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Abstract
In this paper, we deal with comparison principles for fractional differential equations
involving the Caputo derivatives of order p with 0≤ n – 1 < p ≤ n. First, we present
comparison results with strict inequalities for fractional differential equations with the
Caputo derivatives. Then we investigate local existence and extremal solutions for
fractional differential equations with the Caputo derivatives. Finally, we consider
comparison results with nonstrict inequalities for fractional differential equations with
the Caputo derivatives.
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1 Introduction
The theory of fractional differential equations with the Caputo derivatives greatly at-
tracted the attention of many scholars for their wide applications to various fields, such
as in physics, engineering, electrochemistry, and so on; see [1–3] and related references
therein. The mathematical modeling and simulation of systems and processes based on
the fractional derivatives of the Caputo type describing their properties naturally lead to
the necessity to solve these fractional differential equations. Analytic solutions are usually
provided for some special fractional differential equations with the Caputo derivatives.
There is a growing interest in the existence theory and properties of solutions and nu-
merical treatments for fractional differential equations. The comparison principle plays
an important role in the study of the numerical solutions and properties of fractional dif-
ferential equations.

Many researchers studied the fractional differential equations involving the Riemann–
Liouville derivatives of order p (0 < p < 1). Hadid et al. [4] presented the local existence
and uniqueness of solutions of nonlinear differential equations. Lakshmikantham and Vat-
sala [5–7] investigated some quantitative properties for fractional differential equations
with the Riemann–Liouville derivatives by employing differential and integral inequal-
ities. They investigated the comparison theorem for Riemann–Liouville-type fractional
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differential inequalities (0 < p < 1) of the form

Dpv(t) ≤ f
(
t, v(t)

)
, Dpw(t) ≥ f

(
t, w(t)

)
, 0 < t ≤ T ,

where Dpv(t) represents the Riemann–Liouville derivative of v(t) of order p. When one of
the inequalities is strict, we have v(t) < w(t) if v(0) < w(0). If both inequalities are nonstrict,
then v(t) ≤ w(t) if v(0) ≤ w(0) and LTp ≤ 1

�(1–p) , where L is a Lipschitz constant satisfying
|f (t, x) – f (t, y)| ≤ L|x – y|. Denton and Vatsala [8] further developed these properties for
fractional integral equations of the form

w(t) ≥ wa

�(p)
(t – a)p–1 + D–pf (t, w), a < t ≤ T ,

v(t) ≤ va

�(p)
(t – a)p–1 + D–pf (t, v), a < t ≤ T ,

where wa = �(q)w(t)(t – a)1–p|t=a and va = �(q)v(t)(t – a)1–p|t=a. Then if one of inequalities
is strict, then va < wa implies v(t) < w(t). The other conclusion v(t) ≤ w(t) holds if va ≤ wa

and f (t, x) satisfies the right-sided Lipschitz condition. Meanwhile, they presented the
Gronwall inequalities for the Riemann–Liouville-type fractional differential equations.
Many other researches can be seen in [9–16] and related references therein.

However, for the Riemann–Liouville case, one would have to specify the values of
certain fractional derivatives (and integrals) of the unknown solution at the initial
point. The Riemann–Liouville derivative is more commonly applied in pure mathe-
matics. The Caputo derivative can just overcome these defects, since the initial values
x(0), x′(0), . . . , x(n–1)(0) are specified and have a well-understood physical meaning. In this
case, the comparison principles for Caputo-type fractional differential equations are im-
portant for the study of properties of their solutions. As we know, the work on comparison
principles for fractional differential equations involving the Caputo derivative of order p
(0 ≤ n – 1 < p ≤ n) is yet to be initiated. In this paper, we present comparison principles for
fractional differential equations involving the Caputo derivatives of order p (n – 1 < p ≤ n)
under strict and nonstrict inequalities and investigate the existence of extremal solutions
to fractional differential equations with the Caputo derivatives.

The remainder of this paper is organized as follows. In Sect. 2, we recall two types of frac-
tional derivatives with some properties. In Sect. 3, we present comparison results under
strict inequality conditions for the fractional differential equations involving the Caputo
derivatives of order p (0 ≤ n – 1 < p ≤ n) with initial conditions. In Sect. 4, we inves-
tigate the local existence theorem and extremal solutions to fractional differential equa-
tions involving the Caputo derivatives with initial value conditions. In Sect. 5, we consider
the comparison principles under nonstrict inequality conditions for fractional differential
equations with the Caputo derivatives by employing the theorems proposed in the previ-
ous sections.

2 Preliminaries
In this section, we recall two types of fractional order derivatives of a function with some
properties.
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Definition 1 For p > 0 and f ∈ C[a, b]. The pth fractional integral of f (t) is defined by

Ip
a+f (t) =

1
�(p)

∫ t

a
(t – s)p–1f (s) ds.

Definition 2 Let 0 ≤ n – 1 < p ≤ n and f : [a, b] → R be a differentiable function of at least
order n. Then the pth Caputo fractional derivative of f (t) is defined by

cDp
a+f (t) =

1
�(n – p)

∫ t

a
(t – s)n–p–1f (n)(s) ds,

where f (n)(t) is the nth-order derivative of f (t).

Definition 3 Let 0 < p < 1 and f ∈ C[a, b]. The pth Riemann–Liouville fractional deriva-
tive of f (t) is defined by

Dp
a+f (t) =

1
�(1 – p)

d
dt

∫ t

a
(t – s)–pf (s) ds.

Now we give some properties of the fractional integral and Caputo and Riemann–
Liouville fractional derivatives:

(i) These two types of fractional derivatives satisfies (0 < p < 1) are related as follows:

cDp
a+f (t) = Dp

a+f (t) –
(t – a)–p

�(1 – p)
f (a). (1)

(ii) The fractional derivative and the fractional integral are related as follows (0 ≤ n – 1 <
p ≤ n):

cDp
a+Ip

a+f (t) = f (t), Ip
a+

cDp
a+f (t) = f (t) –

n–1∑

k=0

(t – a)k

�(k + 1)
f (k)(a).

(iii) Integer-order and fractional derivatives satisfy the equality (p > 0)

cDn+p
a+ f (t) = cDp

a+Dnf (t). (2)

Remark 1 We abbreviate Ip
0+, Dp

0+, and cDp
0+ as Ip, Dp, and cDp, respectively.

3 Comparison principles with strict inequalities
Consider the following initial value problem (IVP) with Caputo-type fractional differential
equation:

⎧
⎨

⎩

cDpx(t) = f (t, x(t)),

x(k)(0) = xk , k = 0, 1, . . . , n – 1,
(3)

where f ∈ C([0, T] × R, R) and 0 ≤ n – 1 < p ≤ n. The IVP (3) is equivalent to the following
Volterra fractional integral equation:

x(t) =
n–1∑

k=0

xktk

�(k + 1)
+

1
�(p)

∫ t

0
(t – s)p–1f

(
s, x(s)

)
ds. (4)
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We need the following useful lemma.

Lemma 1 Let m(t) : R+ → R be locally Lipschitz continuous such that, for t1 ∈ (0, +∞),

m(t1) = 0 and m(t) ≤ 0 for 0 ≤ t ≤ t1.

Then Dpm(t1) ≥ 0 for p ∈ (0, 1).

The result of Lemma 1 was presented in [5] for a locally Hölder continuous function
m(t). However, the proof in [5] is wrong since it requires the condition that λ + p – 1 > 0,
where λ is the Hölder constant for m(t), but λ + p – 1 > 0 is not always true for p ∈ (0, 1). If
the Hölder continuity is replaced by the Lipschitz continuity, that is, λ = 1, then λ + p – 1 >
0, and then the proof of Lemma 1 follows from [5].

Now, we present a comparison principle for fractional differential equation with the
Caputo derivative under strict inequalities when p ∈ (0, 1).

Theorem 1 Assume that f (t, x) and F(t, x) are two continuous functions defined on G =
[0, T] × R satisfying the inequality

f (t, x) < F(t, x) for (t, x) ∈ G. (5)

Suppose that x = ϕ(t) and x = φ(t) are solutions of the following initial value problems
(0 < p < 1):

(E1) : cDpx = f (t, x), x(0) = x0,

(E2) : cDpx = F(t, x), x(0) = x0,

respectively. Then we have

ϕ(t) < φ(t), t ∈ (0, T]. (6)

Proof Denote ψ(t) = ϕ(t) – φ(t), t ∈ [0, T]. We have

ψ(0) = ϕ(0) – φ(0) = 0,
cDpψ(0) = cDpϕ(0) – cDpφ(0) = f (0, x0) – F(0, x0) < 0.

Then cDpψ(t) = Dpψ(t), and there exists σ > 0 such that ψ(t) < 0 for 0 < t < σ . Suppose
that inequality (6) is incorrect. Then there exists at least one t1 (> 0) such that ψ(t1) = 0.
Denote

β = inf
{

t | ψ(t) = 0, t > 0
}

.

Then ψ(β) = 0 and ψ(t) < 0 for 0 < t < β .
Since cDpψ(t) = f (t, x)–F(t, x), t ∈ [0, T], and f (t, x), F(t, x) are continuous in G, it follows

that ψ ′(t) is a locally bounded function by Definition 2. Therefore ψ(t) is locally Lipschitz
continuous in 0 ≤ t ≤ T . Thus Dpψ(β) ≥ 0 by Lemma 1.
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On the other hand, since ψ(β) = 0, denote γ = ϕ(β) = φ(β). Then

0 ≤ Dpψ(β) = cDpψ(β) = cDpϕ(β) – cDpφ(β) = f (β ,γ ) – F(β ,γ ). (7)

It is obvious that (7) is in contradiction with (5). Hence (6) is proved. �

Remark 2 When p = 1, Theorem 1 is also true as the well-known comparison theorem for
ordinary differential equations with initial value condition.

Next, we extend Theorem 1 to the case for fractional differential equations with the
Caputo derivative of order n – 1 < p ≤ n with initial value conditions by employing Theo-
rem 1.

Theorem 2 Under assumption (5), suppose that x = ϕ(t) and x = φ(t) are solutions of the
following initial value problems (1 ≤ n – 1 < p ≤ n):

(E3) : cDpx = f (t, x), x(k)(0) = xk , k = 0, 1, 2, . . . n – 1,

(E4) : cDpx = F(t, x), x(k)(0) = xk , k = 0, 1, 2, . . . n – 1,

respectively. Then ϕ(t) < φ(t) for t ∈ (0, T].

Proof Consider cDpx(t) = cDqDn–1x(t) with q = p – n + 1 ∈ (0, 1]. Denote y(t) = Dn–1x(t),
t ∈ [0, T]. Then the IVPs (E3) and (E4) can be transformed into initial value problems of
order 0 < q ≤ 1. Indeed, we have

cDpx(t) = cDqDn–1x(t) = cDqy(t), y(t) = Dn–1x(t), (8)

x(t) =
n–2∑

k=0

xktk

�(k + 1)
+

1
�(n – 1)

∫ t

0
(t – s)n–2y(s) ds. (9)

Denote

f̂
(
t, y(t)

)
= f

(
t, x(t)

)
= f

(

t,
n–2∑

k=0

xktk

�(k + 1)
+

1
�(n – 1)

∫ t

0
(t – s)n–2y(s) ds

)

,

F̂
(
t, y(t)

)
= F

(
t, x(t)

)
= F

(

t,
n–2∑

k=0

xktk

�(k + 1)
+

1
�(n – 1)

∫ t

0
(t – s)n–2y(s) ds

)

.

By inequality (5) we have f̂ (t, y(t)) < F̂(t, y(t)) for t ∈ [0, T]. The original initial value prob-
lems (E3) and (E4) can be written as

(Ê3) : cDqy(t) = f̂
(
t, y(t)

)
, y(0) = Dn–1x(0) = xn–1,

(Ê4) : cDqy(t) = F̂
(
t, y(t)

)
, y(0) = Dn–1x(0) = xn–1.

Assume that ϕ̂(t) and φ̂(t) are solutions of (Ê3) and (Ê4), respectively. Then by Theorem 1
and Remark 2 we have ϕ̂(t) < φ̂(t) for t ∈ (0, T].
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Since x(t) and y(t) satisfy equation (9), we obtain

ϕ(t) =
n–2∑

k=0

xktk

�(k + 1)
+

1
�(n – 1)

∫ t

0
(t – s)n–2ϕ̂(s) ds

<
n–2∑

k=0

xktk

�(k + 1)
+

1
�(n – 1)

∫ t

0
(t – s)n–2φ̂(s) ds = φ(t),

which finishes the proof. �

Example 1 Assume that 1 < p ≤ 2 and that ϕ(t) and φ(t) are solutions to the two initial
value problems

cDpx = x, x(0) = 1, x′(0) = 2,
cDpx = t + x, x(0) = 1, x′(0) = 2,

respectively, where t ≥ 0. Then we have x < t + x for t > 0, and

ϕ(t) = Ep,1
(
tp) + 2Ep,2

(
tp),

φ(t) = Ep,1
(
tp) + 2Ep,2

(
tp) + tp+1Ep,p+2

(
tp),

where Eα,β (z) =
∑∞

k=0
zk

�(kα+β) . We know that ϕ(t) < φ(t) for t > 0. This is consistent with
Theorem 2.

Remark 3 Some researchers [17, 18] attempted to give similar comparison principles for
fractional differential equations with the Caputo derivatives by the method of the inte-
gral mean value theorem, which, however, does not guarantee the correctness of their
proofs. Yu et al. [19] presented comparison theorems for fractional differential equations
involving the Riemann–Liouville and Caputo derivatives of order 0 < p < 1 with Lipschitz
condition f (t, u) – f (t, v) ≤ L(u – v) for u > v.

4 Local existence and extremal solutions
In this section, we investigate the existence and extremal solutions for IVP (3).

Theorem 3 Assume that f ∈ C[R1, R], where

R1 =

{

(t, x) : 0 ≤ t ≤ T ,

∣∣
∣∣
∣
x(t) –

n–1∑

k=0

xktk

�(k + 1)

∣∣
∣∣
∣
≤ K

}

,

and there exists M > 0 such that |f (t, x)| ≤ M in R1. Then there exists at least one solution
for IVP (3) in t ∈ [0, T].

Proof Let δ > 0, and let x0(t) be a continuous function in the interval [–δ, 0] such that
x(k)

0 (0) = xk , k = 0, 1, . . . , n – 1, |x0(t) –
∑n–1

k=0
xk tk

�(k+1) | ≤ K for t ∈ [–δ, 0], and |cDpx0(t)| ≤ M.
For 0 ≤ η ≤ δ, we define xη(t) = x0(t) in [–δ, 0] and

xη(t) =
n–1∑

k=0

xktk

�(k + 1)
+

1
�(p)

∫ t

0
(t – s)p–1f

(
s, xη(s – η)

)
ds (10)
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for t ∈ [0,α1], where α1 = min{α,η} and α = min([ K
M �(p + 1)]

1
p , T). Then we observe that

cDpxη(t) exists and

∣
∣∣
∣∣
xη(t) –

n–1∑

k=0

xktk

�(k + 1)

∣
∣∣
∣∣

=
1

�(p)

∣
∣∣
∣

∫ t

0
(t – s)p–1f

(
s, xη(s – η)

)
ds

∣
∣∣
∣

≤ 1
�(p)

∫ t

0
(t – s)p–1∣∣f

(
s, xη(s – η)

)∣∣ds

=
1

�(p)

∫ t

0
(t – s)p–1∣∣f

(
s, x0(s – η)

)∣∣ds

≤ M
�(p)

∫ t

0
(t – s)p–1 ds =

Mtp

�(p + 1)
≤ K ,

because of the choice of α1. If α1 < α, then we can employ (10) to extend xη(t) as a contin-
uously fractional differentiable function on [0,α2], where α2 = min(α, 2η). Continuing this
process, we can define xη(t) over [0,α] so that

∣
∣∣
∣∣
xη(t) –

n–1∑

k=0

xktk

�(k + 1)

∣
∣∣
∣∣
≤ K

for t ∈ [0,α]. Furthermore, for 0 ≤ t1 < t2 ≤ α, we have

xη(t1) – xη(t2)

=
n–1∑

k=0

xk(tk
1 – tk

2)
�(k + 1)

+
1

�(p)

∫ t1

0
(t1 – s)p–1f

(
s, xη(s – η)

)
ds

–
1

�(p)

∫ t2

0
(t2 – s)p–1f

(
s, xη(s – η)

)
ds

=
n–1∑

k=0

xk(tk
1 – tk

2)
�(k + 1)

+
1

�(p)

∫ t1

0

[
(t1 – s)p–1 – (t2 – s)p–1]f

(
s, xη(s – η)

)
ds

–
1

�(p)

∫ t2

t1

(t2 – s)p–1f
(
s, xη(s – η)

)
ds.

Then there exists M1 > 0 such that

∣∣xη(t1) – xη(t2)
∣∣

≤
∣∣∣
∣∣

n–1∑

k=0

xk(tk
1 – tk

2)
�(k + 1)

∣∣∣
∣∣

+
M

�(p)

[∫ t1

0

[
(t1 – s)p–1 – (t2 – s)p–1]ds

+
∫ t2

t1

(t2 – s)p–1 ds
]

≤ M1
[
(t2 – t1) +

(
tp
2 – tp

1
)

+ 2(t2 – t1)p] < ε,

provided that |t2 – t1| < δ1 = min{δ′
1, ε

3M1
, [ ε

6M1
]

1
p }, where δ′

1 > 0 is such that |tp
2 – tp

1 | < ε
3M1

for |t2 – t1| < δ′
1, since g(t) = tp, t ∈ [0,α], is uniformly continuous. Then we find that the



Lu and Zhu Advances in Difference Equations  (2018) 2018:237 Page 8 of 11

family {xη(t)} consists of a series of equicontinuous and uniformly bounded functions. The
Ascoli–Arzelà theorem shows the existence of a sequence {ηm} such that η1 > η2 > · · · >
ηm → 0 as m → ∞ and x(t) = limm→∞ xηm (t – ηm) exists uniformly in [0,α]. Since f (t, x) is
continuous, we obtain that f (t, xηm (t –ηm)) tends uniformly to f (t, x(t)) as m → ∞. Hence,
term-by-term operations of (10) with η = ηm and α1 = αm yield

x(t) =
n–1∑

k=0

xktk

�(k + 1)
+

1
�(p)

∫ t

0
(t – s)p–1f

(
s, x(s)

)
ds

for t ∈ [0,α]. Thus x(t) is a solution of IVP (3) for t ∈ [0,α]. By the extension method (10)
there exists at least one solution for IVP (3) in the interval [0, T]. Therefore the theorem
is proved. �

Employing Theorem 2 and Theorem 3 synthetically, we present the existence of extremal
solutions for IVP (3).

Theorem 4 Under the assumptions of Theorem 3, there exist extremal solutions for the
IVP (3) in the interval t ∈ [0, T].

Proof Consider the fractional differential equation with initial value conditions

(Em) : cDpx = f (t, x) + εm, x(k)(0) = xk , k = 0, 1, . . . , n – 1, (11)

where εm > 0 (m = 1, 2, . . .), and εm decreases and tends to 0 as m → ∞. Then by Theorem 3
there exists at least one solution x = ϕm(t) for the initial value problem (Em) in 0 ≤ t ≤ T :

ϕm(t) =
n–1∑

k=0

xktk

�(k + 1)
+

1
�(p)

∫ t

0
(t – s)p–1[f

(
s,ϕm(s)

)
+ εm

]
ds. (12)

Moreover, there exists M2 > 0 such that ϕm(t) satisfies

∣
∣ϕm(t)

∣
∣ =

∣
∣∣
∣∣

n–1∑

k=0

xktk

�(k + 1)
+

1
�(p)

∫ t

0
(t – s)p–1[f

(
s,ϕm(s)

)
+ εm

]
ds

∣
∣∣
∣∣

≤
∣∣
∣∣
∣

n–1∑

k=0

xktk

�(k + 1)

∣∣
∣∣
∣

+
2M
�(p)

∫ t

0
(t – s)p–1 ds

=

∣
∣∣
∣∣

n–1∑

k=0

xktk

�(k + 1)

∣
∣∣
∣∣

+
2Mtp

�(p + 1)
≤ M2

for 0 ≤ t ≤ T . For 0 ≤ t1 < t2 ≤ T , we have

ϕm(t1) – ϕm(t2)

=
n–1∑

k=0

xk(tk
1 – tk

2)
�(k + 1)

+
1

�(p)

∫ t1

0
(t1 – s)p–1[f

(
s,ϕm(s)

)
+ εm

]
ds

–
1

�(p)

∫ t2

0
(t2 – s)p–1[f

(
s,ϕm(s)

)
+ εm

]
ds
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=
n–1∑

k=0

xk(tk
1 – tk

2)
�(k + 1)

+
1

�(p)

∫ t1

0

[
(t1 – s)p–1 – (t2 – s)p–1][f

(
s,ϕm(s)

)
+ εm

]
ds

–
1

�(p)

∫ t2

t1

(t2 – s)p–1[f
(
s,ϕm(s)

)
+ εm

]
ds.

Then there exists M3 > 0 such that

∣∣ϕm(t1) – ϕm(t2)
∣∣

≤
∣
∣∣
∣∣

n–1∑

k=0

xk(tk
1 – tk

2)
�(k + 1)

∣
∣∣
∣∣

+
2M
�(p)

[∫ t1

0

[
(t1 – s)p–1 – (t2 – s)p–1]ds

+
∫ t2

t1

(t2 – s)p–1 ds
]

≤ M3
[
(t2 – t1) +

(
tp
2 – tp

1
)

+ 2(t2 – t1)p] < ε,

provided that |t2 –t1| < δ2 = min{δ′
2, 1

3M3
, [ ε

6M3
]

1
p }, where δ′

2 > 0 is such that |tp
2 –tp

1 | < ε
3M2

for
|t2 – t1| ≤ δ′

2, since g(t) = tp, t ∈ [0,α], is uniformly continuous. Thus the sequence {ϕm(t)}
consists of equicontinuous and uniformly bounded functions on the interval 0 ≤ t ≤ T .
Then by the Ascoli–Arzelà theorem the sequence {ϕm(t)} has a uniformly convergent sub-
sequence {ϕmk (t)}. Then denote

�(t) = lim
k→∞

ϕmk (t). (13)

Therefore �(t) is a solution of IVP (3).
On the other hand, since εm > 0 and f (t, x(t)) < f (t, x(t))+εm, �(t) is the maximal solution

of IVP (3) by Theorem 2. In a similar way, just replacing εm with –εm, we observe that there
exists a minimal solution of IVP (3). Therefore, the proof is completed. �

5 Comparison principles with nonstrict inequalities
In this section, we present comparison principles with nonstrict inequality condition for
fractional differential equations with the Caputo derivatives of order p with 0 ≤ n – 1 <
p ≤ n.

Theorem 5 Assume that f (t, x) and F(t, x) are two continuous functions defined on G =
[0, T] × R and satisfying the inequality

f (t, x) ≤ F(t, x) for (t, x) ∈ G. (14)

Suppose that x = φ(t),φm(t), and φM(t) are the solution, minimal solution, and maximal
solution of the IVP (E3) and that x = ψ(t),ψm(t), and ψM(t) are the solution, minimal so-
lution, and maximal solution of the IVP (E4), respectively. Then

φ(t) ≤ ψM(t) and φm(t) ≤ ψ(t) (15)

for t ∈ [0, T].
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Proof Consider the initial value problem

(Eε) : cDpx = F(t, x) + ε, x(k)(0) = xk , k = 0, 1, 2, . . . , n – 1, (16)

where ε > 0 is a small positive number. By Theorem 3 the IVP (Eε ) has at least one solution.
Denote it by ψ(t, ε). Since f (t, x) ≤ F(t, x) < F(t, x) + ε, t ∈ [0, T], by Theorem 2 we have
φ(t) < ψ(t, ε) for t ∈ (0, T]. Since limε→0 ψ(t, ε) = ψM(t) uniformly on 0 ≤ t ≤ T , we obtain

φ(t) ≤ ψM(t), t ∈ [0, T].

Just replacing ε with –ε, the other inequality is proved similarly. Thus, the proof is com-
pleted. �

6 Conclusion
In this paper, we obtained comparison principles for fractional differential equations with
the Caputo derivatives of order p (0 ≤ n – 1 < p ≤ n) under strict and nonstrict inequal-
ities. Then the local existence and extremal solutions of fractional differential equations
involving the Caputo derivatives were proposed. The results presented in this paper may
be applied for further study of the quantitative properties of fractional differential equa-
tions with the Caputo derivatives.
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