, C, and D are non-negatively constant numbers, B is positive and bounded by
r

c1
.
For system (6.1), we can obtain the following result.

Lemma 6.2 The positive equilibrium point of system (6.1) is globally asymptotically stable
when it exists.

Proof The positive equilibrium point of system (6.1) is P̄(S̄, Ī), where

S̄ =
(α + C)(d + c2D)

β
, Ī =

K(r – c1B) – rS̄
r(α + A) + βK

.

The equilibrium point P̄(S̄, Ī) is positive if β > r(α+C)(d+c2D)
K (r–c1B) .

The Jacobian matrix of system (6.1) at P̄(S̄, Ī) is

J =

(
– rS̄

K – (r(α+A)+βK )S̄
K (α+A)

β Ī
α+C 0

)
.

Clearly, Tr J = – rS̄
K < 0 and Det J = β(r(α+A)+βK )S̄Ī

K (α+A)(α+C) > 0.



Wang et al. Advances in Difference Equations  (2018) 2018:244 Page 14 of 20

Therefore, the positive equilibrium point P̄(S̄, Ī) is locally asymptotically stable.
Next, we show its global asymptotic stability.
We consider the following function:

V =
(

S – S̄ – S̄ ln
S
S̄

)
+ E

(
I – Ī – Ī ln

I
Ī

)
.

From the construction of V , it is easily seen that V is positive definite in the region
� = {(S, I)|S ≥ 0, Y ≥ 0} and V (S̄, Ī) = 0.

By simple computation, we obtain that

dV
dt

=
S – S̄

S
˙S(t) +

I – Ī
I

˙S(I)

= –
r(S – S̄)2

K
+

[
βE

α + C
–

r
K

–
β

α + A

]
(S – S̄)(I – Ī).

Let E = (α+C)(r(α+A)+βK )
βK (α+A) > 0, then dV

dt ≤ 0 in the region � = {(S, I)|S ≥ 0, Y ≥ 0}.
Hence the theorem is proved. �

Next, we consider the permanence of system (2.4) with initial conditions (2.3).

Theorem 6.3 If β > r(α+(1–γ )K )(d1+c2ϕ′(0)MY )
(1–γ )K (r–c1ϕ′(0)MY ) > 0 and 0 < MY < r

c1ϕ′(0) , then system (2.4) with
initial conditions (2.3) is permanent. Otherwise, it is non-permanent.

Proof From the first and second equations of system (2.4), we obtain that

Ṡ(t) ≤ rS
(

1 –
S + I

(1 – γ )K

)
–

βSI
(1 – γ )α + K

, İ(t) ≤ βSI
(1 – γ )α

– d1I.

By Lemma 6.2 and a standard comparison theorem, we have

lim sup
t→+∞

S(t) ≤ Ŝ .= MS, lim sup
t→+∞

I(t) ≤ Î .= MI ,

where Ŝ = αd1(1–γ )
β

> 0, Î = ((1–γ )α+K )((1–γ )rK–Ŝ)
(1–γ )(rα+βK )+K > 0 if β > αd1

rK .
Thus, for any given ε > 0, there exists T1 > 0 such that, for any t > T1 > 0, we get

S(t) ≤ MS + ε, I(t) ≤ MI + ε.

From the third equation, we obtain that

Ẏ (t) ≤ [
ec1ϕ

(
(MS + ε)

)
+ ec2ϕ

(
(MI + ε)

)
– d2

]
Y .

It is easy to show that there is MY > 0 such that

lim sup
t→+∞

Y (t) ≤ MY .

Hence, for any given ε > 0, there exists T2 > T1 > 0 such that, for any t > T2 > 0, we have

Y (t) ≤ MY + ε.



Wang et al. Advances in Difference Equations  (2018) 2018:244 Page 15 of 20

Again, from the first and second equations, we get

Ṡ(t) ≥ rS
(

1 –
S + I

K

)
–

βSI
α

– c1M(MY + ε)S,

İ(t) ≥ βSI
α + K

– d1I – c2M(MY + ε)I,

where M is the maximum value of the function F(X), where

F(X) =

⎧⎨
⎩

ϕ(X)/X (0 < X ≤ K),

ϕ′(0) (X = 0).
(6.2)

Notice that the function F(X) has the maximum and minimum values since it is contin-
uous on the closed interval [0, K].

By Lemma 6.2 and a standard comparison theorem, we have

lim inf
t→+∞ S(t) ≥ S∗ .= mS, lim inf

t→+∞ I(t) ≥ I∗ .= mI ,

where

S∗ =
(α + (1 – γ )K)(d1 + c2ϕ

′(0)MY )
β

> 0, I∗ =
(1 – γ )K(r – c1ϕ

′(0)MY ) – rS∗

αr + (1 – γ )βK
> 0,

when β > r(α+(1–γ )K )(d1+c2ϕ′(0)MY )
(1–γ )K (r–c1ϕ′(0)MY ) > 0 and 0 < MY < r

c1ϕ′(0) .
Thus, for any given ε > 0, there exists T3 > T2 > T1 > 0 such that, for any t > T3 > 0, we

obtain

S(t) ≥ mS – ε, I(t) ≥ mI – ε.

Again, from the third equation, we get

Ẏ (t) ≥ [
ec1ϕ

(
(1 – γ )(mS – ε)

)
+ ec2ϕ

(
(1 – γ )(mI – ε)

)
– d2

]
Y .

It is easy to show that there is mY > 0 such that

lim inf
t→+∞ Y (t) ≥ mY > 0.

According to Definition 6.1, system (2.4) with initial conditions (2.3) is permanent under
some strict conditions. Hence the theorem is proved. �

7 Examples
Example 1 If ϕ(X) = X

a+X , then system (2.2) becomes the following system:

Ṡ(t) = rS
(

1 –
S + I

K

)
–

βSI
α + I

–
c1(1 – γ )XY
a + (1 – γ )X

,

İ(t) =
βSI
α + I

– d1I –
c2(1 – γ )IY
a + (1 – γ )I

,

Ẏ (t) =
ec1(1 – γ )XY
a + (1 – γ )X

+
ec2(1 – γ )IY
a + (1 – γ )I

– d2Y .

(7.1)
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It is easy to obtain the disease-free equilibrium point E1(S1, 0, Y1) of system (7.1), where

S1 =
ad2

(1 – γ )(c1e – d2)
, Y1 =

erS1

d2

(
1 –

S1

K

)
.

By simple computation, the equilibrium point E1(S1, 0, Y1) has its ecological meanings if
γ < 1 – ad2

K (c1e–d2) .
According to the theorems in Sect. 4, we can obtain the following propositions:
(1) Assuming that αd1

K < β < αd1
K + αc1e(c2er+d1(c1e–d2))

d2K (c1e–d2) , then
(a) If 0 < γ < 1 – a(c1e+d2)

K (c1e–d2) , then the disease-free equilibrium point of system (7.1) is
unstable;

(b) If 1 – a(c1e+d2)
K (c1e–d2) < γ < 1 – ad2(αc2er+βK (c1e–d2))

αK (c1e–d2)(c2er+d1(c1e–d2)) , then the disease-free
equilibrium point of system (7.1) is locally asymptotically stable;

(c) If 1 – ad2(αc2er+βK (c1e–d2))
αK (c1e–d2)(c2er+d1(c1e–d2)) < γ < 1 – ad2

K (c1e–d2) , then the disease-free equilibrium
point of system (7.1) is unstable.

(2) Assuming that β < αd1
K , then the disease-free equilibrium point of system (7.1) is

always locally asymptotically stable.

Example 2 If ϕ(X) = X2

a+X2 , then system (2.2) becomes the following system:

Ṡ(t) = rS
(

1 –
S + I

K

)
–

βSI
α + I

–
c1(1 – γ )2X2Y
a + (1 – γ )2X2 ,

İ(t) =
βSI
α + I

– d1I –
c2(1 – γ )2I2Y
a + (1 – γ )2I2 ,

Ẏ (t) =
ec1(1 – γ )2X2Y
a + (1 – γ )2X2 +

ec2(1 – γ )2I2Y
a + (1 – γ )2I2 – d2Y .

(7.2)

It is easy to obtain the disease-free equilibrium point E2(S2, 0, Y2) of system (7.2), where

S2 =
1

1 – γ

√
ad2

c1e – d2
, Y2 =

erS2

d2

(
1 –

S2

K

)
.

Clearly, if γ < 1 – 1
K

√
ad2

c1e–d2
, then the equilibrium point E2(S1, 0, Y1) has its ecological

meanings.
According to the theorems in Sect. 4, we can obtain the following propositions:
(1) Assuming that αd1

K < β < 2αd1d2
K (2d2–c1e) , then we have

(a) If 0 < γ < 1 – 2d2
K (2d2–c1e)

√
ad2

c1e–d2
, then the disease-free equilibrium point of system

(7.2) is unstable;
(b) If 1 – 2d2

K (2d2–c1e)

√
ad2

c1e–d2
< γ < 1 – β

αd1

√
ad2

c1e–d2
, then the disease-free equilibrium

point of system (7.2) is locally asymptotically stable;
(c) If 1 – β

αd1

√
ad2

c1e–d2
< γ < 1 – 1

K

√
ad2

c1e–d2
, then the disease-free equilibrium point of

system (7.2) is unstable.
(2) Assuming that β < αd1

K , then we have

(a) If 0 < γ < 1 – 2d2
K (2d2–c1e)

√
ad2

c1e–d2
, then the disease-free equilibrium point of system

(7.2) is unstable;
(b) If 1 – 2d2

K (2d2–c1e)

√
ad2

c1e–d2
< γ < 1 – 1

K

√
ad2

c1e–d2
, then the disease-free equilibrium

point of system (7.2) is locally asymptotically stable.
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Example 3 If ϕ(X) = Xp

a+Xp , then system (2.2) becomes the following system:

Ṡ(t) = rS
(

1 –
S + I

K

)
–

βSI
α + I

–
c1(1 – γ )pXpY
a + (1 – γ )pXp ,

İ(t) =
βSI
α + I

– d1I –
c2(1 – γ )pIpY
a + (1 – γ )pIp ,

Ẏ (t) =
ec1(1 – γ )pXpY
a + (1 – γ )pXp +

ec2(1 – γ )pIpY
a + (1 – γ )pIp – d2Y .

(7.3)

It is easy to obtain the disease-free equilibrium point E3(S3, 0, Y3) of system (7.3), where

S3 =
1

1 – γ

p

√
ad2

c1e – d2
, Y3 =

erS3

d2

(
1 –

S3

K

)
.

Clearly, if γ < 1 – 1
K

p
√

ad2
c1e–d2

, then the equilibrium point E2(S1, 0, Y1) has its ecological
meanings.

According to the theorems in Sect. 4, we can obtain the following propositions:
(I) Supposing that αd1

K < β < αd1(2c1e–p(c1e–d2))
K (c1e–p(c1e–d2)) , then we obtain that

(1) Assuming that p < c1e
c1e–d2

, then

(a) If 0 < γ < 1 – 1
K

p
√

ad2
c1e–d2

[ 2c1e–p(c1e–d2)
c1e–p(c1e–d2) ], then the disease-free equilibrium

point of system (7.3) is unstable;
(b) If 1 – 1

K
p
√

ad2
c1e–d2

[ 2c1e–p(c1e–d2)
c1e–p(c1e–d2) ] < γ < 1 – β

αd1
p
√

ad2
c1e–d2

, then the disease-free
equilibrium point of system (7.3) is locally asymptotically stable;

(c) If 1 – β

αd1
p
√

ad2
c1e–d2

< γ < 1 – 1
K

p
√

ad2
c1e–d2

, then the disease-free equilibrium
point of system (7.3) is unstable.

(2) Assuming that p > 2c1e
c1e–d2

, then

(a) If 0 < γ < 1 – 1
K

p
√

ad2
c1e–d2

[ 2c1e–p(c1e–d2)
c1e–p(c1e–d2) ], then the disease-free equilibrium

point of system (7.3) is locally asymptotically stable;
(b) If 1 – 1

K
p
√

ad2
c1e–d2

[ 2c1e–p(c1e–d2)
c1e–p(c1e–d2) ] < γ < 1 – 1

K
p
√

ad2
c1e–d2

, then the disease-free
equilibrium point of system (7.3) is unstable.

(3) Assuming that c1e
c1e–d2

< p < 2c1e
c1e–d2

, then

(a) If 0 < γ < 1 – β

αd1
p
√

ad2
c1e–d2

, then the disease-free equilibrium point of system
(7.3) is locally asymptotically stable;

(b) If 1 – β

αd1
p
√

ad2
c1e–d2

< γ < 1 – 1
K

p
√

ad2
c1e–d2

, then the disease-free equilibrium
point of system (7.3) is unstable.

(II) Supposing that β < αd1
K , then we obtain

(1) Assuming that p < c1e
c1e–d2

, then

(a) If 0 < γ < 1 – 1
K

p
√

ad2
c1e–d2

[ 2c1e–p(c1e–d2)
c1e–p(c1e–d2) ], then the disease-free equilibrium

point of system (20) is unstable;
(b) If 1 – 1

K
p
√

ad2
c1e–d2

[ 2c1e–p(c1e–d2)
c1e–p(c1e–d2) ] < γ < 1 – 1

K
p
√

ad2
c1e–d2

, then the disease-free
equilibrium point of system (20) is locally asymptotically stable.

(2) Assuming that p > 2c1e
c1e–d2

, then

(a) If 0 < γ < 1 – 1
K

p
√

ad2
c1e–d2

[ 2c1e–p(c1e–d2)
c1e–p(c1e–d2) ], then the disease-free equilibrium

point of system (20) is locally asymptotically stable;
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(b) If 1 – 1
K

p
√

ad2
c1e–d2

[ 2c1e–p(c1e–d2)
c1e–p(c1e–d2) ] < γ < 1 – 1

K
p
√

ad2
c1e–d2

, then the disease-free
equilibrium point of system (20) is unstable.

(3) Assuming that c1e
c1e–d2

< p < 2c1e
c1e–d2

, then the disease-free equilibrium point of
system (20) is always locally asymptotically stable.

8 Discussion
In this paper, a generalized system describing predator–prey interaction with prey refuges
and disease in prey is proposed. Based on mathematical issues, the dynamical properties
(stability, Hopf bifurcation, and permanence) are investigated, and the sufficient condi-
tions which guarantee these properties are obtained (see Sects. 4, 5, 6). However, based
on ecological and epidemiological issues, our analyses reveal that the effect of prey refuge,
the force of infection, and the converting efficiency of predators play an important role
in the dynamical properties of the proposed system. The ecological and epidemiological
meanings will be discussed according to the following aspects:

(1) If the infectious rate of prey is smaller than the threshold B, then the effect of prey
refuge has a stabilizing impact when the converting ratio is relatively small. The
contrary effect happens under the larger converting ratio for predators. However,
the effect of prey refuge has no influence under the middle converting ratio and the
disease will vanish. These results show that the infectious disease can be prevented
by controlling the degree of the effect of prey refuge under the certain converting
ratio.

(2) If the infectious rate of prey is larger than the threshold B, the dynamical
consequences of the considered system will be relatively simple. In this case, in
order to control the infectious disease which will break out, the effect of prey refuge
must be relatively small.

(3) If the infectious rate is smaller than B and larger than B, the stabilizing effect and
destabilizing effect will occur under the small converting ratio, and the destabilizing
effect happens while the converting ratio is larger than the threshold B. Therefore,
for the small converting ratio, the middle level of prey refuge can be applied to
control the infectious disease. But, for the larger converting ratio, the smaller level of
prey refuge is required to control the disease.

According to the above discussions, we find that the effect of prey refuge has a destabiliz-
ing impact on the considered eco-epidemiological system in most cases. The reasons for
this phenomenon may be the disease in prey population, the relatively large converting
efficiency of predators, and the complex functional response to prey population. How-
ever, according to the published research works, the stabilizing effect is often observed in
a simple predator–prey system with no disease in prey and/or predators. The stabilizing
effect of prey refuge is observed when the infectious rate of prey and the converting ratio of
predators are relatively small. Furthermore, the most complex dynamics is observed when
the converting ratio of predators is relatively small and the infectious rate of prey is mod-
erate. At this moment, three kinds of equilibria can be reached: the unstable point with
stable orbits, the stable coexistence of prey and predators, and then the unstable point
again. That is to say, the increase of the infectious rate can lead to the lost of stability.
Therefore, the stabilizing effect and/or destabilizing effects mainly are determined by the
essential properties of predator, such as the converting coefficient, the type of functional
response of predators to prey population. Hence, it is rational to guess that the predation
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strategy and the evolutionary strategy of predator population are the main factors which
induce the partially hiding behavior (prey refuge) of prey population.

On the other hand, our results show that the effect of prey refuge can be applied to
control the spread of the infectious disease. The level of prey refuge needed to control
the disease spread is mainly determined by the infectious rate and the converting ratio of
predators.
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