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Abstract
We are concerned with the Hopf bifurcation of an SVEIR computer virus model with
time delay and nonlinear incident rate. First of all, by analyzing the associated
characteristic equation we obtain sufficient conditions for its local stability and the
existence of a Hopf bifurcation. Directly afterward, by means of the normal form
theory and the center manifold theorem we derive explicit formulas that determine
the direction of the Hopf bifurcation and the stability of the bifurcated periodic
solutions. Finally, we carry out numerical simulations to illustrate and verify the
theoretical results.
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1 Introduction
With the fast development and popularization of computer networks, computer viruses
have tremendous influence on our society. To predict the propagation of computer viruses
in networks, in recent years many computer virus models have been proposed and investi-
gated such as SIRS models [1–5], SEIS models [6, 7], SEIR models [8–10], SEIQRS models
[11–13], SLBS models [14–16] and some other models [17–20].

The overwhelming majority of the computer virus models mentioned assume a bilin-
ear infection rate. However, there are several reasons why bilinear infection rate requires
modification [21]. Especially, the propagation of computer viruses can be dramatically
affected by the topology of the underlying network, and this may lead to some specific
nonlinear infection rates. In addition, the choice of the treatment function is also an im-
portant factor for the modeling of computer virus spreading. For example, the treatment
rate may be slow due to the lower effectiveness of antivirus, and the treatment rate may
increase slowly and attain its peak and finally settles down at its saturation value with the
improved and effective antivirus technology [22]. Based on this fact, Upadhyay et al. [22]
proposed the following computer virus model with nonlinear incidence rate and saturated
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treatment rate:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = A – δ0S(t) – αS(t)I(t)

S(t)+I(t)+c + ηV (t) – μS(t),
dE(t)

dt = αS(t)I(t)
S(t)+I(t)+c – (δ0 + δ1)E(t),

dI(t)
dt = δ1E(t) – (δ0 + δ2 + δ3)I(t) – βI(t)

I(t)+a ,
dR(t)

dt = δ2I(t) – δ0R(t) + βI(t)
I(t)+a ,

dV (t)
dt = μS(t) – (δ0 + η)V (t),

(1)

where S(t), E(t), I(t), R(t), and V (t) denote the numbers of the susceptible computers, the
exposed computers, the infectious computers, the recovered computers, and the vacci-
nated computers at time t, respectively, A is the recruitment rate of new computers, α is
the contact rate of the susceptible computers, η is the rate at which the vaccinated comput-
ers lose their immunity and join the susceptible ones, β denotes the maximal treatment
capacity of a network, δ0 is the natural mortality rate of all the computers, δ1 is the rate
at which the exposed computers become the infectious ones, δ2 is the recovery rate of the
infectious computers, δ3 is the crashing rate of the infectious computers due to the viruses,
a is the half saturation constant for the infectious computers, c is the saturation constant
for the susceptible computers, and μ is the vaccination rate of the susceptible computers.
Upadhyay et al. [22] studied the stability of the viral equilibrium of system (1).

It is well known that time delays of one type or another have been incorporated into
computer virus models due to latent period [3, 4], temporary immunity period [5, 12],
or other reasons [9], because time delays may play a complicated role on the models. For
example, time delays can cause the loss of stability and can induce Hopf bifurcation and
periodic solutions. As stated in [4], the occurrence of a Hopf bifurcation means that the
state of computer virus prevalence changes from an equilibrium to a limit cycle, and this
phenomenon is unexpected, since the periodic behavior is unpleasant from the viewpoint
of epidemiology. Having this idea in mind and considering that the antivirus software may
use a period to clean the viruses in the infectious computers, it is worth investigating the
Hopf bifurcation of the following system with time delay:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = A – δ0S(t) – αS(t)I(t)

S(t)+I(t)+c + ηV (t) – μS(t),
dE(t)

dt = αS(t)I(t)
S(t)+I(t)+c – (δ0 + δ1)E(t),

dI(t)
dt = δ1E(t) – (δ0 + δ3)I(t) – δ2I(t – τ ) – βI(t–τ )

I(t–τ )+a ,
dR(t)

dt = δ2I(t – τ ) – δ0R(t) + βI(t–τ )
I(t–τ )+a ,

dV (t)
dt = μS(t) – (δ0 + η)V (t),

(2)

where τ is the time delay due to the period the antivirus software uses to clean the viruses
in the infectious computers.

The organization of the rest of this paper is organized as follows. In Sect. 2, the local
stability and existence of a Hopf bifurcation are performed. In Sect. 3, the direction and
stability of the Hopf bifurcation are determined. In Sect. 4, the obtained analytical findings
are justified through computer simulations. This work is closed by Sect. 5.



Zhao et al. Advances in Difference Equations  (2018) 2018:256 Page 3 of 16

2 Stability of the viral equilibrium and existence of Hopf bifurcation
By direct computation we get that if [αδ1 – (δ0 + δ1)(δ0 + δ2 + δ3)](I∗ + a) > βδ1(δ0 + δ1), then
system (2) has a viral equilibrium P∗(S∗, E∗, I∗, R∗, V∗), where

S∗ =
(δ0 + δ1)(δ0 + δ2 + δ3)(I∗ + a)(I∗ + c) + βδ1(δ0 + δ1)(I∗ + c)

[αδ1 – (δ0 + δ1)(δ0 + δ2 + δ3)](I∗ + a) – βδ1(δ0 + δ1)
,

E∗ =
(δ0 + δ2 + δ3)I∗

δ1
+

βI∗
δ1(I∗ + a)

,

R∗ =
δ2I∗
δ0

+
βI∗

δ0(I∗ + a)
,

V∗ =
μ[(δ0 + δ1)(δ0 + δ2 + δ3)(I∗ + a)(I∗ + c) + βδ1(δ0 + δ1)(I∗ + c)]
(δ0 + η){[αδ1 – (δ0 + δ1)(δ0 + δ2 + δ3)](I∗ + a) – βδ1(δ0 + δ1)} ,

and I∗ is the positive root of the equation

a3I3 + a2I2 + a1I + a0 = 0, (3)

where

a0 = δ1B6c – B1c(δ0 + η) + δ1ac
[
B7 – B2(δ0 + η)

]

+ Aaδ1(δ0 + η)(B3a – B4),

a1 = B6a2δ1 – a2δ1(δ0 + η)(B1δ1 + B3B5)

+ δ1(a + c)
(
B7 – B2(δ0 + η)

)

+ a(δ0 + η)
(
B4B5δ1 – B3β(δ0 + δ1)

)

+ (δ0 + η)
(
2AB3aδ1 – AB4δ1 + B4β(δ0 + δ1)

)
,

a2 = δ1(2B6a + B7) + δ1(δ0 + η)(AB3 + B4B5 – B2)

– (δ0 + η)
(
B3β(δ0 + δ1) + δ1(B1 + B3B5)

)
,

a3 = δ1B6 – δ1(δ0 + η)(B1 + B3B5),

with

B1 = (δ0 + μ)(δ0 + δ1)(δ0 + δ2 + δ3),

B2 = βδ1(δ0 + μ)(δ0 + δ1),

B3 = αδ1 – (δ0 + δ1)(δ0 + δ2 + δ3),

B4 = βδ1(δ0 + δ1),

B5 =
(δ0 + δ1)(δ0 + δ2 + δ3)

δ1
,

B6 = ημ(δ0 + δ1)(δ0 + δ2 + δ3),

B7 = ημβδ1(δ0 + δ1).

For Eq. (3), we have the following results.
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Lemma 1 If a3 = 0, then
(1) if a2 = 0 and a0/a1 < 0, then there exists a unique positive root I∗ = –a0/a1 of Eq. (3);
(2) When � > 0, if a2/a1 < 0 and a0/a2 > 0, then there exist two positive roots I(1)∗ = I+∗

and I(2)∗ = I–∗ ; if a0/a2 < 0, then there is a unique positive root I∗ = I+∗ with a1 > 0 or
I∗ = I–∗ with a2 < 0; if a0 = 0 and a1/a2 < 0, then there is a unique positive root
I∗ = –a1/a2;

(3) if � = 0 and a1/a2 < 0, then there is a unique positive root I∗ = –a1/(2a2). Here
� = a2

1 – 4a2a0, I+∗ = (–a1 +
√

�)/(2a2), and I–∗ = –(a1 +
√

�)/(2a2).

Lemma 2 For a3 �= 0, let l2 = a2/a3, l1 = a1/a3, and l0 = a0/a3. Then:
(1) if l0 < 0, then Eq. (3) has at least one positive root;
(2) if l0 ≥ 0 and l2

2 – 3l1 ≤ 0, then Eq. (3) has no positive root;

(3) if l0 ≥ 0 and l2
2 – 3l1 > 0, then Eq. (3) has a positive root if and only if –l2+

√
l22–3l1

3 > 0

and h( –l2+
√

l22–3l1
3 ) ≤ 0, where h(I) = I3 + l2I2 + l1I + l0.

Then, we can obtain the linearization of system (2). Let u1(t) = S(t) – S∗, u2(t) = E(t) – E∗,
u3(t) = I(t) – I∗, u4(t) = R(t) – R∗, u5(t) = V (t) – V∗. We can rewrite system (2) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇1(t) = a11u1(t) + a13u3(t) + a15u5(t) +
∑

i+j≥2
1

i!j! f
(1)

ij ui
1(t)uj

3(t),

u̇2(t) = a21u1(t) + a22u2(t) + a23u3(t) +
∑

i+j≥2
1

i!j! f
(2)

ij ui
1(t)uj

3(t),

u̇3(t) = a32u2(t) + a33u3(t) + b33u3(t – τ ) +
∑

i≥2
1
i! f

(3)
i ui

3(t – τ ),

u̇4(t) = a44u4(t) + b43u3(t – τ ) +
∑

i≥2
1
i! f

(4)
i ui

3(t – τ ),

u̇5(t) = a51u1(t) + a55u5(t),

(4)

where

a11 = –
[

δ0 + μ +
αI∗(I∗ + c)

(S∗ + I∗ + c)2

]

, a13 = –
αS∗(S∗ + c)

(S∗ + I∗ + c)2 , a15 = η,

a21 =
αI∗(I∗ + c)

(S∗ + I∗ + c)2 , a22 = –(δ0 + δ1), a23 =
αS∗(S∗ + c)

(S∗ + I∗ + c)2 ,

a32 = δ1, a33 = –(δ0 + δ3), b33 = –
[

δ2 +
aβ

(I∗ + a)2

]

,

a44 = –δ0, a51 = μ, a55 = –(δ0 + η),

b43 =
[

δ2 +
aβ

(I∗ + a)2

]

,

f (k)
ij =

∂ i+jf (k)(S∗, E∗, I∗, R∗, V∗)
∂ui

1(t)∂uj
3(t)

,

f (k)
i =

∂ if (k)(S∗, E∗, I∗, R∗, V∗)
∂ui

3(t – τ )
,

f (1) = A – δ0u1(t) –
αu1(t)u3(t)

u1(t) + u3(t) + c
– μS(t),

f (2) =
αu1(t)u3(t)

u1(t) + u3(t) + c
– (δ0 + δ1)u2(t),
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f (3) = δ1u2(t) – (δ0 + δ3)u3(t) – δ2u3(t – τ ) –
βu3(t – τ )

u3(t – τ ) + a
,

f (4) = δ2u3(t – τ ) – δ0u4(t) +
βu3(t – τ )

u3(t – τ ) + a
.

Then we obtain the linearized system of system (4)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇1(t) = a11u1(t) + a13u3(t) + a15u5(t),

u̇2(t) = a21u1(t) + a22u2(t) + a23u3(t),

u̇3(t) = a32u2(t) + a33u3(t) + b33u3(t – τ ),

u̇4(t) = a44u4(t) + b43u3(t – τ ),

u̇5(t) = a51u1(t) + a55u5(t).

(5)

The characteristic equation is

P(λ) = λ5 + p4λ
4 + p3λ

3 + p2λ
2 + p1λ + p0 +

(
q4λ

4 + q3λ
3 + q2λ

2 + q1λ + q0
)
e–λτ

= 0, (6)

where

p0 = a44(a22a33 – a23a32)(a15a51 – a11a55) – a13a21a32a44a55,

p1 = a55
(
a11a22(a33 + a44) + a33a44(a11 + a22)

)
+ a11a22a33a44

– a23a32(a11a44 + a11a55 + a44a55) + a15a23a32a51

– a15a51(a22a33 + a22a44 + a33a44) + a13a21a32(a44 + a55),

p2 = a23a32(a11 + a44 + a55) + a15a51(a22 + a33 + a44) – a13a21a32

–
(
a11a22(a33 + a44) + a33a44(a11 + a22)

)

– a55
(
a11a22 + a33a44 + (a11 + a22)(a33 + a44)

)
,

p3 = a11a22 + a33a44 + (a11 + a22)(a33 + a44) – a23a32 – a15a51

+ a55(a11 + a22 + a33 + a44),

p4 = –(a11 + a22 + a33 + a44 + a55), q0 = a22a44b33(a15a51 – a11a55),

q1 = a11a22b33(a44 + a55) + a44a55b33(a11 + a22) – a15a51b33(a22 + a44),

q2 = a15a51b33 – b33
(
a11a22 + a44a55 + (a11 + a22)(a44 + a55)

)
,

q3 = b33(a11 + a22 + a44 + a55), q4 = –b33.

When τ = 0, Eq. (3) reduces to

λ5 + p04λ
4 + p03λ

3 + p02λ
2 + p01λ + p00 = 0 (7)

with

p00 = p0 + q0, p01 = p1 + q1, p02 = p2 + q2,

p03 = p3 + q3, p04 = p4 + q4.
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Obviously,

p04 = μ + 5δ0 + δ1 + δ2 + δ3 +
αI∗(I∗ + c)

(S∗ + I∗ + c)2 +
aβ

(I∗ + a)2 > 0.

An application of the Routh–Hurwitz criterion gives Re(λ) < 0 if and only if condition
(H1) is satisfied, that is, if the following inequalities hold:

det2 =

∣
∣
∣
∣
∣

p04 1
p02 p03

∣
∣
∣
∣
∣

> 0, (8)

det3 =

∣
∣
∣
∣
∣
∣
∣

p04 1 0
p02 p03 p04

0 p01 p02

∣
∣
∣
∣
∣
∣
∣

> 0, (9)

det4 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

p04 1 0 0
p02 p03 p04 1
p00 p01 p02 p03

0 0 p00 p01

∣
∣
∣
∣
∣
∣
∣
∣
∣

> 0, (10)

det5 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

p04 1 0 0 0
p02 p03 p04 1 0
p00 p01 p02 p03 p04

0 0 p00 p01 p02

0 0 0 0 p00

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

> 0. (11)

For τ > 0, we assume that λ = iω (ω > 0) is a root of Eq. (6). Then

⎧
⎨

⎩

(q1ω – q3ω
3) sin τω + (q4ω

4 – q2ω
2 + q0) cos τω = p2ω

2 – p4ω
4 – p0,

(q1ω – q3ω
3) cos τω – (q4ω

4 – q2ω
2 + q0) sin τω = p3ω

3 – ω5 – p1ω.

Thus

ω10 + e4ω
8 + e3ω

6 + e2ω
4 + e1ω

2 + e0 = 0, (12)

where

e0 = p2
0 – q2

0, e1 = p2
1 – 2p0p2 + 2q0q2 – q2

1,

e2 = p2
2 – 2p1p3 + 2p0p4 – q2

2 – 2q1q3,

e3 = p2
3 + 2p1 – 2p2p4 + 2q2q4 – q2

3,

e4 = p2
4 – 2p3 – q2

4.

Let v = ω2. Then Eq. (12) becomes

v5 + e4v4 + e3v3 + e2v2 + e1v + e0 = 0. (13)
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Based on the discussion about the distribution of the roots of Eq. (13) in [23] and con-
sidering that all the values of parameters in system (2) are given, we can obtain all the roots
of Eq. (13). Thus we make the following assumption:

(H2) Equation (13) has at least one positive root v0.
If condition (H2) holds, then there exists v0 > 0 such that Eq. (6) has a pair of purely

imaginary roots ±iω0 = ±i√v0. For ω0, we have

τ0 =
1
ω0

×
{

g1(ω0)
g2(ω0)

}

,

where

g1(ω0) = (q3 – p4q4)ω8
0 + (p3q3 – q1 + p2q4 + p4q2)ω6

0

+ (p1q3 + p3q1 – p0q4 – p2q2 – p4q0)ω4
0

+ (p0q2 + p2q0 – p1q1)ω2
0 – p0q0,

g2(ω0) = q2
4ω

8
0 +

(
q2

3 – 2q2q4
)
ω6

0 +
(
q2

2 + 2q0q4 + 2q1q3
)
ω4

0

+
(
q2

1 – 2q0q2
)
ω2

0 + q2
0.

Next, differentiating Eq. (6) with respect to τ , we obtain

[
dλ

dτ

]–1

= –
5λ4 + 4p4λ

3 + 3p3λ
2 + 2p2λ + p1

λ(λ5 + p4λ4 + p3λ3 + p2λ2 + p1λ + p0)

+
4q4λ

3 + 3q3λ
2 + 2q2λ + q1

λ(q4λ4 + q3λ3 + q2λ2 + q1λ + q0)
–

τ

λ
.

Further, we have

Re

[
dλ

dτ

]–1

τ=τ0

=
f ′(v0)

(q1ω0 – q3ω
3
0)2 + (q4ω

4
0 – q2ω

2
0 + q0)2 ,

where v0 = ω2
0 and f (v) = v5 + e4v4 + e3v3 + e2v2 + e1v + e0.

Therefore, if condition (H3): f ′(v0) �= 0 holds, then Re[ dλ
dτ

]τ=τ0 �= 0. Based on the previous
discussion and the Hopf bifurcation theorem in [24], we have the following:

Theorem 1 Suppose that the conditions (H1), (H2), and (H3) hold for system (2). The viral
equilibrium P∗(S∗, E∗, I∗, R∗, V∗) is locally asymptotically stable when τ ∈ [0, τ0); a Hopf
bifurcation occurs at the viral equilibrium P∗(S∗, E∗, I∗, R∗, V∗) when τ = τ0, and a family of
periodic solutions bifurcate from the viral equilibrium P∗(S∗, E∗, I∗, R∗, V∗) near τ = τ0.

3 Direction and stability of the Hopf bifurcation
Let u1(t) = S(t) – S∗, u2(t) = E(t) – E∗, u3(t) = I(t) – I∗, u4(t) = R(t) – R∗, u5(t) = V (t) – V∗.
Rescale the time delay by t → (t/τ ). Let τ = τ0 +�, � ∈ R. Then the Hopf bifurcation occurs
at � = 0. Thus system (2) can be transformed into

u̇(t) = L�ut + F(�, ut), (14)
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where ut = (u1(t), u2(t), u3(t), u4(t), u5(t))T = (S, E, I, R, V )T ∈ R5, ut(θ ) = u(t + θ ) ∈ C =
C([–1, 0], R5), and L� : C → R5 and F(�, ut) → R5 are given by

L�φ = (τ0 + �)
(
Mmaxφ(0) + Nmaxφ(–1)

)
,

F(�,φ) = (F1, F2, F3, F4, 0)

with

Mmax =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 0 a13 0 a15

a21 a22 a23 0 0
0 a32 a33 0 0
0 0 0 a44 0

a51 0 0 0 a55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Nmax =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 b33 0 0
0 0 b43 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

F1 = a16φ
2
1 (0) + a17φ

2
3 (0) + a18φ1(0)φ3(0) + a19φ

2
1 (0)φ3(0)

+ a110φ1(0)φ2
3 (0) + a111φ

3
1 (0) + a112φ

3
3 (0) + · · · ,

F2 = a24φ
2
1 (0) + a25φ

2
3 (0) + a26φ1(0)φ3(0) + a27φ

2
1 (0)φ3(0)

+ a28φ1(0)φ2
3 (0) + a29φ

3
1 (0) + a210φ

3
3 (0) + · · · ,

F3 = a34φ
2
3 (–1) + a35φ

3
3 (–1) + · · · ,

F4 = a45φ
2
3 (–1) + a46φ

3
3 (–1) + · · · ,

a16 =
αI∗(I∗ + c)

(S∗ + I∗ + c)3 , a17 =
αS∗(S∗ + c)

(S∗ + I∗ + c)3 ,

a18 = –
2αS∗I∗ + cα(S∗ + I∗ + c)

(S∗ + I∗ + c)3 ,

a19 =
2αI∗(2S∗ – I∗) + 2cα(S∗ + c)

(S∗ + I∗ + c)4 ,

a110 =
2αS∗(2I∗ – S∗) + 2cα(I∗ + c)

(S∗ + I∗ + c)4 ,

a111 = –
αI∗(I∗ + c)

(S∗ + I∗ + c)4 , a112 = –
αS∗(S∗ + c)

(S∗ + I∗ + c)4 ,

a24 = –
αI∗(I∗ + c)

(S∗ + I∗ + c)3 , a25 = –
αS∗(S∗ + c)

(S∗ + I∗ + c)3 ,

a26 =
2αS∗I∗ + cα(S∗ + I∗ + c)

(S∗ + I∗ + c)3 ,

a27 = –
2αI∗(2S∗ – I∗) + 2cα(S∗ + c)

(S∗ + I∗ + c)4 ,

a28 = –
2αS∗(2I∗ – S∗) + 2cα(I∗ + c)

(S∗ + I∗ + c)4 ,

a29 =
αI∗(I∗ + c)

(S∗ + I∗ + c)4 , a210 =
αS∗(S∗ + c)

(S∗ + I∗ + c)4 ,

a34 =
aβ

(I∗ + a)3 , a35 = –
aβ

(I∗ + a)4 , a45 = –
aβ

(I∗ + a)3 , a46 =
aβ

(I∗ + a)4 .
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According to the Riesz representation theorem, there is a matrix η(θ ,�) in θ ∈ [–1, 0]
such that

Lμφ =
∫ 0

–1
dη(θ ,�)φ(θ ) (15)

for φ ∈ C. In fact, we choose

η(θ ,�) = (τ0 + �)
(
Mmaxδ(θ ) + Nmaxδ(θ + 1)

)
,

where δ(θ ) is the Dirac delta function.
For φ ∈ C([–1, 0], R5), define

A(�)φ =

⎧
⎨

⎩

dφ(θ )
dθ

, –1 ≤ θ < 0,
∫ 0

–1 dη(θ ,�)φ(θ ), θ = 0,

and

R(�)φ =

⎧
⎨

⎩

0, –1 ≤ θ < 0,

F(�,φ), θ = 0.

Then system (14) becomes

u̇(t) = A(�)ut + R(�)ut . (16)

For ϕ ∈ C1([0, 1], (R5)∗), the adjoint operator A∗ of A(0) can be defined as

A∗(ϕ) =

⎧
⎨

⎩

– dϕ(s)
ds , 0 < s ≤ 1,

∫ 0
–1 dηT (s, 0)ϕ(–s), s = 0.

Next, we define the bilinear inner form for A and A∗:

〈
ϕ(s),φ(θ )

〉
= ϕ̄(0)φ(0) –

∫ 0

θ=–1

∫ θ

ξ=0
ϕ̄(ξ – θ ) dη(θ )φ(ξ ) dξ , (17)

where η(θ ) = η(θ , 0).
Let ρ(θ ) = (1,ρ2,ρ3,ρ4,ρ5)T eiτ0ω0θ and ρ∗(s) = (1,ρ∗

2 ,ρ∗
3 ,ρ∗

4 ,ρ∗
5 )T eiτ0ω0s be the eigenvec-

tors for A(0) and A∗(0) corresponding to +iτ0ω0 and –iτ0ω0, respectively. Then, we have

ρ2 =
a21 + a23ρ3

iω0 – a22
,

ρ3 =
iω0 – a11

a13
–

a15a51

a13(iω0 – a55)
,

ρ4 =
b43e–iτ0ω0ρ3

iω0 – a44
, ρ5 =

a51

iω0 – a55
,

ρ∗
2 =

a15a51

a21(iω0 + a55)
–

iω0 + a11

a21
,
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ρ∗
3 = –

(iω0 + a22)ρ2

a32
, ρ∗

5 = –
a15

iω0 + a55
,

ρ∗
4 = –

(iω0 + a33 + b33eiτ0ω0 )ρ∗
3 – a23ρ

∗
2 + a13

b43eiτ0ω0
.

From Eq. (17) we get

D̄ =
[
1 + ρ2ρ̄

∗
2 + ρ3ρ̄

∗
3 + ρ4ρ̄

∗
4 + ρ5ρ̄

∗
5 + τ0e–iτ0ω0ρ3

(
b33ρ̄

∗
3 + b43ρ̄

∗
4
)]–1,

so that 〈ρ∗,ρ〉 = 1 and 〈ρ∗, ρ̄〉 = 0.
Next, based on the algorithms in [24] and a computation similar to that in [25–27], we

obtain

g20 = 2τ0D̄
[
a16 + a17ρ

2
3 + a18ρ3 + ρ̄∗

2
(
a24 + a25ρ

2
3 + a26ρ3

)

+
(
a34ρ̄

∗
3 + a45ρ̄

∗
4
)
ρ2

3 e–2iτ0ω0
]
,

g11 = τ0D̄
[
2a16 + 2a17ρ3ρ̄3 + 2a18 Re{ρ3} + ρ̄∗

2
(
2a24 + 2a25ρ3ρ̄3 + 2a26 Re{ρ3}

)

+ 2
(
a34ρ̄

∗
3 + a45ρ̄

∗
4
)
ρ3ρ̄3

]
,

g02 = 2τ0D̄
[
a16 + a17ρ̄

2
3 + a18ρ̄3 + ρ̄∗

2
(
a24 + a25ρ̄

2
3 + a26ρ̄3

)

+
(
a34ρ̄

∗
3 + a45ρ̄

∗
4
)
ρ̄2

3 e2iτ0ω0
]
,

g21 = 2τ0D̄
[

a16
(
2W (1)

11 (0) + W (1)
20 (0)

)
+ a17

(
2W (3)

11 (0)ρ3 + W (3)
20 (0)ρ̄3

)

+ a18

(

W (1)
11 (0)ρ3 +

1
2

W (1)
20 (0)ρ̄3 + W (3)

11 (0) +
1
2

W (3)
20 (0)

)

+ a19(ρ̄3 + 2ρ3) + a110
(
ρ2

3 + 2ρ3ρ̄3
)

+ 3a111 + 3a112ρ
2
3 ρ̄3

+ ρ̄∗
2

(

a24
(
2W (1)

11 (0) + W (1)
20 (0)

)
+ a25

(
2W (3)

11 (0)ρ3 + W (3)
20 (0)ρ̄3

)

+ a26

(

W (1)
11 (0)ρ3 +

1
2

W (1)
20 (0)ρ̄3 + W (3)

11 (0) +
1
2

W (3)
20 (0)

)

+ a27(ρ̄3 + 2ρ3) + a28
(
ρ2

3 + 2ρ3ρ̄3
)

+ 3a29 + 3a210ρ
2
3 ρ̄3

)

+ ρ̄∗
3
(
a34

(
2W (3)

11 (–1)ρ3e–iτ0ω0 + W (3)
20 (–1)ρ̄3eiτ0ω0

)
+ 3a35ρ

2
3 ρ̄3e–iτ0ω0

)

+ ρ̄∗
4
(
a45

(
2W (3)

11 (–1)ρ3e–iτ0ω0 + W (3)
20 (–1)ρ̄3eiτ0ω0

)
+ 3a46ρ

2
3 ρ̄3e–iτ0ω0

)
]

,

with

W20(θ ) =
ig20ρ(0)
τ0ω0

eiτ0ω0θ +
iḡ02ρ̄(0)
3τ0ω0

e–iτ0ω0θ + E1e2iτ0ω0θ ,

W11(θ ) = –
ig11ρ(0)
τ0ω0

eiτ0ω0θ +
iḡ11ρ̄(0)
τ0ω0

e–iτ0ω0θ + E2,
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where E1 and E2 can be obtained by the following two equations:

E1 = 2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2iω0 – a11 0 –a13 0 –a15

–a21 2iω0 – a22 –a23 0 0
0 –a32 2iω0 – a33 – b33e–2iτ0ω0 0 0
0 0 –b43e–2iτ0ω0 2iω0 – a44 0

–a51 0 0 0 2iω0 – a55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

E(1)
1

E(2)
1

E(3)
1

E(4)
1

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

E2 = –

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 0 a13 0 a15

a21 a22 a23 0 0
0 a32 a33 + b33 0 0
0 0 b43 a44 0

a51 0 0 0 a55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

E(1)
2

E(2)
2

E(3)
2

E(4)
2

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with

E(1)
1 = a16 + a17ρ

2
3 + a18ρ3,

E(2)
1 = a24 + a25ρ

2
3 + a26ρ3,

E(3)
1 = a34ρ

2
3 e–2iτ0ω0 , E(4)

1 = a45ρ
2
3 e–2iτ0ω0 ,

E(1)
2 = 2a16 + 2a17ρ3ρ̄3 + 2a18 Re{ρ3},

E(2)
2 = 2a24 + 2a25ρ3ρ̄3 + 2a26 Re{ρ3},

E(3)
2 = 2a34ρ3ρ̄3, E(4)

2 = 2a45ρ3ρ̄3.

Then we can obtain

C1(0) =
i

2τ0ω0

(

g11g20 – 2|g11|2 –
|g02|2

3

)

+
g21

2
,

μ2 = –
Re{C1(0)}
Re{λ′(τ0)} ,

β2 = 2Re
{

C1(0)
}

,

T2 = –
Im{C1(0)} + μ2 Im{λ′(τ0)}

τ0ω0
. (18)

Thus, based on the properties of the Hopf bifurcation discussed in [24], we can get the
following:

Theorem 2 The sign of μ2 determines the direction of the Hopf bifurcation: if μ2 > 0
(μ2 < 0), then the Hopf bifurcation is supercritical (subcritical); the sign of β2 determines the
stability of the bifurcated periodic solutions: if β2 < 0 (β2 > 0), then the bifurcated periodic
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solutions are stable (unstable); and the sign of T2 determines the period of the bifurcated
periodic solutions: if T2 > 0 (T2 < 0), then the period of the bifurcated periodic solutions
increases (decreases).

4 Numerical simulation
In this section, we try to present some numerical simulations for system (2) to validate the
previous main results. By extracting some values from [22] and considering the conditions
for the existence of the Hopf bifurcation, we choose a set of parameters as follows: A = 2,
δ0 = 0.02, α = 0.27, β = 0.003, c = 0.01, η = 0.2, μ = 0.003, δ1 = 0.2, δ2 = 0.045, δ3 = 0.03,
a = 0.4. Then, we obtain the following specific case of system (2):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = 2 – 0.02S(t) – 0.27S(t)I(t)

S(t)+I(t)+0.01 + 0.2V (t) – 0.003S(t),
dE(t)

dt = 0.27S(t)I(t)
S(t)+I(t)+0.01 – 0.22E(t),

dI(t)
dt = 0.2E(t) – 0.05I(t) – 0.045I(t – τ ) – 0.003I(t–τ )

I(t–τ )+0.4 ,
dR(t)

dt = 0.045I(t – τ ) – 0.02R(t) + 0.003I(t–τ )
I(t–τ )+0.4 ,

dV (t)
dt = 0.003S(t) – 0.22V (t).

(19)

Then Eq. (3) becomes

–1.7084e – 004I3 + 0.0028I2 + 0.0023I + 4.6141e – 004 = 0. (20)

By means of Matlab software package we can get the unique positive root I∗ = 17.1823 of
Eq. (20). Then we get [αδ1 – (δ0 + δ1)(δ0 + δ2 + δ3)](I∗ + a) = 0.5820 > βδ1(δ0 + δ1) = 1.3200e –
004. Thus we obtain the unique viral equilibrium P∗(10.8619, 8.3082, 17.1832, 38.8068,
0.1481) of system (19).

By computation we obtain ω0 = 3.5844, τ0 = 81.3618, and λ′(τ0) = 0.0041 – 0.0872i. As
is shown in Figs. 1–3, the viral equilibrium P∗(10.8619, 8.3082, 17.1832, 38.8068, 0.1481) is
locally asymptotically stable when τ = 63.65 < τ0 = 81.3618. However, the viral equilibrium

Figure 1 The trajectories of S, E, I, R, and V with τ = 63.65 < τ0
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Figure 2 Dynamic behavior of system (19): projection on S-E-I with τ = 63.65 < τ0

Figure 3 Dynamic behavior of system (19): projection on E-I-V with τ = 63.65 < τ0

P∗(10.8619, 8.3082, 17.1832, 38.8068, 0.1481) loses its stability, and a Hopf bifurcation oc-
curs once τ > τ0 = 81.3618, which can be exhibited by Figs. 4–6 with τ = 106.79. This is
consistent with the results in Theorem 1. Therefore we can conclude that the propaga-
tion of the viruses in system (19) can be controlled by shortening the period that antivirus
software uses to clean the viruses.

In addition, by some complex computations based on Eq. (18) we obtain g20 = –3.7011 +
6.8056i, g11 = 2.9207 + 0.6036i, g02 = –3.7011 – 6.8056i, g21 = –8.7200 – 3.3956i, and
C1(0) = –4.4504 – 1.6676i. Further, we obtain β2 = –8.9008 < 0, μ2 = 1085.5 > 0, and
T2 = 0.3303 > 0. According to Theorem 2, the Hopf bifurcation is supercritical, the bi-
furcated periodic solutions are stable, and the period of the bifurcated periodic solutions
increases. Therefore, the time delay due to the period that antivirus software uses to clean
the viruses is harmful since the periodic behavior is unpleasant from the viewpoint of epi-
demiology. In practice, the stability of the computer virus system must be guaranteed to
predict and even eliminate the viruses.

5 Conclusions
In this paper, we propose a delayed SVEIR computer virus model with nonlinear incident
rate and saturated treatment rate by incorporating the time delay due to the period that
antivirus software uses to clean the viruses in the infectious computers into the model
considered in the literature [22]. Compared with the work in [22], the model considered
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Figure 4 The trajectories of S, E, I, R, and V with τ = 106.79 > τ0

Figure 5 Dynamic behavior of system (19): projection on S-E-I with τ = 106.79 > τ0

Figure 6 Dynamic behavior of system (19): projection on E-I-V with τ = 106.79 > τ0

in the present paper is more general, and we mainly investigate the effects of the delay on
the model.

The main results are given in terms of the stability of the viral equilibrium and Hopf
bifurcation. We prove that the propagation of the viruses can be controlled when the value
of the delay is below the critical value τ0. However, a Hopf bifurcation occurs when the
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value of the delay passes through the critical value τ0, which indicates that computers of
the five classes in the model may coexist in an oscillatory mode under some conditions and
the viruses will be out of control in this case. Therefore, we should control the occurrence
of the Hopf bifurcation by using some bifurcation control strategies, and this will be a
major emphasis of our future research.
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