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Abstract
In this article, we investigate numerical solution of a class of multi-order fractional
differential equations with error correction and convergence analysis. According to
fractional differential definition in Caputo’s sense, fractional differential operator
matrix is deduced. The problem is reduced to a set of algebraic equations, and we
apply MATLAB to solve the equation. In order to improve the precision of numerical
solution, the process of error correction for multi-order fractional differential equation
is introduced. By constructing the multi-order fractional differential equation of the
error function, the approximate error function is obtained so that the numerical
solution is corrected. Then, we analyze the convergence of the shifted Chebyshev
polynomials approximation function. Numerical experiments are given to
demonstrate the applicability of the method and the validity of error correction.

Keywords: Shifted Chebyshev polynomials; Multi-order fractional differential
equation; Error correction; Convergence analysis; Numerical solution

1 Introduction
Fractional calculus [1] is developing fast and its various applications are extensively used
in many fields of science and engineering. It has been applied to chaotic systems [2, 3] and
optimal control problems [4]. In [5], the authors derived the fractional Euler–Lagrange
equation in terms of the Caputo fractional derivatives. Kumar et al. [6] analyzed Fornberg–
Whitham equation pertaining to a fractional derivative with Mittag–Leffler type kernel.
The authors of [7] investigated a time-fractional modified Kawahara equation through a
fractional derivative with exponential kernel. In [8] Singh et al. presented a fractional epi-
demiological model and solved the solution of the problem by using an iterative method.

Fractional differential equation [9] is used to describe mathematical phenomena of
many areas, such as rheology, damping method, signal processing, control theory, poly-
mers, viscoelastic materials, and so on. Many researchers [10, 11] focus on the numer-
ical treatments of fractional differential equation, such as homotopy analysis transform
method [12, 13], iterative reproducing kernel Hilbert space method [14], artificial neural
network approach [15], variational iteration method and its modification [16], Wavelet
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method [17–19], Bernstein polynomials [20], and fractional-order Legendre functions
[21]. The authors of [22] researched space–time fractional Rosenou–Haynam equation.
In [23] Baleanu et al. solved the time fractional third-order evolution (TOE) equation with
Riemann–Liouville (RL) derivative.

Since multi-order fractional differential equations are applied in many fields, many sci-
entists have begun to study the properties and numerical solutions of equations. Multi-
order fractional differential equation [24] is one of the most important types of fractional
differential equations. Authors of [25, 26] investigated the existence, uniqueness, conver-
gence of the solution for multi-order fractional differential equation. Because there is no
exact solution, most different numerical methods, such as stable fractional Chebyshev
differentiation matrix [27], fractional-order operational method [28], spectral collocation
methods [29], and so on, have been used to investigate the approximate solutions of multi-
order fractional differential equation. The authors of [30] only researched the convergence
effect of numerical solutions and exact solutions of equations. There is little literature
with shifted Chebyshev polynomials to solve multi-order fractional differential equation
and research error correction and convergence. In this paper, the numerical solutions of
a class of multi-order fractional differential equations with error correction and conver-
gence analysis are investigated. According to the function approximation theory and frac-
tional differential operator matrix, the equation is transformed into algebraic equations.
The correction solutions of multi-order fractional differential equation are investigated
and the convergence of the shifted Chebyshev polynomials approximation function is an-
alyzed. We do the correction for the numerical solution of low precision and obtain the
absolute error of the correction solution, so that the accuracy of the numerical solution is
improved.

In general, multi-order fractional differential equation is expressed as follows:

Dαu(x) =
k∑

i=0

yiDβi u(x) + f (x), x ∈ [0, 1]

with the initial conditions

u(p)(0) = dp, p = 0, 1, . . . , n – 1,

where n – 1 < α ≤ n, the coefficient yi (i = 0, 1, . . . , k) is constant, and 0 < β0 < · · · < βk < α,
f (x) is a known function.

The rest of the paper is organized as follows: Sect. 2 introduces the definition of Caputo
fractional derivatives and shifted Chebyshev polynomials. In Sect. 3, the function approx-
imation theory is introduced. In Sect. 4, the process of error correction for multi-order
fractional differential equation is introduced and the convergence of the shifted Cheby-
shev polynomials approximation function is analyzed. Section 5 deduces the fractional
differential operator matrix based on shifted Chebyshev polynomials. Section 6 reduces
the problem to a set of algebraic equations. In Sect. 7, the proposed method is applied to
two examples. Conclusion is given in Sect. 8.

2 Preliminary knowledge
In this section, we give the definition of the Caputo fractional derivatives and shifted
Chebyshev polynomials in [31].
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2.1 The Caputo fractional derivatives
Definition 1 The Caputo fractional derivative operator Dα

x of order α is defined in the
following form:

C
a Dα

x f (x) =
1

�(m – α)

∫ x

a
(x – T)m–α–1f (m)(T) dT , α > 0, (1)

where m – 1 ≤ α < m, x > 0.

For Caputo’s derivatives, we have

C
a Dα

x C = 0, (2)

where C is a constant.

C
a Dα

x xm =
�(m + 1)

�(m + 1 – α)
xm–α , m ∈ N1, m ≥ �α�, (3)

where N1 = {0, 1, 2, . . .}, we use the ceiling function �α� to denote the smallest integer
greater than or equal to α.

2.2 Shifted Chebyshev polynomials
The well-known Chebyshev polynomials can be defined on the interval x ∈ [–1, 1] and can
be determined with the following recurrence formula:

⎧
⎨

⎩
P∗

0(x∗) = 1, P∗
1(x∗) = x∗

P∗
i+1(x∗) = 2x∗P∗

i (x∗) – P∗
i–1(x∗), i = 1, 2, 3, . . . .

(4)

In order to obtain these polynomials on the interval [0, 1], we introduce the change of
variable x∗ = 2x – 1 and substitute x∗ to P∗

i (x∗), i = 0, 1, 2, . . . . The shifted Chebyshev poly-
nomials can be defined as

⎧
⎨

⎩
P0(x) = 1, P1(x) = 2x – 1,

Pi+1(x) = 2(2x – 1)Pi(x) – Pi–1(x), i = 1, 2, 3, . . . .
(5)

The shifted Chebyshev polynomials Pn(x) of degree n can be given by

Pn(x) =
n∑

i=0

(–1)n–i22i n(n + i – 1)!
(n – i)!(2i)!

xi, (6)

the weight function is

ws(x) =
1√

x – x2
. (7)

Combining (7) the orthogonality condition is

∫ 1

0
Pn(x)Pm(x)

dx√
x – x2

⎧
⎪⎪⎨

⎪⎪⎩

0, n 	= m,

π , n = m = 0,

π/2, n = m 	= 0.

(8)
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We can define the shifted Chebyshev vector as follows:

�(x) =
[
P0(x), P1(x), . . . , Pn(x)

]T , (9)

the vector is represented as a matrix form as follows:

�(x) = ATn(x), (10)

where

A =

⎡

⎢⎢⎢⎢⎣

1 0 · · · 0
40 1(1+0–1)!

(1–0)!(0)! 41 1(1+1–1)!
(1–1)!(2)! · · · 0

...
...

. . .
...

40 n(n+0–1)!
(n–0)!(0)! 41 n(n+1–1)!

(n–1)!(2)! · · · 4n n(n+n–1)!
(n–n)!(2n)!

⎤

⎥⎥⎥⎥⎦
.

3 Function approximation
The function u(x) is a continuous function which can be expanded in shifted Chebyshev
polynomials:

u(x) =
∞∑

i=0

ciPi(x).

A finite expansion in the first (n + 1)-term shifted Chebyshev polynomials is

u(x) ∼=
n∑

i=0

ciPi(x) = CT�(x), (11)

where the shifted Chebyshev vector �(x) and the shifted Chebyshev coefficient vector C
are given by

C = [c0, c1, . . . , cn]T ,

�(x) =
[
P0(x), P1(x), . . . , Pn(x)

]T .

The coefficient vector C can be determined by the inner product

C = Q–1〈u,�(x)
〉
,

where the inner product is defined as

〈
f ,�(x)

〉
=

∫ xf

0
f (x)�(x) dx,
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where Q is

Q =
∫ xf

0
�(x)�T (x) dx

=
∫ xf

0

(
AT(x)

)(
AT(x)

)T dx

= A
(∫ xf

0
T(x)TT (x) dx

)
AT

= AHAT ,

where xf = 1, H is

H =

⎡

⎢⎢⎢⎢⎣

1 1
2 · · · 1

n+1
1
2

1
3 · · · 1

n+2
...

...
. . .

...
1

n+1
1

n+2 · · · 1
2n+2

⎤

⎥⎥⎥⎥⎦
.

4 Error correction and convergence analysis
In this section, we do error correction for multi-order fractional differential equation and
introduce convergence of shifted Chebyshev polynomials. The order of convergence is n.

4.1 Error correction
We solve multi-order fractional differential equation via the shifted Chebyshev polyno-
mials. If the absolute error between the numerical solution and exact solution is larger,
according to the correct solution and the exact solution, we can get the absolute error of
correct solution. Error correction improves the precision of numerical solution.

We assume that the numerical solution of multi-order fractional differential equation is
uM(x), the exact solution is u(x), the error between the numerical solution and the exact
solution is

eM(x) = u(x) – uM(x), (12)

where eM(x) is an error function.
Substituting the numerical solution of equation uM(x) in multi-order fractional differ-

ential equation, we can get

DαuM(x) ≈
k∑

i=0

yiDβi uM(x) + f (x). (13)

A residual function wM(x) is added to the right-hand side of the multi-order fractional
differential equation, (13) can be transformed into

DαuM(x) =
k∑

i=0

yiDβi uM(x) + f (x) + wM(x). (14)
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Then we can get the equation

Q
[
uM(x)

]
= f (x) + wM(x), (15)

where

Q
[
uM(x)

]
= DαuM(x) –

k∑

i=0

yiDβi uM(x). (16)

We assume that φ is the unknown variables in the following equation:

Q[φ] = Dαφ –
k∑

i=0

yiDβiφ, (17)

when φ = u(x) and φ = eM(x), we have

Q
[
u(x)

]
= Dαu(x) –

k∑

i=0

yiDβi u(x) = f (x), (18)

Q
[
eM(x)

]
= DαeM(x) –

k∑

i=0

yiDβi eM(x). (19)

Combining (12) and (15)–(19), we can obtain

Q
[
eM(x)

]
= Q

[
u(x)

]
– Q

[
uM(x)

]
= –wM(x). (20)

According to (19) and (20), we can get

DαeM(x) –
k∑

i=0

yiDβi eM(x) = –wM(x). (21)

We name (21) multi-order fractional differential equation of error function. eM(x) is the
exact solution, e∗

ω(x) is the numerical solution, namely the approximate error function.
According to the numerical solution of multi-order fractional differential equation

uM(x) and the numerical solution of multi-order fractional differential equation of error
function e∗

ω(x), correct solution u∗(x) can be obtained:

u∗(x) = uM(x) + e∗
ω(x). (22)

Combining (22) with the exact solution u(x), we can get the absolute error of correct
solution:

∣∣er(x)
∣∣ =

∣∣u(x) – u∗(x)
∣∣. (23)

The error er(x) between the exact solution and the numerical solution of multi-order
fractional differential equation of error function is

er(x) = eM(x) – e∗
ω(x) = u(x) – uM(x) – e∗

ω(x) (24)

er(x) is a correction error function.
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In the same way, according to the shifted Chebyshev polynomials function approxima-
tion theory, correct solution u∗(x) can be translated into a matrix form as follows:

u∗(x) ∼=
m∑

i=0

c∗
iPi(x) =

(
C∗)T

�∗(x), (25)

where (n < m ∈ N∗)

C∗ =
[
c∗

0, c∗
1, . . . C∗

m
]T ,

�∗(x) =
[
P0(x), P1(x), . . . , Pm(x)

]T .

4.2 Convergence analysis
Definition 2 In the interval [a, b], we can define arbitrary function convergence coeffi-
cient of form as follows:

ω(f , δ) = sup
x,y∈[a,b],|x–y|≤δ

∣∣f (x) – f (y)
∣∣.

Theorem 1 In [a, b], the function is uniformly convergent if and only if limδ→0 ω(f , δ) = 0.

Theorem 2 If f (x) is bounded on [0, 1], then there is

∥∥f – q(f , n)
∥∥∞ ≤ 3

2
ω

(
f ,

1√
n

)
,

where

q(f , n) =
n∑

k=0

f
(

k
n

)
Pk ,

and

‖f ‖∞ = sup
∣∣f (x)

∣∣.

Theorem 3 When f (x) satisfies α order Lipschitz condition in [0, 1], then there is

∥∥f – q(f , n)
∥∥∞ ≤ 3

2
km– α

2 ,

where k is a Lipschitz constant.

Theorem 4 If f (x) is bounded on [0, 1], Y = Span{P0, P1, P2, . . . , Pn}. If CT�(x) is the best
approximation of f in the linear space Y , then there is

∥∥f – cT�
∥∥

2 ≤ 3
2
ω

(
f ,

1√
n

)
.

It is confirmed that shifted Chebyshev polynomials approximation converges to f ; when
n converges to ∞, approximation consistently converges to f .
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5 Fractional differential operator matrix
According to (10), the differential operator can be derived as follows:

D�(x) = D
(
ATn(x)

)
= AD

(
Tn(x)

)

= AD

⎡

⎢⎢⎢⎢⎣

1
x
...

xn

⎤

⎥⎥⎥⎥⎦
= AD

⎡

⎢⎢⎢⎢⎣

0
1
...

xn–1

⎤

⎥⎥⎥⎥⎦
= AQ(n+1)×nT∗

n (x).

The above formula can be shown specifically as follows:

Q(n+1)×n =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
1 0 · · · 0
0 2 · · · 0
...

...
. . .

...
0 0 · · · n

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

T∗
n (x) = B∗�(x),

B∗ =
[
A–1

[1], A–1
[2], . . . , A–1

[n]
]T ,

where A–1
[η] is line η of A–1, η = 1, 2, . . . , n.

So

D�(x) = D
(
ATn(x)

)
= AQ(n+1)×nT∗

n (x) = E�(x). (26)

First-order differential operator matrix is

E = AQ(n+1)×nB∗. (27)

When β2 ∈ [0, 1), combining (3) with (10), we can deduce

Dβ2�(x) = Dβ2
(
ATn(x)

)
= ADβ2 Tn(x)

= ADβ2

⎡

⎢⎢⎢⎢⎣

1
x
...

xn

⎤

⎥⎥⎥⎥⎦
= A

⎡

⎢⎢⎢⎢⎣

0
�(2)

�(2–β2) x–β2

...
�(n+1)

�(n+1–β2) x–β2

⎤

⎥⎥⎥⎥⎦

= A

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
0 �(2)

�(2–β2) x–β2 0 · · · 0
0 0 �(3)

�(3–β2) x–β2 · · · 0
...

...
...

. . .
...

0 0 0 0 �(n+1)
�(n+1–β2) x–β2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

1
x
...

xn

⎤

⎥⎥⎥⎥⎦

= ANA–1�(x),
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where

N =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
0 �(2)

�(2–β2) x–β2 0 · · · 0
0 0 �(3)

�(3–β2) x–β2 · · · 0
...

...
...

. . .
...

0 0 0 0 �(n+1)
�(n+1–β2) x–β2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

So the fractional differential operator can be deduced

Dβ2�(x) = ANA–1�(x) = G�(x). (28)

Fractional differential operator matrix is

G = ANA–1. (29)

6 The numerical algorithm
The multi-order fractional differential equation, which we study in this paper, can be ex-
pressed as follows:

Dαu(x) = y0Dβ0 u(x) + y1Dβ1 u(x) + y2Dβ2 u(x)

+ y3Dβ3 u(x) + f (x), x ∈ [0, 1] (30)

with the initial conditions

u(0)(0) = d0, u(1)(0) = d1, (31)

where α = 2, k = 3, the coefficient yi(i = 0, 1, 2, 3) is constant, and β0 = 0, β1 = 1, 0 < β2 < 1,
1 < β3 < 2, f (x) is a known function.

On the basis of (10), (11), (26), the item in equation can be converted into the matrix,
we can deduce concretely them as follows:

Du(x) ∼= DCT�(x) = CT AQ(n+1)×nB∗�(x) = CT E�(x), (32)

D2u(x) ∼= D2CT�(x) = CT D2�(x) = CT D2(ATn(x)
)

= CT E2�(x). (33)

Then, the second-order differential operator matrix is

E2 =
(
AQ(n+1)×nB∗)2.

When β2 ∈ (0, 1), on the basis of (10), (11), (28), the item in equation can be converted
into the matrix

Dβ2 u(x) ∼= Dβ2 CT�(x) = CT Dβ2�(x) = CT ANA–1�(x) = CT G�(x). (34)
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When β3 ∈ (1, 2), (β2 < β3), that is to say β2 = β3 – 1 ∈ (0, 1), according to (10), (11), (26),
(28), the item in equation can be converted into the matrix as follows:

Dβ3 u(x) ∼= Dβ3 CT�(x) = Dβ2
(
DCT�(x)

)
= CT Dβ2

(
E�(x)

)

= CT EDβ2�(x) = CT EANA–1�(x) = CT EG�(x), (35)

where

K = EANA–1 = EG. (36)

Combining (11) with (32)–(36), the equation can be converted into

CT E2�(x) = y0CT�(x) + y1CT E�(x) + y2CT G�(x) + y3CT K�(x) + f (x).

Also, we substitute the correction solution into the original equation and translate the
original equation into matrix as follows:

(
C∗)T E2�∗(x) = y0

(
C∗)T

�∗(x) + y1
(
C∗)T E�∗(x)

+ y2
(
C∗)T G�∗(x) + y3

(
C∗)T K�∗(x) + f (x).

By using the collocation method, the variables are discretized, the problem can be trans-
ferred to linear equations. Combining MATLAB software with least square method to
solve the unknown coefficient, numerical solution of the problem can be obtained.

7 Numerical examples
In this section, two experiments prove that the proposed method is effective and feasible.

Example 1 Consider the following multi-order fractional differential equation:

Dαu(x) = y0Dβ0 u(x) + y1Dβ1 u(x) + y2Dβ2 u(x)

+ y3Dβ3 u(x) + f (x), x ∈ [0, 1],

with the initial conditions

u(0)(0) = d0, u(1)(0) = d1,

where α = 2, d0 = d1 = 0, the coefficient is y0 = y2 = –1, y1 = 2, y3 = 0, and β0 = 0, β1 = 1,
β2 = 1

2 ∈ (0, 1), the known function is

f (x) = x7 +
2048

429
√

π
x6.5 – 14x6 + 42x5 – x2 –

8
3
√

π
x1.5 + 4x – 2,

the exact solution is u(x) = x7 – x2.
When n = 4, the discrete variable is xi = i

5 – 1
10 (i = 1, 2, . . . , 5), the numerical solution

is u(x) = CT
1 �(x), the unknown coefficient can be obtained C1 = [0.3602, 0.8710, 0.1714,
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0.1750, 0.0924]T , the shifted Chebyshev polynomials of approximation function �(x) are

�(x) =

⎡

⎢⎢⎢⎢⎢⎢⎣

1
2x – 1

8x2 – 8x + 1
32x3 – 48x2 + 18x – 1

128x4 – 256x3 + 160x2 – 32x + 1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

When n = 6, the discrete variable is xi = i
7 – 1

14 (i = 1, 2, . . . , 7), the numerical solution is
u(x) = CT

1 �(x), the unknown coefficient can be obtained C1 = [–0.1528, –0.1193, 0.1207,
0.1220, 0.0441, 0.0113, 0.0020]T , the shifted Chebyshev polynomials of approximation
function �(x) are

�(x) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2x – 1

8x2 – 8x + 1
32x3 – 48x2 + 18x – 1

128x4 – 256x3 + 160x2 – 32x + 1
512x5 – 1280x4 + 1120x3 – 400x2 + 50x – 1

2048x6 – 6144x5 + 6912x4 – 3584x3 + 840x2 – 72x + 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

When n = 7, the discrete variable is xi = i
8 – 1

16 (i = 1, 2, . . . , 8), the numerical solution is
u(x) = CT

1 �(x), the unknown coefficient can be obtained C1 = [–0.1655, –0.1334, 0.1194,
0.1222, 0.0444, 0.0111, 0.0017, 0.0001]T , the shifted Chebyshev polynomials of approxima-
tion function �(x) are

�(x) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2x – 1

8x2 – 8x + 1
32x3 – 48x2 + 18x – 1

128x4 – 256x3 + 160x2 – 32x + 1
512x5 – 1280x4 + 1120x3 – 400x2 + 50x – 1

2048x6 – 6144x5 + 6912x4 – 3584x3 + 840x2 – 72x + 1
8192x7 – 28672x6 + 39424x5 – 26880x4 + 9408x3 – 1568x2 + 98x – 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Compared with [30], Example 1 studies the approximation effect of numerical solution
and exact solution, the absolute errors and the absolute error of correct solution. When
n = 4, 6, 7, the absolute errors for equation in some match points between the numerical
solution and the exact solution are shown in Fig. 1–Fig. 3 and Table 1. When n = 6, 7, 8,
the numerical solution and exact solution are shown in Fig. 4–Fig. 6.

When n = 4, the absolute error is bigger, we do correction for the numerical solution
with n = 4 and obtain the correct solution with n = 4, m = 8, the correct solution and the
absolute error of correct solution are shown in Fig. 7 and Fig. 8.

From Fig. 1–Fig. 3 and Table 1, we see that, when n = 4, 6, the absolute error is bigger,
when n = 7, the absolute error becomes smaller and the precision of numerical solution
is higher, the absolute error achieves about 10–15. According to Fig. 4–Fig. 6, as the order
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Figure 1 The absolute error between the numerical solution and the exact solution with n = 4 for Example 1

Figure 2 The absolute error between the numerical solution and the exact solution with n = 6 for Example 1
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Figure 3 The absolute error between the numerical solution and the exact solution with n = 7 for Example 1

Table 1 The absolute errors with n = 4, 6, 7 for Example 1

x The absolute errors with n = 4 The absolute errors with n = 6 The absolute errors with n = 7

0.2 0.0844 0.0044 2.81025203108243e–15
0.4 0.3501 0.0079 6.63358257213531e–15
0.6 0.6734 0.0143 3.27515792264421e–15
0.8 1.0234 0.0214 4.25770529943748e–14
1 1.6700 0.0280 2.43819897540083e–13

of convergence n gets larger, the approximation between the numerical solution and the
exact solution is better.

From Fig. 1, Fig. 7, Fig. 8, we see that the absolute error of correct solution is smaller
than the absolute error of numerical solution.

Example 2 Consider the following multi-order fractional differential equation:

Dαu(x) = y0Dβ0 u(x) + y1Dβ1 u(x) + y2Dβ2 u(x)

+ y3Dβ3 u(x) + f (x), x ∈ [0, 1],

with the initial conditions

u(0)(0) = d0, u(1)(0) = d1,
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Figure 4 The numerical solution and the exact solution with n = 6 for Example 1

Figure 5 The numerical solution and the exact solution with n = 7 for Example 1
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Figure 6 The numerical solution and the exact solution with n = 8 for Example 1

Figure 7 The correct solution and the exact solution with n = 4,m = 8 for Example 1
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Figure 8 The error of correct solution and the absolute error of correct solution with n = 4,m = 8 for
Example 1

where α = 2, d0 = d1 = 0, the coefficient is y0 = y2 = –1, y1 = 0, y3 = 2, and β0 = 0, β2 = 2
3 ∈

(0, 1), β3 = 5
3 ∈ (1, 2). The known function is

f (x) = x3 + 6x –
12

�( 7
3 )

x
4
3 +

6
�( 10

3 )
x

7
3 ,

the exact solution is u(x) = x3.
When n = 2, the discrete variable is xi = i

3 – 1
6 (i = 1, 2, 3), the numerical solution is u(x) =

CT
1 �(x), the unknown coefficient can be obtained C1 = [–0.0912, –0.0695, 0.0139]T , the

shifted Chebyshev polynomials of approximation function �(x) are

�(x) =

⎡

⎢⎣
1

2x – 1
8x2 – 2x – 1

⎤

⎥⎦ .

When n = 3, the discrete variable is xi = i
4 – 1

8 (i = 1, 2, 3, 4), the numerical solution
is u(x) = CT

1 �(x), the unknown coefficient can be obtained C1 = [0.3125, 0.4688, 0.1875,
0.0313]T , the shifted Chebyshev polynomials of approximation function �(x) are

�(x) =

⎡

⎢⎢⎢⎣

1
2x – 1

8x2 – 2x – 1
32x3 – 48x2 + 18x – 1

⎤

⎥⎥⎥⎦ .
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When n = 2, 3, the absolute errors for equation in some match points between the nu-
merical solution and the exact solution are shown in Fig. 9, Fig. 10, and Table 2. When
n = 3, 4, the numerical solution and the exact solution are shown in Fig. 11, Fig. 12.

Figure 9 The absolute error between the numerical solution and the exact solution with n = 2 for Example 2

Figure 10 The absolute error between the numerical solution and the exact solution with n = 3 for Example 2
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Table 2 The absolute errors with n = 2, 3 for Example 2

x The exact solution The absolute errors with n = 2 The absolute errors with n = 3

0.2 0.0080 0.0614 2.55004350968591e–16
0.4 0.0640 0.1541 2.77555756156289e–16
0.6 0.2160 0.3339 3.33066907387547e–16
0.8 0.5120 0.6488 4.44089209850063e–16
1 1.0000 1.1468 6.66133814775094e–16

Figure 11 The numerical solution and the exact solution with n = 3 for Example 2

When n = 2, the absolute error is bigger, we do the correction for the numerical solution
with n = 2 and obtain the correct solution with n = 2, m = 4, the correct solution and the
absolute error of correct solution are shown in Fig. 13, Fig. 14.

The author of [32] researched the exact solution of Example 2 to obtain the absolute
error of the correction solution, so that the accuracy of the numerical solution is improved.
From Fig. 9, Fig. 10, and Table 2, we see that, when n = 2, the absolute error is bigger, when
n = 3, the absolute error becomes smaller and the precision of numerical solution is higher,
the absolute error achieves about 10–16. From Fig. 11, Fig. 12, we see that, as the order of
convergence n gets larger, the convergence effect between the numerical solution and the
exact solution is better.

From Fig. 9, Fig. 13, Fig. 14, it is seen that the absolute error of correct solution is clearly
smaller.

8 Conclusion
In this paper, we conclude that the method based on shifted Chebyshev polynomials is a
suitable technique for solving multi-order fractional differential equation. Not only frac-
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Figure 12 The numerical solution and the exact solution with n = 4 for Example 2

Figure 13 The correct solution and the exact solution with n = 2,m = 4 for Example 2
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Figure 14 The error of correct solution and the absolute error of correct solution with n = 2,m = 4 for
Example 2

tional differential operator matrix is deduced, but also this approach reduces the problem
to a set of algebraic equations. We investigate multi-order fractional differential equation
of error correction and analyze the convergence of the shifted Chebyshev polynomials.
From example, it is seen that, n is bigger, the absolute error is smaller, and the conver-
gence effect between the numerical solution and the exact solution is better. We do the
correction for the numerical solution, the absolute error of correct solution is smaller than
the absolute error of numerical solution. Numerical experiments are given to demonstrate
the applicability of the method and the validity of error correction.
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