
Duan Advances in Difference Equations  (2018) 2018:239 
https://doi.org/10.1186/s13662-018-1693-9

R E S E A R C H Open Access

A generalization of the Mittag–Leffler
function and solution of system of fractional
differential equations
Junsheng Duan1*

*Correspondence:
duanjs@sit.edu.cn
1School of Sciences, Shanghai
Institute of Technology, Shanghai,
P.R. China

Abstract
The solutions of system of linear fractional differential equations of incommensurate
orders are considered and analytic expressions for the solutions are given by using
the Laplace transform and multi-variable Mittag–Leffler functions of matrix
arguments. We verify the result with numeric solutions of an example. The results
show that the Mittag–Leffler functions are important tools for analysis of a fractional
system. The analytic solutions obtained are easy to program and are approximated by
symbolic computation software such as MATHEMATICA.
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1 Introduction
Fractional calculus studies the several different possibilities of defining integral and deriva-
tive of arbitrary order, generalizing the classical integration operator Jf (t) =

∫ t
0 f (τ ) dτ and

differentiation operator Df (t) = d
dt f (t). In this regard, the common definitions include the

Grünwald–Letnikov fractional integral and derivative, the Riemann–Liouville fractional
integral and derivative, and the Caputo fractional derivative [1–9].

It is found that fractional calculus can describe memory phenomena and hereditary
properties of various materials and processes [2–7, 10]. In recent decades, fractional cal-
culus has been applied to different fields of science and engineering, covering viscoelas-
ticity theory, non-Newtonian flow, damping materials [4, 7, 11, 12], anomalous diffusion
[13–16], control and optimization theory [17–19], financial modeling [20, 21], and so on.

For the scalar function f (t) on a < t < +∞, the Riemann–Liouville fractional integral of
order β is defined as

aJβ
t f (t) =

∫ t

a

(t – τ )β–1

�(β)
f (τ ) dτ , (1)

for β > 0, and f (t) for β = 0. The Riemann–Liouville and Caputo fractional derivatives of
order α have the forms

R
aDα

t f (t) =
dn

dtn

(
aJn–α

t f (t)
)
, 0 < n – 1 < α ≤ n, (2)
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and

aDα
t f (t) = aJn–α

t f (n)(t), 0 < n – 1 < α ≤ n, (3)

respectively.
Fractional differential equations on scalar functions, including the existence, uniqueness

and stability, and the analytic and numeric methods of solutions, were studied by many
scholars [3–9, 13, 15, 17, 22–27]. In particular, new numerical schemes were designed [9,
23, 24, 28], and a Lie symmetry analysis was given and the conservation laws for fractional
evolution equations were systematically investigated [29–32]. The solutions of many frac-
tional differential equations involve a class of important special functions—Mittag–Leffler
functions (AMS 2000 Mathematics Subject Classification 33E12). The Mittag–Leffler
function with two parameters is defined by the series expansion [5, 33]

Eλ,ρ(z) =
∞∑

k=0

zk

�(λk + ρ)
, λ > 0,ρ > 0, z ∈ C, (4)

where �(·) is Euler’s gamma function. The special case of λ = ρ = 1 degenerates to the
exponential function, E1,1(z) = ez . We note that the Mittag–Leffler functions were also
used to define new fractional derivatives [34, 35].

The Laplace transform is an effective tool for the analysis of linear fractional differential
equations. It is defined for a function f (t) as

L
[
f (t)

]
= f̃ (s) =

∫ +∞

0
f (t)e–st dt, Re(s) > c. (5)

The Laplace transforms of the fractional integral and the Caputo fractional derivative
are

L
[

0Jα
t f (t)

]
= s–α f̃ (s), α > 0, (6)

and

L
[

0Dα
t f (t)

]
= sα f̃ (s) –

n–1∑

k=0

sα–1–kf (k)(0+)
, 0 < n – 1 < α ≤ n. (7)

Atanackovic and Stankovic [36] introduced the system of fractional differential equa-
tions into the analysis of lateral motion of an elastic column fixed at one end and loaded at
the other. Daftardar-Gejji and Babakhani [37] and Deng et al. [38] studied the existence,
uniqueness and stability for solution of system of linear fractional differential equations
with constant coefficients. Other references include [39–41]. In the above literature, solu-
tions of the fractional differential system were given for the case of a commensurate order
system.

Incommensurate fractional order linear systems were considered in [42, 43]. Odibat [42]
used the Laplace transform and the Mittag–Leffler function with two parameters, but the
orders were limited to rational numbers. Daftardar-Gejji and Jafari [43] derived solutions
using the Adomian decomposition method.
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In this paper, we focus on the system of linear fractional differential equations of in-
commensurate orders and give analytic expressions for the solutions by using the Laplace
transform and multi-variable Mittag–Leffler functions of matrix arguments. We verify the
result with numeric solutions of an example.

In the sequel, we will use the Caputo fractional derivatives and denote 0Dα
t f (t) by Dα

t f (t)
for short.

2 A generalization of the Mittag–Leffler function
We introduce an n-variable Mittag–Leffler function with n + 1 parameters as

E(α1,α2,...,αn),β (t1, t2, . . . , tn)

=
1

�(β)
+

∞∑

k=1

n∑

j1,j2,...,jk =1

tj1 tj2 . . . tjk
�(αj1 + αj2 + · · · + αjk + β)

, (8)

where αi for i = 1, 2, . . . , n and β are positive constants.
The explicit form of the first several terms on the right hand side is

1
�(β)

+
n∑

j1=1

tj1
�(αj1 + β)

+
n∑

j1,j2=1

tj1 tj2
�(αj1 + αj2 + β)

+
n∑

j1,j2,j3=1

tj1 tj2 tj3
�(αj1 + αj2 + αj3 + β)

+ · · · .

The special case of the single variable, i.e. n = 1, degenerates to the Mittag–Leffler func-
tion with two parameters as

E(α),β (t) =
1

�(β)
+

t
�(α + β)

+
t2

�(2α + β)
+

t3

�(3α + β)
+ · · ·

= Eα,β (t), (9)

where we express the parameter and the argument as α and t, instead of α1 and t1.
The two-variable case, i.e. n = 2, is

E(α1,α2),β (t1, t2) =
1

�(β)
+

(
t1

�(α1 + β)
+

t2

�(α2 + β)

)

+
(

t2
1

�(2α1 + β)
+

2t1t2

�(α1 + α2 + β)
+

t2
2

�(2α2 + β)

)

+ · · · . (10)

The series on the right hand side in Eq. (8) is absolutely convergent for (t1, t2, . . . , tn) ∈ Rn.
In fact, we may suppose, without loss of generality, that α1 = min{α1,α2, . . . ,αn}. Then, for
large enough k, we have

αj1 + αj2 + · · · + αjk + β ≥ kα1 + β > 2.

So it follows that

�(αj1 + αj2 + · · · + αjk + β) ≥ �(kα1 + β).
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We estimate the general term of the series in Eq. (8) as
∣
∣
∣
∣
∣

n∑

j1,j2,...,jk =1

tj1 tj2 . . . tjk
�(αj1 + αj2 + · · · + αjk + β)

∣
∣
∣
∣
∣

≤ 1
�(kα1 + β)

n∑

j1,j2,...,jk =1

|tj1 tj2 . . . tjk |

=
1

�(kα1 + β)
(|t1| + |t2| + · · · + |tn|

)k . (11)

It is well known that the dominant series

∞∑

k=0

1
�(kα1 + β)

(|t1| + |t2| + · · · + |tn|
)k

converges to the Mittag–Leffler function Eα1,β (|t1| + |t2| + · · · + |tn|).
If in the definition (8) the parameters satisfy α1 = α2 = · · · = αn = α, then the n-variable

Mittag–Leffler function in Eq. (8) also degenerates to the Mittag–Leffler function with
two parameters as

E(α,α,...,α),β(t1, t2, . . . , tn) =
1

�(β)
+

∞∑

k=1

1
�(αk + β)

n∑

j1,j2,...,jk =1

tj1 tj2 . . . tjk

=
1

�(β)
+

∞∑

k=1

(t1 + t2 + · · · + tn)k

�(αk + β)

= Eα,β (t1 + t2 + · · · + tn). (12)

In particular, if α1 = α2 = · · · = αn = β = 1, the n-variable Mittag–Leffler function in Eq. (8)
degenerates to the exponential function

E(1,1,...,1),1(t1, t2, . . . , tn) = E1,1(t1 + t2 + · · · + tn) = et1+t2+···+tn . (13)

We remark that different versions of multi-variable Mittag–Leffler functions were pre-
sented, such as in [43–46]. But they are not exactly the same as the version in this paper.

3 Solution of system of fractional differential equations
We consider the following system of fractional differential equations:

Dαi
t yi(t) =

n∑

k=1

aikyk(t) + fi(t), t > 0, i = 1, 2, . . . , n, (14)

where aik are constants, not all zero, fi(t) are specified functions, Dαi
t are the Caputo frac-

tional derivative operators with 0 < αi ≤ 1, and yi(t) are unknown functions with the spec-
ified initial values yi(0).

We suppose that each fi(t) is locally integrable on the interval 0 < t < +∞ and the Laplace
transforms exist. Equation (14) may be written in matrix equation as

Dy(t) = Ay(t) + f(t), t > 0, (15)
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where D is the diagonal matrix with the fractional derivative operators

D = diag
(
Dα1

t , Dα2
t , . . . , Dαn

t
)
, (16)

A = (aij)n×n is a non-zero coefficient matrix, f(t) = (f1(t), f2(t), . . . , fn(t))T , and y = y(t) =
(y1(t), y2(t), . . . , yn(t))T .

Applying the Laplace transformation to Eq. (14) with respect to t we obtain

sαi ỹi(s) – sαi–1yi(0) =
n∑

k=1

aikỹk(s) + f̃i(s), i = 1, 2, . . . , n, (17)

where Re(s) > c > 0, and c is constrained by the following derivation and can be taken as
the value on the right hand side of inequality (21). In matrix form, Eq. (17) is

�ỹ(s) – s–1�y(0) = Aỹ(s) + f̃(s), (18)

where � denotes the diagonal matrix � = diag(sα1 , sα2 , . . . , sαn ). We rewrite Eq. (18) as

(� – A)ỹ(s) = s–1�y(0) + f̃(s). (19)

Left multiplication by the inverse matrix �–1 = diag(s–α1 , s–α2 , . . . , s–αn ) leads to

(
I – �–1A

)
ỹ(s) = s–1y(0) + �–1 f̃(s), (20)

where I is the unit matrix of order n.
We let

Re(s) > max
1≤i≤n

(

2
n∑

k=1

|aik|
)1/αi

, (21)

then the matrix (I – �–1A) is invertible. This can be proved as follows.
In fact, by Eq. (21), we have

|s|αi > 2
n∑

k=1

|aik|, i = 1, 2, . . . , n, (22)

that is, the following holds:

n∑

k=1

∣
∣s–αi aik

∣
∣ <

1
2

, i = 1, 2, . . . , n. (23)

Thus the absolute values of the diagonal entries of the matrix (I – �–1A) are greater than
1/2, while the sum of the absolute values of the non-diagonal entries in the ith row is less
than 1/2. By the Gershgorin circle theorem, the eigenvalues of the matrix (I – �–1A) are
non-zero. Therefore, the matrix (I – �–1A) is invertible.
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From Eq. (20), we solve for ỹ(s) as

ỹ(s) = s–1(I – �–1A
)–1y(0) +

(
I – �–1A

)–1
�–1 f̃(s). (24)

Inverse Laplace transform yields

y(t) = G(t)y(0) + Q(t) ∗ f(t), (25)

where we introduce two matrix functions

G(t) = L–1[s–1(I – �–1A
)–1], (26)

Q(t) = L–1[(I – �–1A
)–1

�–1], (27)

and the convolution is defined as

Q(t) ∗ f(t) =
∫ t

0
Q(t – τ )f(τ ) dτ . (28)

First we consider the inverse Laplace transform of (I – �–1A)–1. We use the two decom-
positions of matrices as

(
I – �–1A

)–1 =
∞∑

k=0

(
�–1A

)k (29)

and

�–1A =
n∑

i=1

s–αi Ai, (30)

where Ai denotes the matrix formed from A by rewriting each entry of A except that in
the ith row into zeros. So the ith rows of the matrices A and Ai are identical. Hence we
have the following expression:

(
I – �–1A

)–1 =
∞∑

k=0

( n∑

i=1

s–αi Ai

)k

= I +
∞∑

k=1

n∑

j1,j2,...,jk =1

s–(αj1 +αj2 +···+αjk )Aj1 Aj2 . . . Ajk . (31)

Calculating the inverse Laplace transformation term by term we have

L–1[(I – �–1A
)–1] = δ(t)I

+
∞∑

k=1

n∑

j1,j2,...,jk =1

tαj1 +αj2 +···+αjk –1

�(αj1 + αj2 + · · · + αjk )
Aj1 Aj2 . . . Ajk , (32)

where δ(t) is the Dirac delta function.
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Further we have the following result for the matrix G(t):

G(t) = L–1[s–1(I – �–1A
)–1]

= J1
t L–1[(I – �–1A

)–1]

= I +
∞∑

k=1

n∑

j1,j2,...,jk =1

tαj1 +αj2 +···+αjk

�(αj1 + αj2 + · · · + αjk + 1)
Aj1 Aj2 . . . Ajk . (33)

We lift the generalized Mittag–Leffler function in Eq. (8) to a matrix function and use it
to express the matrix G(t) as

G(t) = E(α1,α2,...,αn),1
(
tα1 A1, tα2 A2, . . . , tαn An

)
. (34)

To calculate the inverse Laplace transform in Eq. (27), we decompose the matrix �–1 as

�–1 =
n∑

i=1

s–αi Ii, (35)

where Ij are formed from the unit matrix I in a similar manner as Aj. We derive the ex-
pression for the matrix Q(t) as

Q(t) = L–1[(I – �–1A
)–1

�–1]

= L–1

[ n∑

i=1

s–αi
(
I – �–1A

)–1Ii

]

=
n∑

i=1

Jαi
t L–1[(I – �–1A

)–1]Ii

=
n∑

i=1

[
tαi–1

�(αi)
I +

∞∑

k=1

n∑

j1,j2,...,jk =1

tαj1 +αj2 +···+αjk +αi–1

�(αj1 + αj2 + · · · + αjk + αi)
Aj1 Aj2 . . . Ajk

]

Ii. (36)

An equivalent expression is

Q(t) =
n∑

i=1

tαi–1

�(αi)
Ii +

∞∑

k=1

n∑

i=1

n∑

j1,j2,...,jk =1

tαj1 +αj2 +···+αjk +αi–1

�(αj1 + αj2 + · · · + αjk + αi)
Aj1 Aj2 . . . Ajk Ii. (37)

In terms of the generalized Mittag–Leffler function of matrix arguments, Q(t) has the
form from Eq. (36)

Q(t) =
n∑

i=1

tαi–1E(α1,α2,...,αn),αi

(
tα1 A1, tα2 A2, . . . , tαn An

)
Ii. (38)

Thus the analytic solutions are obtained in Eqs. (25), (34) and (38) in terms of the gen-
eralized Mittag–Leffler function of matrix arguments. In practical computation, we can
truncate the series expressions in Eqs. (33) and (37) and give analytic approximate solu-
tions:

y[m](t) = G[m](t)y(0) + Q[m](t) ∗ f(t), (39)
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where G[m](t) and Q[m](t) are the truncation with the first m terms in Eqs. (33) and (37) as

G[m](t) = I +
m–1∑

k=1

n∑

j1,j2,...,jk =1

tαj1 +αj2 +···+αjk

�(αj1 + αj2 + · · · + αjk + 1)
Aj1 Aj2 . . . Ajk , (40)

Q[m](t) =
n∑

i=1

tαi–1

�(αi)
Ii

+
m–1∑

k=1

n∑

i=1

n∑

j1,j2,...,jk =1

tαj1 +αj2 +···+αjk +αi–1

�(αj1 + αj2 + · · · + αjk + αi)
Aj1 Aj2 . . . Ajk Ii. (41)

For the special case α1 = α2 = · · · = αn = α, the two matrices G(t) and Q(t) are simplified
to

G(t) = E(α,α,...,α),1
(
tαA1, tαA2, . . . , tαAn

)

= Eα,1
(
tαA1 + tαA2 + · · · + tαAn

)

= Eα,1
(
tαA

)
(42)

and

Q(t) =
n∑

j=1

tα–1E(α,α,...,α),α
(
tαA1, tαA2, . . . , tαAn

)
Ij

= tα–1E(α,α,...,α),α
(
tαA1, tαA2, . . . , tαAn

) n∑

j=1

Ij

= tα–1Eα,α
(
tαA1 + tαA2 + · · · + tαAn

)

= tα–1Eα,α
(
tαA

)
. (43)

They are consistent with [39].

4 Comparison with numeric solutions
We take T > 0 and the number of nodes N , and we consider the numeric solutions on the
interval [0, T] with the step size h = T/N . Denote the nodes as ti = ih, i = 0, 1, . . . , N . Let
xi, yj,i, fj,i represent, respectively, the values of x(t), yj(t), fj(t) at t = ti.

In the L1 algorithm given by Oldham and Spanier [1], the fractional derivative at t = ti

is discretized as

Dα
t x(t)|ti =

∫ ti

0

(ti – τ )–α

�(1 – α)
x′(τ ) dτ

=
i–1∑

j=0

∫ tj+1

tj

(ti – τ )–α

�(1 – α)
x′(τ ) dτ

≈
i–1∑

j=0

xj+1 – xj

h

∫ tj+1

tj

(ti – τ )–α

�(1 – α)
dτ .
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Calculating the integration leads to

Dα
t x(t)|ti ≈ 1

hα�(2 – α)

i–1∑

j=0

(xj+1 – xj)
[
(i – j)1–α – (i – j – 1)1–α

]
. (44)

Regrouping the terms on the right hand side we have the approximation

Dα
t x(t)|ti ≈ 1

hα�(2 – α)

(

xi +
i∑

j=1

wj(α)xi–j

)

, (45)

where

wj(α) =

⎧
⎨

⎩

(j – 1)1–α – 2j1–α + (j + 1)1–α , 1 ≤ j ≤ i – 1,

(i – 1)1–α – i1–α , j = i.
(46)

Now for the system of the fractional differential equations (15), we specify t = ti for
i = 1, 2, . . . , N as

Dy(t)|ti = Ayi + fi, (47)

where yi = (y1,i, y2,i, . . . , yn,i)T , fi = (f1,i, f2,i, . . . , fn,i)T and

Dy(t)|ti =
(
Dα1

t y1(t), Dα2
t y2(t), . . . , Dαn

t yn(t)
)T |t=ti .

Substituting the discrete form of the fractional derivatives in Eq. (45), we obtain

�yi + g = Ayi + fi, (48)

where

� = diag

(
1

hα1�(2 – α1)
,

1
hα2�(2 – α2)

, . . . ,
1

hαn�(2 – αn)

)

, (49)

g = g(y0, y1, . . . , yi–1)

=
(∑i

j=1 wj(α1)y1,i–j

hα1�(2 – α1)
,
∑i

j=1 wj(α2)y2,i–j

hα2�(2 – α2)
, . . . ,

∑i
j=1 wj(αn)yn,i–j

hαn�(2 – αn)

)T

. (50)

We rewrite Eq. (48) as

(� – A)yi = fi – g. (51)

For small enough step size h, the matrix �– A has large enough diagonal entries to ensure
its invertibility due to the Gershgorin circle theorem. Thus we obtain the scheme for the
numeric solutions as

yi = (� – A)–1(fi – g(y0, y1, . . . , yi–1)
)
, i = 1, 2, . . . , N . (52)
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Figure 1 The analytic approximate solutions and
numeric solutions

Finally, we test the analytic approximate solutions and the numeric solutions for the
system of the fractional differential equations

⎧
⎪⎪⎨

⎪⎪⎩

D0.7
t y1(t) = –2y1 – y2 – y3,

D0.5
t y2(t) = y1 – y2 + y3 + t,

D0.8
t y3(t) = –y2 – 3y3 + 1,

(53)

subject to the initial conditions

y1(0) = 2, y2(0) = 3, y3(0) = 5.

From Eqs. (39), (40) and (41), the analytic approximate solutions y[14]
1 (t), y[14]

2 (t) and
y[14]

3 (t) are calculated using the approximations of the first 14 terms, G[14](t) and Q[14](t).
The numeric solutions y1,i, y2,i and y3,i for i = 1, 2, . . . , 40 with the step size h = 0.02 are given
by suing the scheme (52). We implement these algorithms by using MATHEMATICA 8.
In Fig. 1, the solid line, dot-dash line and dash line represent the analytic approximate
solutions y[14]

1 (t), y[14]
2 (t) and y[14]

3 (t), respectively, and the dot lines denote the numeric so-
lutions y1,i, y2,i and y3,i. The consistence of the two solutions verifies the effectiveness of
our proposed analytic method.

5 Conclusions
The solutions of system of linear fractional differential equations of incommensurate or-
ders are investigated in this paper. First, we introduce an n-variable Mittag–Leffler func-
tion with n + 1 parameters. Then we derive the analytic expressions for the solutions of the
fractional system by using the Laplace transform and multi-variable Mittag–Leffler func-
tions of matrix arguments. Finally, we verify the analytic result with numeric solutions by
an example, where the numeric solutions are given by generalizing the L1 algorithm to the
fractional system.

We generate the plots of analytic approximate solutions and numeric solutions with the
help of MATHEMATICA 8. The obtained series solutions are convergent on the entire
interval 0 < t < +∞ and are easy to program and are approximated by any symbolic com-
putation software.
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