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Abstract
We study the pattern generatingmechanism of a generalized Gierer–Meinhardt
model with diffusions. We show the existence and stability of the Hopf bifurcation for
the corresponding kinetic system under certain conditions. With spatial uneven
diffusions, the obtained stable Hopf periodic solution may become unstable, which
results in Turing instability. We derive conditions for the existence of Turing instability.
Numerical simulations reveal that the Turing patterns are of stripe and spot shapes. In
the analysis, we use bifurcation analysis, center manifold reduction for ordinary
differential equations and partial differential equations. Though the Gierer–Meinhardt
system is classical, our system with more general settings has yet to be analyzed in the
literature.
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1 Introduction
Pattern formation can be induced by uneven diffusions. It was first discovered by Tur-
ing [1] in the 1950s. Under given conditions, chemical compounds can interact with each
other and spread in space in some ways, which result in heterogeneous spatial patterns of
chemical compound or morphogen concentration [2]. This means that without diffusions,
the homogenous equilibrium maintains stability to small perturbations, whereas with dif-
fusions, the homogenous equilibrium may lose its stability, and spatial inhomogeneous
patterns can emerge due to the unequal spatial diffusions. Reaction–diffusion equations
and systems can characterize a substantial number of pattern-related biology phenom-
ena. In 1972, Gierer and Meinhardt [3] constructed a prototypical activator and inhibitor
model of the form

⎧
⎨

⎩

∂a
∂t = ρ0ρ + cρ ar

hs – μa + Da
∂2a
∂x2 ,

∂h
∂t = c′ρ ′ aT

hu – νh + Dh
∂2h
∂x2 ,

(1)

with the following assumptions: an activator a and an inhibitor h acting on sources of
activators and inhibitors have distributions ρ(x) and ρ ′(x), respectively. At time t > 0
and spatial position x, the concentrations of the activator and inhibitor are expressed by
a = a(x, t) and h = h(x, t). The terms ar/hs and aT /hu represent the activation and inhibi-
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tion of sources. The terms μa and νh represent the leakage, reuptake by source, enzyme
degradation, or any of their combinations. So μa and νh are removed from a and h, and Da

and Dh denote the spatial diffusion coefficients. Taking into account the actual biological
significance, all the parameters are positive constants. Furthermore, to form a gradient,
r, s, T , and u must satisfy sT

u+1 > r – 1 > 0, which means that r must be at least 2 if it is an
integer [3]. Reaction–diffusion system (1) is seen as one of the most important systems
characterizing the formation of patterns [4, 5].

Over the years, system (1) has attracted considerable attention. In [6], the author in-
vestigated system (1), subjected to Neumann boundary conditions on the interval (0,π ),
by taking r = T = 2, s = 1, u = 0 and showed that if the diffusion coefficients are selected
suitably, then the homogeneous steady state and the time-dependent periodic solution
can undergo Turing instability. The same system was considered but subjected to Dirich-
let boundary conditions on the interval (0, lπ ), l ∈ R

+. We refer to [7] for more detail.
Furthermore, many researchers studied the system by considering the saturation of acti-
vator production. In this situation, the activated area and the total structure size are pro-
portional [8], since the activator concentration has a maximum value. In [9], the authors
investigated the same system but with saturated activator production under Neumann
boundary conditions in the interval (0,π ) and showed the existence of Turing instabili-
ties of the positive spatial homogeneous equilibrium and homogenous periodic solution.
They found that there are at least two limit cycles. Spectral analysis and Floquet exponent
as in [10, 11] are significant in analyzing the dynamical behavior of reaction–diffusion
systems. In [12], the authors studied the global attractivity of equilibrium and gene ex-
pression time delays in the same system with production saturation. In [13], the authors
investigated system (1) with r = s = 2, T = 1, u = 0 and obtained the parameter range for
the system to become diffusively unstable. By taking u = s = 4 and r = T = 2 system (1)
can be extended to the generalized or modified Gierer–Meinhardt model as in [14–17].
A meaningful result of the generalized system is the spike solutions for the related elliptic
system in regions in R

n. When r = T , s = u, and ρ = ρ ′, system (1) is called the general
form of activator–inhibitor system with common sources [3], which was studied in [18].
They obtained a precise parametric condition for the presence of Turing instability. For
more results about reaction diffusion systems of activator–inhibitor type, see [19–21]. See
[22–24] and the references therein for more real-world models on Turing instability.

So far, most work on Turing instability of system (1) has been carried out by taking spe-
cific parameter values. In contrast, few work is done directly from the general system (1).
The increasing number of parameters in the general system (1) make the mechanism of
spatial pattern formation more difficult to understand. System (1) with s �= u is called the
general form of activator–inhibitor system with different sources [3]. In comparison with
the activator–inhibitor system with common sources, a system with different sources has
stronger nonlinearity. Therefore, the analysis is more involved.

If r ≥ 2, r ∈ N
+, r = s = T , and u = 0, then we obtain a class of activator–inhibitor models

with different sources:
⎧
⎨

⎩

∂a
∂t = ρ0ρ + cρ ar

hr – μa + Da
∂2a
∂x2 ,

∂h
∂t = c′ρ ′ar – νh + Dh

∂2h
∂x2 .

(2)

In this paper, we are interested in deriving the precise parametric ranges for pattern for-
mation. We want to understand the dynamics responsible for the spot and stripe patterns.
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For simplicity, set

A =
(

(c′ρ ′)r

cρDr–1
a

) 1
r2–r+1

a, H =
Da

c′ρ ′

(
(c′ρ ′)r

cρDr–1
a

) r
r2–r+1

h, d∗ =
Dh

Da
,

μ∗ =
μ

Da
, ν∗ =

ν

Da
, t∗ = Dat, c∗ =

(
(c′ρ ′)r

cρDr–1
a

) 1
r2–r+1 ρρ0

Da
.

We drop the asterisks and use lowercase letters for algebraic convenience. Then system
(2) becomes

⎧
⎨

⎩

∂a
∂t = c + ar

hr – μa + ∂2a
∂x2 ,

∂h
∂t = ar – νh + d ∂2h

∂x2 ,
(3)

where c, r, μ, ν , d > 0, a ≥ 0, h > 0, and r ≥ 2, r ∈N
+. We also impose the Neumann bound-

ary conditions

∂a
∂x

(0, t) =
∂a
∂x

(π , t) = 0,
∂h
∂x

(0, t) =
∂h
∂x

(π , t) = 0 (4)

to system (3).
The remaining parts of the paper are organized as follows. In Sect. 2, we proceed with

a detailed study on the dynamical behavior of the corresponding kinetic system, such as
the existence and stability of positive homogeneous solutions and a steady-state and time-
dependent periodic solution bifurcated from Hopf bifurcation. In Sect. 3, we derive suf-
ficient analytic conditions for homogeneous solutions to undergo diffusion-driven insta-
bility. Numerical examples to illustrate the analytic results are presented in Sect. 4. From
the simulations we see spot and stripe spatial patterns.

2 Homogeneous equilibria and stability
In this section, we investigate the existence and uniqueness of positive equilibrium for
system (3) with no diffusions. System (3) with no diffusions is

⎧
⎨

⎩

da
dt = c + ar

hr – μa,
dh
dt = ar – νh.

(5)

For latter reference, we set

f (a, h) = c +
ar

hr – μa, g(a, h) = ar – νh. (6)

Then the equilibrium of system (5) satisfies

f (a, h) = 0, g(a, h) = 0. (7)

The following lemma is needed for equilibrium analysis.

Lemma 2.1 For c,μ,ν > 0 and r ≥ 2, r ∈N
+, the auxiliary function φ(a) = c – aμ + ar–r2

νr ,
a ∈ (0, +∞) has the following properties:
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(1) φ(a) is a decreasing function in (0, +∞);
(2) lima→0 φ(a) = +∞, lima→+∞ φ(a) = –∞;
(3) φ(a) is a concave function in (0, +∞);
(4) φ(a) has a unique zero point in ( c

μ
, +∞).

Proof Conclusions (1), (2), and (3) are obvious. The fact that φ( c
μ

) = ( c
μ

)r–r2
νr > 0, along

with (1) and (2), leads to (4). �

The following proposition gives the existence and uniqueness of the positive equilibrium
for system (5).

Proposition 2.1 For a ≥ 0, h > 0, system (5) has a unique positive equilibrium (a∗, h∗) with
φ(a∗) = 0, h∗ = ar∗/ν , and a∗ ∈ ( c

μ
, +∞).

Proof The equilibrium (a∗, h∗) of system (5) is the solution of equation (7). Then a∗ > 0 and
h∗ > 0. The remaining conclusions follow from Lemma 2.1. �

On the stability of the equilibrium (a∗, h∗), we have the following:

Proposition 2.2 The unique positive equilibrium (a∗, h∗) of system (5) is stable if one of
the following conditions holds:

(H1) 0 < (r – 1)μ ≤ ν , c > 0;
(H2) (r – 1)μ > ν > 0, c > ch.

It is unstable if
(H3) (r – 1)μ > ν > 0, 0 < c < ch,

where ch = a0
r [(r – 1)μ – ν] and a0 = ( rνr

μ+ν
)

1
1–r+r2 .

Proof Evaluated at (a∗, h∗), the Jacobian matrix of (5) is

(
–μ + rνra–1+r–r2

∗ –rν1+ra–r2
∗

ra–1+r∗ –ν

)

:= J(c),

so the determinant and the trace are Det J(c) = μν + (r – 1)rν1+ra–1+r–r2
∗ > 0 and Tr J(c) =

–μ – ν + rνra–1+r–r2
∗ . The corresponding eigenvalues are

λ1,2 =
Tr J(c) ± √

[Tr J(c)]2 – 4 Det J(c)
2

.

Denote a0 = ( rνr

μ+ν
)

1
1–r+r2 > 0. Then φ(a0) = c – a0μ + ar–r2

0 νr = c + a0
r [ν – (r – 1)μ]. If (H1)

holds, then φ(a0) ≥ c > 0. From Lemma 2.1 and Proposition 2.1 we have a∗ > a0. Since
–1 + r – r2 < 0, we have a–1+r–r2

∗ < a–1+r–r2
0 = μ+ν

rνr , which implies that Tr J(c) < –μ – ν +
rνra–1+r–r2

0 = 0. Since Det J(c) > 0, the real parts of both eigenvalues are negative. This im-
plies that the equilibrium is stable. If (H2) holds, we have φ(a0) > ch + a0

r [ν – (r – 1)μ] = 0.
From Lemma 2.1 and Proposition 2.1 we have a∗ > a0. Following the same analysis process
as for condition (H1), we verify that the real parts of both eigenvalues of J(c) are negative.
Therefore, the equilibrium is stable. If (H3) holds, then from Lemma 2.1 and Proposi-
tion 2.1 we have φ(a0) < 0 and 0 < a∗ < a0, which implies that Tr J(c) > 0. Since Det J(c) > 0,
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then one or more eigenvalues have a positive real part. This implies that the equilibrium is
unstable. �

The next corollary gives detailed information about the equilibrium.

Corollary 2.1 Suppose r ≥ 2 and let

μ01 =
ν(2r2 – r + 1) – 2νr

√
r2 – r + 1

(r – 1)2 , μ02 =
ν(2r2 – r + 1) + 2νr

√
r2 – r + 1

(r – 1)2 ,

M01 =
μ – ν + 2rν – 2

√
rν(μ – ν + rν)

rνr , M̄01 = M
1

–1+r–r2
01

(
μ – M01ν

r),

M02 =
μ – ν + 2rν + 2

√
rν(μ – ν + rν)

rνr , M̄02 = M
1

–1+r–r2
02

(
μ – M02ν

r).

(1) For μ �= ν , the equilibrium (a∗, h∗) of system (5) is a stable node if one of the following
conditions holds:
(SN1) 0 < μ ≤ μ01, c > 0;
(SN2) μ > μ01, c > M̄01.
It is an unstable node if
(UN) μ > μ02, 0 < c < M̄02.

(2) For μ �= ν , the equilibrium (a∗, h∗) of system (5) is a stable focus if one of the following
conditions holds:
(SF1) μ01 < μ ≤ ν

r–1 , 0 < c < M̄01;
(SF2) μ > ν

r–1 , ch < c < M̄01.
It is an unstable focus if one of the following conditions holds:
(UF1) ν

r–1 < μ ≤ μ02, 0 < c < ch;
(UF2) μ > μ02, M̄02 < c < ch.

(3) For μ = ν , the equilibrium (a∗, h∗) of system (5) can only be a focus. It is stable if
(SF3) c > ch

and is unstable if
(UF3) 0 < c < ch.

From the analysis we can deduce from Proposition 2.2 that, for (r – 1)μ > ν > 0, J(ch) has
a pair of conjugate pure imaginary eigenvalues, which implies the existence of conjugate
complex eigenvalues for c close to ch. This is a necessary condition for the occurrence
of the Hopf bifurcation. We further prove this and analyze the direction and stability of
the Hopf bifurcation. Suppose that (r – 1)μ > ν > 0 and c close to ch, and let x = a – a∗,
y = h – h∗. Then system (5) becomes

(
dx
dt
dy
dt

)

= J(c)

(
x
y

)

+

(
f2(x, y, c)
g2(x, y, c)

)

, (8)

where J(c) is defined as before, and

f2(x, y, c) =
(r – 1)rνr

2a2–r+r2
∗

x2 –
r2ν1+r

a1+r2
∗

xy +
(1 + r)rν2+r

2ar+r2
∗

y2 +
(r – 2)(r – 1)rνr

6a3–r+r2
∗

x3
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–
(r – 1)r2νr+1

2a2+r2
∗

x2y +
(1 + r)r2ν2+r

2a1+r+r2
∗

xy2 –
(2 + r)(1 + r)rν3+r

6a2r+r2
∗

y3 + O(4), (9)

g2(x, y, c) =
1
2

(r – 1)ra–2+r
∗ x2 +

1
6

(r – 2)(r – 1)ra–3+r
∗ x3 + O(4);

the terms with order greater than or equal to four are represented by O(4). For c = ch, we
have λ1,2(ch) = ±iω0, and the eigenvector corresponding to iω0 is ξ = (ν(μ+ν)a1–r

0 ,ν – iω0)T ,
where ω0 =

√
ν(rμ – ν + rν). Furthermore, since r ≥ 2, r ∈N

+, we have

d
dc

Reλ1,2(ch) = –
(1 – r + r2)(μ + ν)
2a0[rμ + (r – 1)ν]

< 0.

Set x = ν(μ + ν)a1–r
0 u, y = –ω0u + νv. Then system (8) becomes

(
du
dt
dv
dt

)

=

(
0 –ω0

ω0 0

)(
u
v

)

+

(
f3(u, v, ch)
g3(u, v, ch)

)

,

where
(

f3(u, v, ch)
g3(u, v, ch)

)

= P

(
f2(rνr+1a–r2

0 v, –ω0u + νv, ch)
g2(rνr+1a–r2

0 v, –ω0u + νv, ch)

)

with P = ar2
0

ω0rνr+1

( ν –rνr+1

ar2
0

ω0 0

)
.

Denote

η =
1

16
(f3uuu + g3uuv + f3uvv + g3vvv)

+
1

16ω0

[
f3uv(f3uu + f3vv) – g3uv(g3uu + g3vv) – f3uug3uu + f3vvg3vv

]
,

where all the partial derivatives are evaluated at the bifurcation point (u, v, c) = (0, 0, ch).
The stability of the periodic solution bifurcated from the equilibrium through Hopf bifur-
cation for system (5) depends on whether η is positive or negative [25, 26]. We calculate:

f3uuu = (1 + r)(2 + r)ν3a–2r
0 ω2

0, f3uvv = ν3a–2r
0

(
–rμ2 + r2μ2 – 4rμν + 2ν2),

g3uu = (1 + r)νa–r
0 ω2

0, f3uv = ν2a–r
0 (rμ – ν), g3vv = μνa–r

0 (rμ – μ – 2ν),

g3vvv = μν2a–2r
0

(
2μ2 – 3rμ2 + r2μ2 + 6μν – 6rμν + 6ν2), f3uu = (1 + r)ν2a–r

0 ω0,

g3uuv = (1 + r)(rμ – 2ν)ν2a–2r
0 ω2

0, g3uv = νa–r
0 (rμ – ν)ω0,

f3vv = –
ar

0ν
2

ω0

[
(r – 1)2μ2 + 2

(
1 – r + r2)μν + (r – 1)rν2],

and thus

η = –
ν3(μ + ν)2(rμ – μ – ν)[(1 + r2)μ + (r – 1)ν]

16ω2
0a2r

0
< 0,

since 0 < ν < (r – 1)μ. A detailed information about the Hopf bifurcation is given in the
following theorem.
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Theorem 2.1 For 0 < ν < (r – 1)μ, system (5) undergoes a supercritical Hopf bifurca-
tion [27] at (a∗, h∗) with c = ch and the periodic solution bifurcated from Hopf bifurcation
is stable.

3 Analysis on the full reaction–diffusion model
From [1] we know that the diffusion can influence the stability of the homogeneous so-
lutions. Turing instability occurs when the homogeneous solutions, which should be sta-
ble for system (5), become unstable due to diffusions. In this section, we focus on the
full reaction–diffusion model (3)–(4) to obtain the parametric ranges in which the homo-
geneous solutions undergo Turing instability. The analysis of Turing instabilities for the
equilibrium (a∗, h∗) and the periodic solution bifurcated from Hopf bifurcation is carried
out respectively in Sects. 3.1 and 3.2.

3.1 Turing instability of the equilibrium for the full reaction–diffusion model
In this section, we follow the standard treatment for this type of problems as in [9]. First, we
assume that one of conditions (H1) and (H2) holds and study system (3) with the Neumann
boundary conditions (4) in the Banach space H

2((0,π )) × H
2((0,π )), where H

2((0,π )) =
{w(·) | ∂ iw

∂xi (·) ∈ L
2((0,π )), i = 0, 1, 2}. Obviously, (a∗, h∗) is a steady state for system (3)–(4).

Let a = u1 + a∗, h = u2 + h∗. The linearized system of (3) at the equilibrium (a∗, h∗) is

(
∂u1
∂t

∂u2
∂t

)

=

(
–μ + rνra–1+r–r2

∗ + ∂xx –rν1+ra–r2
∗

ra–1+r∗ –ν + d∂xx

)(
u1

u2

)

:= L(c)

(
u1

u2

)

. (10)

Here the boundary conditions are:

∂u1

∂x
(0, t) =

∂u1

∂x
(π , t) = 0,

∂u2

∂x
(0, t) =

∂u2

∂x
(π , t) = 0. (11)

Considering the boundary conditions, the solution (u1, u2) ∈H
2((0,π ))×H

2((0,π )) of sys-
tem (10) can formally be written as

(
u1(x, t)
u2(x, t)

)

=
∞∑

k=0

(
Ak

Hk

)

eλk t cos kx, (12)

where λk ∈ C is the temporal spectrum, k is the wave number, and Ak , Hk ∈ R for k =
0, 1, 2, . . . . Substituting (12) into system (10), we have

∞∑

k=0

(
Ak

Hk

)

λkeλk t cos kx =
∞∑

k=0

Jk(c)

(
Ak

Hk

)

eλk t cos kx,

where

Jk(c) =

(
–μ + rνra–1+r–r2

∗ – k2 –rν1+ra–r2
∗

ra–1+r∗ –ν – dk2

)

. (13)
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Equating the like powers of k, we have

(
λkI – Jk(c)

)
(

Ak

Hk

)

=

(
0
0

)

, k = 0, 1, 2, . . . . (14)

Equation (14) has a nonzero solution (Ak , Hk)T if and only if

Det
(
λkI – Jk(c)

)
= 0 (15)

for some k = 0, 1, 2, . . . . Namely,

λ2
k – Tr

(
Jk(c)

)
λk + Det

(
Jk(c)

)
= 0, (16)

where

Tr
(
Jk(c)

)
= –μ – ν + rνra–1+r–r2

∗ – (1 + d)k2

and

Det
(
Jk(c)

)
=

(
k2 + μ

)
ν + (r – 1)rν1+ra–1+r–r2

∗ + dk2[k2 –
(
rνra–1+r–r2

∗ – μ
)]

.

We will be concerned with the requirement Re(λk) > 0 on the solutions of (16).
For any wave number k, there exists a pair of temporal eigenvalues λ±

k =
Tr(Jk (c))±

√
Tr2(Jk (c))–4 Det(Jk (c))

2 . If (H1) or (H2) holds, then, for k = 0, Tr(Jk(c)) = Tr J(c) < 0 and
Det(Jk(c)) = Det J(c) > 0, which implies that the real parts of the related temporal spectra
λ±

0 are negative. Since Tr(Jk(c)) = Tr J(c) – (1 + d)k2 < 0 for k = 1, 2, . . . , we need further
consider the sign of Det(Jk(c)). If rνra–1+r–r2

∗ – μ ≤ 1, then we have a∗ ≥ ( rνr

μ+1 )
1

1–r+r2 since

–1 + r – r2 < 0. Denoting ā = ( rνr

μ+1 )
1

1–r+r2 , from Lemma 2.1 and Proposition 2.1 we have
φ(ā) ≥ 0, that is, c ≥ ā

r [μ(r – 1) – 1]. Therefore k2 – (rνra–1+r–r2
∗ – μ) ≥ 0, which means

that Det(Jk(c)) > 0. Moreover, if m2 < rνra–1+r–r2
∗ – μ ≤ (m + 1)2, m ∈ N

+, then we have
[ rνr

μ+(m+1)2 ]
1

1–r+r2 ≤ a∗ < ( rνr

μ+m2 )
1

1–r+r2 since –1 + r – r2 < 0. Denoting am+1 = [ rνr

μ+(m+1)2 ]
1

1–r+r2

and am = ( rνr

μ+m2 )
1

1–r+r2 , from Lemma 2.1 and Proposition 2.1 we have φ(am) < 0 ≤ φ(am+1),
that is, am+1

r [μ(r – 1) – (m + 1)2] ≤ c < am
r [μ(r – 1) – m2]. In this case, for any k =

m + 1, m + 2, . . . , we have k2 – (rνra–1+r–r2
∗ – μ) ≥ 0, which indicates that Det(Jk(c)) > 0,

whereas for any k = 1, 2, . . . , m, we have k2 – (rνra–1+r–r2
∗ – μ) < 0. Further computations

reveal that if 0 < d < min1≤k≤m
(k2+μ)ν+(r–1)rν1+ra–1+r–r2

∗
k2(rνra–1+r–r2

∗ –μ–k2)
, then Det(Jk(c)) > 0.

The above discussion implies that, for any spatial spectrum k = 1, 2, . . . , the real parts
of the corresponding temporal spectrum λ±

k are negative. This means the real parts
of the solutions of (16) are negative for all k = 0, 1, 2, . . . , so that (a∗, h∗) is asymptot-
ically stable for (3). According to [28], because of the sectorial of L, (a∗, h∗) is also lo-
cally uniformly stable, and therefore there is no Turing pattern for system (3) under the

above conditions. However, if d > min1≤k≤m
(k2+μ)ν+(r–1)rν1+ra–1+r–r2

∗
k2(rνra–1+r–r2

∗ –μ–k2)
, then at least one of

Det(J1(c)), Det(J2(c)), . . . , Det(Jm(c)) is negative. Thus the equilibrium is unstable for (3). In
this case, Turing patterns will occur. Summarizing the discussion, we have the following:
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Theorem 3.1 Let (H1) or (H2) hold. Denote

d̂ = min
1≤k≤m

(k2 + μ)ν + (r – 1)rν1+ra–1+r–r2
∗

k2(rνra–1+r–r2
∗ – μ – k2)

, m ∈N
+.

Then the equilibrium (a∗, h∗) of system (3) persists the stability if one of the following con-
ditions holds:

(H4) c ≥ ā
r [μ(r – 1) – 1],

(H5) Am+1 ≤ c < Am, 0 < d < d̂.
It is unstable if

(H6) Am+1 ≤ c < Am, d > d̂,
where ā = ( rνr

μ+1 )
1

1–r+r2 , Aj = aj
r [μ(r – 1) – j2], aj = ( rνr

μ+j2 )
1

1–r+r2 , j = m, m + 1, m ∈N
+.

Remark 3.1 It is worth pointing out that in Theorem 3.1 if d = d̂, then from the discussion
it follows that there exists at least one k, k = 1, 2, . . . , m, m ∈ N

+, such that the linearized
system of (3) at (a∗, h∗) has a zero eigenvalue. At this time, the stability of (a∗, h∗) for system
(3) cannot be determined by the linearized system.

3.2 Turing instability of the limit cycle for the full reaction–diffusion model
From Theorem 2.1 note that if 0 < ν < (r – 1)μ, then there is a limit cycle bifurcated from
(a∗, h∗) for c sufficiently close to ch. We investigate the stability of the limit cycle obtained
in Theorem 2.1. Throughout this section, we assume condition (H3), so that the limit cycle
is stable to homogeneous perturbation.

Let a = u1 + a∗, h = u2 + h∗, c = ch, U = (u1, u2)T , V = (v1, v2)T , and W = (w1, w2). Then
system (3)–(4) can be rewritten as [29, 30]

⎧
⎨

⎩

∂U
∂t = [J(ch) + D( ∂xx 0

0 ∂xx
)]U + F̃(U , ch),

∂U
∂x (0, t) = ∂U

∂x (π , t) = (0, 0)T ,
(17)

where

J(ch) =

(
ν –rνr+1a–r2

0

rar–1
0 –ν

)

, D =

(
1 0
0 d

)

,

F̃(U , ch) = (f2(u1, u2, ch), g2(u1, u2, ch))T , and f2 and g2 are defined in (9). We write F̃(U , ch) =
1
2 Q(U , U) + 1

6 C(U , U , U) + O(|U|4), where Q(U , V ) = (Q1(U , V ), Q2(U , V ))T , C(U , V , W ) =
(C1(U , V , W ), C2(U , V , W ))T with

Q1(U , V ) = f2uuu1v1 + f2uvu1v2 + f2vuu2v1 + f2vvu2v2

= (μ + ν)
[
(r – 1)a–1

0 u1v1 – rνa–r
0 (u2v1 + u1v2)

+ (r + 1)ν2a1–2r
0 u2v2

]
,

Q2(U , V ) = g2uuu1v1 + g2uvu1v2 + g2vuu2v1 + g2vvu2v2

= (r – 1)rar–2
0 u1v1,

C1(U , V , W ) = f2uuuu1v1w1 + f2uuvu1v1w2 + f2uvuu1v2w1 + f2vuuu2v1w1
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+ f2uvvu1v2w2 + f2vuvu2v1w2 + f2vvuu2v2w1 + f2vvvu2v2w2

= (μ + ν)
[
(r – 2)(r – 1)a–2

0 u1v1w1 + (1 – r)rνa–1–r
0 (u1v1w2

+ u1v2w1 + u2v1w1) + (1 + r)rν2a–2r
0 (u1v2w2 + u2v1w2

+ u2v2w1) – (r + 1)(2 + r)ν3a1–3r
0 u2v2w2

]
,

C2(U , V , W ) = g2uuuu1v1w1 + g2uuvu1v1w2 + g2uvuu1v2w1 + g2vuuu2v1w1

+ g2uvvu1v2w2 + g2vuvu2v1w2 + g2vvuu2v2w1 + g2vvvu2v2w2

= (r – 2)(r – 1)rar–3
0 u1v1w1,

and U , V , W ∈H
2((0,π )) ×H

2((0,π )).
For c = ch, the linear operator L defined in (10) is

LU =

[

J(ch) + D

(
∂xx 0
0 ∂xx

)]

U ,

and the corresponding adjoint operator, denoted by L∗, is

L∗U =

[

J∗(ch) +

(
∂xx 0
0 ∂xx

)]

U ,

where

J(ch) =

(
ν –rνr+1a–r2

0

rar–1
0 –ν

)

, J∗(ch) =

(
ν rar–1

0

–rνr+1a–r2
0 –ν

)

.

The inner product in H
2((0,π )) ×H

2((0,π )) is given by 〈U , V 〉 = 1
π

∫ π

0 UT V dx for U , V ∈
H

2((0,π )) ×H
2((0,π )). Note that 〈L∗U , V 〉 = 〈U , LV 〉. The linearized system of (17) eval-

uated at (0, 0) is

∂U
∂t

= LU (18)

with the Neumann boundary conditions

∂U
∂x

(0, t) =
∂U
∂x

(π , t) = (0, 0)T . (19)

System (18) with boundary conditions (19) has a solution, which can be formally written
as

U =
∞∑

k=0

(
ak

hk

)

eλ(k)t cos kx, (20)

where λ(k) ∈ C are the temporal eigenvalues, k is the wave number, and ak , hk ∈ R for
k = 0, 1, 2, . . . . Substituting (20) into (18) and comparing the like terms about k, we have

(
λ(k)I – Lk

)
(

ak

hk

)

=

(
0
0

)

, k = 0, 1, 2, . . . , (21)
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where

Lk =

(
ν – k2 –rνr+1a–r2

0

rar–1
0 –ν – dk2

)

.

For some k, a sufficient and necessary condition for (21) to have a nonzero solution
(ak , hk)T is Det(λ(k)I – Lk) = 0, that is,

λ(k)2 – Tr(Lk)λ(k) + Det(Lk) = 0, k = 0, 1, 2, . . . , (22)

where Tr(Lk) = –(1+d)k2 and Det(Lk) = k2ν +ν(rμ–ν +rν)+k2(k2 –ν)d. We are interested
in the solutions λ(k) such that Re(λ(k)) > 0.

With 0 < ν < (r – 1)μ and c = ch, we have Tr(L0) = 0, Det(L0) = ν(rμ – ν + rν) > 0, and
Tr(Lk) < 0 for k = 1, 2, . . . . This means that, for k = 0, the real parts of the eigenvalues of L
are zero. We then have to do the center manifold reduction.

First of all, for k = 1, 2, . . . , if 0 < ν ≤ 1, then Det(Lk) > 0. Furthermore, if m2 < ν ≤ (m+1)2

and 0 < d < d̄, where d̄ = min1≤k≤m
k2ν+ν(rμ–ν+rν)

–k2(k2–ν) , m ∈ N
+, then we have Det(Lk) > 0 for k =

1, 2, . . . , and if m2 < ν ≤ (m + 1)2 and d > d̄, then at least one of Det(L1), Det(L2), . . . , Det(Lm)
is negative.

Letting ξ = (ν(μ+ν)a1–r
0 ,ν – iω0)T and ξ ∗ = 1

2ω0
( ω0+iν

rνr+1 ar2
0 , –i)T , we have Lξ = iω0ξ , L∗ξ ∗ =

–iω0ξ
∗, 〈ξ ∗, ξ̄ 〉 = 0, and 〈ξ ∗, ξ 〉 = 1. Let U = zξ + z̄ξ̄ + w, z = 〈ξ ∗, U〉, w = (w1, w2)T . Then

⎧
⎨

⎩

u = ν(μ + ν)a1–r
0 (z + z̄) + w1,

v = (ν – iω0)z + (ν + iω0)z̄ + w2.

In (z, w) coordinates, system (17) is

⎧
⎨

⎩

dz
dt = iω0z + 〈ξ ∗, f̃ 〉,
dw
dt = Lw + H̃(z, z̄, w),

(23)

where f̃ = F̃(zξ + z̄ξ̄ + w, ch) and H̃(z, z̄, w) = f̃ – 〈ξ ∗, f̃ 〉ξ – 〈ξ̄ ∗, f̃ 〉ξ̄ . From further calculation
we have

F̃(zξ + z̄ξ̄ + w, ch) =
1
2

Q(ξ , ξ )z2 + Q(ξ , ξ̄ )zz̄ +
1
2

Q(ξ̄ , ξ̄ )z̄2 + O
(|z|3, |z| · |w|, |w|2),

〈
ξ ∗, f̃

〉
=

1
2
〈
ξ ∗, Q(ξ , ξ )

〉
z2 +

〈
ξ ∗, Q(ξ , ξ̄ )

〉
zz̄ +

1
2
〈
ξ ∗, Q(ξ̄ , ξ̄ )

〉
z̄2

+ O
(|z|3, |z| · |w|, |w|2),

〈
ξ̄ ∗, f̃

〉
=

1
2
〈
ξ̄ ∗, Q(ξ , ξ )

〉
z2 +

〈
ξ̄ ∗, Q(ξ , ξ̄ )

〉
zz̄ +

1
2
〈
ξ̄ ∗, Q(ξ̄ , ξ̄ )

〉
z̄2

+ O
(|z|3, |z| · |w|, |w|2).

So H̃(z, z̄, w) = 1
2 z2H̃20 + zz̄H̃11 + 1

2 z̄2H̃02 + O(|z|3, |z| · |w|, |w|2), where

H̃20 = Q(ξ , ξ ) –
〈
ξ ∗, Q(ξ , ξ )

〉
ξ –

〈
ξ̄ ∗, Q(ξ , ξ )

〉
ξ̄
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=
(
Q1(ξ , ξ ), Q2(ξ , ξ )

)T –
1

2ω0

[
ω0 – iν
ν(μ + ν)

ar–1
0 Q1(ξ , ξ ) + iQ2(ξ , ξ )

]

ξ

–
1

2ω0

[
ω0 + iν
ν(μ + ν)

ar–1
0 Q1(ξ , ξ ) – iQ2(ξ , ξ )

]

ξ̄

= (0, 0)T ,

H̃11 = Q(ξ , ξ̄ ) –
〈
ξ ∗, Q(ξ , ξ̄ )

〉
ξ –

〈
ξ̄ ∗, Q(ξ , ξ̄ )

〉
ξ̄

=
(
Q1(ξ , ξ̄ ), Q2(ξ , ξ̄ )

)T –
1

2ω0

[
ω0 – iν
ν(μ + ν)

ar–1
0 Q1(ξ , ξ̄ ) + iQ2(ξ , ξ̄ )

]

ξ

–
1

2ω0

[
ω0 + iν
ν(μ + ν)

ar–1
0 Q1(ξ , ξ̄ ) – iQ2(ξ , ξ̄ )

]

ξ̄

= (0, 0)T ,

H̃02 = Q(ξ̄ , ξ̄ ) –
〈
ξ ∗, Q(ξ̄ , ξ̄ )

〉
ξ –

〈
ξ̄ ∗, Q(ξ̄ , ξ̄ )

〉
ξ̄

=
(
Q1(ξ̄ , ξ̄ ), Q2(ξ̄ , ξ̄ )

)T –
1

2ω0

[
ω0 – iν
ν(μ + ν)

ar–1
0 Q1(ξ̄ , ξ̄ ) + iQ2(ξ̄ , ξ̄ )

]

ξ

–
1

2ω0

[
ω0 + iν
ν(μ + ν)

ar–1
0 Q1(ξ̄ , ξ̄ ) – iQ2(ξ̄ , ξ̄ )

]

ξ̄

= (0, 0)T .

Then we have H̃(z, z̄, w) = O(|z|3, |z| · |w|, |w|2). System (23) has a center manifold of the
form w = w20

2 z2 +w11zz̄ + w02
2 z̄2 +O(|z|3). With Lw+ H̃(z, z̄, w) = dw

dt = ∂w
∂z

dz
dt + ∂w

∂ z̄
dz̄
dt , we obtain

w20 = [2iω0 – L]–1H̃20 = (0, 0)T , w11 = –L–1H̃11 = (0, 0)T , w02 = [–2iω0 – L]–1H̃02 = (0, 0)T .
Therefore, on the center manifold, the reaction–diffusion system is

ż = iω0z +
〈
ξ ∗, f̃

〉
= iω0z +

∑

2≤i+j≤3

gij

i!j!
ziz̄j + O

(∣
∣z4∣∣

)
, (24)

where

g20 =
〈
ξ ∗, Q(ξ , ξ )

〉
, g11 =

〈
ξ ∗, Q(ξ , ξ̄ )

〉
,

g02 =
〈
ξ ∗, Q(ξ̄ , ξ̄ )

〉
, g21 =

〈
ξ ∗, C(ξ , ξ , ξ̄ )

〉
.

We rewrite (17) into the Poincaré normal form in a neighborhood of ch:

dz
dt

=
(
α(c) + iω(c)

)
z + z

M∑

j=1

δj(c)(zz̄)j, (25)

where the variable z ∈C, M ≥ 1, and the coefficients δj(c) are complex. Direct computation
shows that

δ1(c) =
g20g11[3α(c) + iω(c)]

2[α2(c) + ω2(c)]
+

|g11|2
α(c) + iω(c)

+
|g02|2

2[α(c) + 3iω(c)]
+

g21

2
,
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and thus Re(δ1(ch)) = Re[ g20g11
2ω0

i + g21
2 ]. Since α(ch) = 0, ω(ch) = ω0 > 0, and 0 < ν < (r – 1)μ,

we then have

Re
[
δ1(ch)

]
= –

[(r – 1)μ – ν]ν3(μ + ν)2[(1 + r2)μ + (r – 1)ν]
4ω2

0a2r
0

< 0.

Therefore, the supercritical Hopf bifurcation occurs at c = ch. The following theorem is a
summary of the preceding analysis.

Theorem 3.2 Let (H3) hold, and let

d̄ = min
1≤k≤m

k2ν + ν(rμ – ν + rν)
–k2(k2 – ν)

, m ∈N
+.

Then the spatially homogenous periodic solution for (3) is stable if either (H7) or (H8) holds
and is unstable if (H9) holds, where

(H7) 0 < ν ≤ 1,
(H8) m2 < ν ≤ (m + 1)2, 0 < d < d̄, and
(H9) m2 < ν ≤ (m + 1)2, d > d̄.

Remark 3.2 Theorem 3.1 and 3.2 show that system (3) subjected to (4) undergoes Turing
instability under either of assumptions (H1) and (H6), or (H2) and (H6), or (H3) and (H9),
which is responsible for the patterns of stripe and spot types. We will see these patterns
numerically in the next section.

4 Numerical simulation
In this section, numerical examples are used to illustrate the main conclusions in Sects. 2
and 3. In this section, we assume that r = 2, c > 0, ν > 0, and μ > 0.

First of all, we illustrate the results in Proposition 2.2 and Theorem 2.1. For the dynamics
of the equilibrium of the temporal model (5), we just show the simulations when (H2) and
(H3) are satisfied. The simulations when condition (H1) is satisfied are omitted since the
dynamic behavior is similar with the case where condition (H2) holds.

Set ν = 0.5 and μ = 3. Then ch = 0.6534. Let c = 0.75, so that condition (H2) holds.
The equilibrium (a∗, h∗) of system (5) is (0.538, 0.5788). We choose the initial state
(a0, h0) = (0.588, 0.6288). From the simulation we find that the orbit starting from (a0, h0) =
(0.588, 0.6288) converges to the equilibrium (a∗, h∗) = (0.538, 0.5788). The equilibrium is
asymptotically stable. See Fig. 1.

Set ν = 1.5 and μ = 3. Then ch = 0.75. We take c = 0.74, so that condition (H3) holds.
The equilibrium (a∗, h∗) of system (5) is (0.9987, 0.6649). The initial state (a0, h0) we
choose is (1.0487, 0.7149). From the simulation we find that the phase orbit represented
by the blue solid line in Figs. 2 and 3, starting from (a0, h0) = (1.0487, 0.7149) goes
counterclockwise away from the equilibrium (a∗, h∗) = (0.9987, 0.6649), so the equilib-
rium (a∗, h∗) = (0.9987, 0.6649) is unstable. Furthermore, we choose another initial state
(a0, h0) = (1.25, 0.75). From the simulation we find that the phase orbit represented by the
red solid line in Fig. 3, starting from (a0, h0) = (1.25, 0.75) goes counterclockwise inward.
Since the orbits cannot intersect each other, there must be a limit cycle, and it is stable.
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Figure 1 The stable equilibrium of (5) under condition (H2)

Figure 2 The unstable equilibrium of (5) under condition (H3)



Wang et al. Advances in Difference Equations  (2018) 2018:241 Page 15 of 23

Figure 3 The orbits converse to the limit cycle. The phase orbits starting from (a0,h0) = (1.0487, 0.7149) and
(a0,h0) = (1.25, 0.75) both converge to the stable limit cycle

The stable limit cycle is shown in Fig. 4. Our simulations support Proposition 2.2 and
Theorem 2.1.

In addition, the supercritical Hopf bifurcation surface c = ch of system (5) in the pa-
rameter space (ν,μ, c) and the supercritical Hopf bifurcation diagram of (5) for μ = 3 in
parameter coordinates (ν, c) are shown respectively in Figs. 5 and 6.

In the following, we illustrate the results obtained in Theorem 3.1.
Let c = 0.75, ν = 0.5, μ = 3, and d = 2. Then ā = 0.5 and ā

r [μ(r – 1) – 1] = 0.5, which sup-
ports conditions (H2) and (H4). The initial state we choose is (0.53801, 0.57879), which is
a small perturbation of the equilibrium (a∗, h∗) = (0.538, 0.5788). The dynamics are shown
in Fig. 7. The simulation shows that the stable equilibrium (a∗, h∗) does not change its
stability under diffusions.

Let c = 0.76, ν = 1.5, μ = 3, and m = 1. Then a1 = 1.04, a2 = 0.863, A1 = 1.04, A2 =
–0.4315, and d̂ = 26.3949. Set d = d̂ – 1 = 25.3949. Then (H2) and (H5) hold. The equi-
librium is (a∗, h∗) = (1.0013, 0.6684), and the initial condition is (1.00129, 0.66839). The
corresponding dynamics are shown in Fig. 8. The equilibrium (a∗, h∗) is stable for system (3).

In both cases the equilibrium is locally uniformly stable, and hence Turing patterns do
not occur.

Subsequently, let c = 0.76, ν = 1.5, μ = 3, and m = 1 and set d = d̂ + 1 = 27.3949. Then
(H2) and (H6) hold. The stable equilibrium (a∗, h∗) = (1.0013, 0.6684) for system (5) be-
comes unstable for system (3) due to the influence of the diffusions. The initial condition
is (a∗ – 0.00001 cos(x), h∗ – 0.00001 sin(x)), x ∈ (0, 300). The dynamics are shown in Fig. 9.
In this case, Turing patterns occur. From the projections of the dynamics for the activator



Wang et al. Advances in Difference Equations  (2018) 2018:241 Page 16 of 23

Figure 4 The stable limit cycle of (5)

Figure 5 The supercritical Hopf bifurcation (SHB) surface of (5) in parameter space (ν ,μ, c)



Wang et al. Advances in Difference Equations  (2018) 2018:241 Page 17 of 23

Figure 6 The Hopf bifurcation diagram of (5) for μ = 3 in parameter coordinates (ν , c)

Figure 7 The persistence of the stable equilibrium under conditions (H2) and (H4)
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Figure 8 The persistence of the stable equilibrium under conditions (H2) and (H5)

Figure 9 Turing instability of the equilibrium (a∗ ,h∗) = (1.0013, 0.6684) of (3)
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Figure 10 The projection of Fig. 9 in (x, t) coordinates

a and inhibitor h, respectively, shown in Fig. 10, we see the stripe patterns. These stripe
patterns are formed because the equilibrium (a∗, h∗) undergoes Turing instability.

We next illustrate the results in Theorem 3.2. In the simulation, we use the criterion in
[31] for the choice of the space-time scaling parameter. From Theorem 3.2 we find that
the stable limit cycle does not undergo Turing instability under (H3) and (H7) or under
(H3) and (H8). Here we just illustrate the case where (H3) and (H8) hold.

Let c = 0.74, ν = 1.5, and μ = 3, which implies that (H3) holds. Then m = 1 and d̄ = 25.5.
Set d = d̄ – 0.5. Then (H8) holds. According to the simulation about the limit cycle, we
find a point (0.8614, 0.7902) on it. The initial condition is a small spatial heterogeneous
perturbation of this point, namely (0.8614 + 0.000001 sin(x), 0.7092 + 0.00001 cos(x)), x ∈
(0, 150). The dynamics are shown in Fig. 11 which implies that the stable limit cycle of kinetic
system (5) is still stable for the spatial temporal system (3). Figure 12 is the projection of
Fig. 11 in (x, t) coordinates. In this case the limit cycle does not undergo Turing instability.

Let c = 0.74, ν = 1.5, and μ = 3, which implies that (H3) holds. Then m = 1 and
d̄ = 25.5. Set d = d̄ + 1.5. Then (H9) holds. The initial condition is also (0.8614 +
0.000001 sin(x), 0.7092 + 0.00001 cos(x)), x ∈ (0, 150). We can see that the stable limit cycle
of system (5) becomes unstable for the spatial temporal system (3) because of the diffusions.
In this case, the Turing instability of the limit cycle takes place; see Fig. 13. Figure 14 is a lo-
cal enlargement of the projection of Fig. 13. Moreover, from the simulation we can easily see
the spot patterns. These spot patterns are formed because the limit cycle undergoes Turing
instability.

Furthermore, we obtain the regions where Turing patterns may occur in the parameter
space (Dh, c) by setting r = 2,μ = 3,ν = 1.5; see Fig. 15. From the above simulations we
know that ch = 0.75. The regions above the line c = ch are divided into two parts. The pink
region in which no Turing patterns are formed is for the stable equilibrium. The blue one
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Figure 11 The stable limit cycle of (5) is still stable for (3)

Figure 12 The projection of Fig. 11 in (x, t) coordinates
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Figure 13 Turing instability of the limit cycle of (3)

Figure 14 The local enlargement of the projection of Fig. 13 in (x, t) coordinates for (290 < t < 305)

is the region in which the equilibrium may undergo Turing bifurcation. The regions be-
low the line c = ch are also divided into two parts. In the orange region, no Turing patterns
will occur. It is the region where the equilibrium is unstable and bifurcates a stable peri-
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Figure 15 The regions for Turing patterns of system (3)

odic solution through Hopf bifurcation. In the green one, the equilibrium is also unstable,
whereas the limit cycle experiences a Turing bifurcation and becomes unstable. Turing
patterns for the limit cycle may occur in this region.
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