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Abstract
In this paper, we study a conservative difference scheme for the sine-Gordon
equation (SGE) with the Riesz space fractional derivative. We rigorously establish the
conservation property and solvability of the difference scheme. We discuss the
stability and convergence of the difference scheme in the L∞ norm. To reduce the
computational complexity, we introduce a revised Newton method for implementing
the difference scheme. Finally, we provide several numerical experiments to support
the theoretical results.
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1 Introduction
The nonlinear SGE

∂2u
∂t2 – �u + sin u = 0, x = (x1, . . . , xn) ∈R

n, (1.1)

arises in many different areas, such as stability of fluid motions, differential geometry,
Josephson junctions, models of particle physics [1], the propagation of fluxon [2], the
motion of a rigid pendulum attached to a stretched wire [3], the phenomenon of supra-
transmission in nonlinear media [4], and so on. Therefore the investigation for the SGE
has attracted attention of some researchers, and many significant achievements have been
made.

A remarkable property of (1.1) is the energy conservation:

1
2

∫
R

[(
∂u
∂t

)2

+
(

∂u
∂x

)2

+ 2P(u)
]

dx = const,

where P(u) = 1 – cos u; it was studied by many researchers [5–9]. The conserved quan-
tity is good for the analysis of the nonlinear stability of the numerical schemes proposed,
although it is difficult to apply them [10, 11].

Since the fractional calculus is frequently better than the integer calculus in the de-
scription of many physical laws, various classical partial differential equations have been
extended to the corresponding fractional-order differential equations [12–19]. However,
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there are a few works on fractional-order SGEs. Ray [20] combined the modified decom-
position method and Fourier transform to approximate the solution of a fractional SGE.
In [21], a family of breather-like solutions for the fractional SGE is found numerically by
using the approach that is called sometimes the rotating wave approximation. Macías-
Díaz [4] employed an explicit finite difference scheme to simulate a space-fractional SGE.
His result supported the fact that nonlinear supratransmission is present in the Riesz
space-fractional model. He also pointed out that numerical simulations for fractional SGE
require enormous amount of computer time.

In this paper, we consider the space-fractional SGE

∂2u
∂t2 –

∂αu
∂|x|α + sin u = 0, –∞ < x < +∞, 0 < t ≤ T , (1.2)

with the boundary and initial conditions

u(x, 0) = ϕ(x),
∂u(x, 0)

∂t
= ψ(x), –∞ < x < +∞, (1.3)

lim|x|→∞ u(x, t) = 0, 0 < t < T , (1.4)

where 1 < α ≤ 2.
The Riesz fractional derivative of order α is defined by [22]

∂αu
∂|x|α (x, t) = –(–�)

α
2 u(x, t) = –

1
2 cos(πα/2)

(
–∞Dα

x u(x, t) +x Dα
+∞u(x, t)

)
,

where –∞Dα
x u(x, t) and xDα

+∞u(x, t) are the left- and right-side Riemann–Liouville frac-
tional derivatives, respectively.

Multiplying (1.2) by ∂u
∂t and then integrating with respect to x, we obtain

d
dt

∫
R

1
2

[(
∂u
∂t

)2

+
(
(–�)

α
4 u

)2 + 2P(u)
]

dx = 0,

that is, the conservation of energy

1
2

∥∥∥∥∂u
∂t

∥∥∥∥
2

L2
+

1
2
∥∥(–�)

α
4 u

∥∥2
L2 +

∫
R

P(u) dx = const, (1.5)

where P(u) is consistent with the aforementioned.
To the best of our knowledge, there are very few works developing conservative numer-

ical methods for fractional SGEs. The main objective of this paper is to propose a conser-
vative numerical method for space-fractional SGEs and try to reduce the computational
complexity.

This paper is arranged as follows. In the next section, we propose a conservative differ-
ence scheme for space-fractional SGEs. Subsequently, we prove that the difference scheme
preserves the energy conservation law. The boundedness, solvability, and convergence of
the difference scheme are rigorously established. In Sect. 4, we introduce a revised Newton
method for implementation of the difference scheme. In Sect. 5, we present some numer-
ical results to demonstrate the effectiveness of the difference scheme. Finally, we give a
simple conclusion.
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2 A conservative difference scheme for fractional SGEs
2.1 Notation
To develop a finite difference scheme for problem (1.2)–(1.4), we assume that its solution
is negligibly small outside of the interval � = (xR, xL), that is, u|x∈R\� = 0. we choose the
time step τ = T

N and mesh size h = xR–xL
M with two positive integers N and M. Denote

�h = {xi|xi = xL + ih, 1 ≤ i ≤ M – 1}, �τ = {tn|tn = nτ , 0 ≤ n ≤ N}

and

un
i ≈ u(xi, tn), Un

i = u(xi, tn).

Let νh = {w|w = (w1, w2, . . . , wM–1)T } be the space of grid functions. For a given grid func-
tion w = {wn

i |(xi, tn) ∈ �h × �τ }, we define the finite difference operators

(
wn

i
)

t =
wn+1

i – wn
i

τ
,

(
wn

i
)

t̄ =
wn

i – wn–1
i

τ
,

(
wn

i
)

t̂ =
wn+1

i – wn–1
i

2τ
, w̄n

i =
wn+1

i + wn–1
i

2
.

For any two grid functions un and vn, we define

(
un, vn) = h

M–1∑
i=1

un
i vn

i ,
∥∥un∥∥2 =

(
un, un),

∥∥un∥∥
l∞h

= sup
i∈Z

|ui|. (2.1)

Let 0 ≤ σ ≤ 1 be given. For any u ∈ l2
h, the fractional Sobolev norm ‖u‖Hσ and seminorm

|u|Hσ can be defined as

‖u‖2
Hσ = h

∫ π

–π

(
1 + h–2σ |k|2σ

)∣∣̂u(k)
∣∣2 dk, |u|2Hσ = h

∫ π

–π

h–2σ |k|2σ
∣∣̂u(k)

∣∣2 dk.

2.2 A conservative implicit difference scheme
Lemma 2.1 ([23]) Suppose that u ∈L2+α(R). Then

–h–α�α
h f (x) = –(–�)

α
2 f (x) + O

(
h2), (2.2)

where

�α
h f (x) =

∞∑
k=–∞

g(α)
k f (x – kh), g(α)

k =
(–1)k�(α + 1)

�(α/2 – k + 1)�(α/2 + k + 1)
.

If we define

u∗(x, t) =

⎧⎨
⎩

u(x, t) if x ∈ [xL, xR],

0 if x ∈ (–∞, xL) ∪ (xR,∞),
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then, for 1 < α ≤ 2, we can get

–(–�)
α
2 un

i = –h–α

M–1∑
l=1

g(α)
i–l un

l + O
(
h2). (2.3)

Denote

δα
h un

i = h–α

M–1∑
l=1

g(α)
i–l un

l .

Considering equation (1.2) at points (xi, tn), we derive

∂2u
∂t2 (xi, tn) –

∂αu
∂|x|α (xi, tn) = – sin u(xi, tn), 1 ≤ i ≤ M – 1, 1 ≤ n ≤ N – 1. (2.4)

Combining the Taylor expansion and equation (2.3), we get

∂2u
∂t2 (xi, tn) =

(
Un

i
)

tt + O
(
τ 2),

∂αu
∂|x|α (xi, tn) = δα

h Ūn
i + O

(
h2 + τ 2),

– sin u(xi, tn) = ζ
(
Ūn

i
)

+ O
(
τ 2),

(2.5)

where ζ (Ūn
i ) = cos(Un+1

i )–cos(Un–1
i )

Un+1
i –Un–1

i
.

Substituting (2.5) into (2.4), we get

(
Un

i
)

tt̄ + δα
h Ūn

i = ζ
(
Ūn

i
)

+ rn
i , (2.6)

where rn
i = O(h2 + τ 2).

In addition, from conditions (1.3) and (1.4) we have

Un
0 = 0, Un

M = 0, 0 ≤ n ≤ N , (2.7)

U0
i = ϕ(xi),

∂U
∂t

(xi, 0) = ψ(xi), 1 ≤ i ≤ M – 1. (2.8)

Omitting the small term rn
i in (2.6) and using the numerical solution un

i to replace Un
i , we

obtain the following difference scheme for solving problem (1.2)–(1.4):

(
un

i
)

tt̄ + δα
h ūn

i = ζ
(
ūn

i
)
, 1 ≤ i ≤ M – 1, 1 ≤ n ≤ N – 1, (2.9)

un
0 = 0, un

M = 0, 0 ≤ n ≤ N , (2.10)

u0
i = ϕ(xi), u1

i = u0
i + τψ(xi) –

τ 2

2
[
δα

h u0
i + sin

(
u0

i
)]

, 1 ≤ i ≤ M – 1. (2.11)
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3 Numerical analysis
3.1 Some useful lemmas
Lemma 3.1 ([13]) If u, v are any two grid functions in νh, then there exists a linear operator
�α

h = h– α
2 G 1

2 such that

(
δα

h u, v
)

=
(
h–αGu, v

)
=

(
�α

h u,�α
h v

)
,

where

G =

⎛
⎜⎜⎜⎜⎝

g(α)
0 g(α)

–1 . . . g(α)
–M+2

g(α)
1 g(α)

0 . . . g(α)
–M+3

...
...

. . .
...

g(α)
M–2 g(α)

M–3 · · · g(α)
0

⎞
⎟⎟⎟⎟⎠ ;

G 1
2 is the unique positive definite square root of G, that is, (G 1

2 )2 = G. Moreover, we have

(
δα

h u, u
)

=
(
�α

h u,�α
h u

)
=

∥∥�α
h u

∥∥2, (3.1)

where δα
h u = (δα

h u1, δα
h u2, . . . , δα

h uM–1)T .

Lemma 3.2 If un ∈ νh, then we have
(
un

tt̄ , 2un
t̂
)

=
(∥∥un

t
∥∥2)

t̄ , (3.2)
(
δα

h ūn, 2un
t̂
)

=
∥∥�α

h un∥∥2
t̂ . (3.3)

Proof Equality (3.2) can be found in [8], so we omit it here. Equality (3.3) can be proved
as follows:

(
δα

h ūn, 2un
t̂

)
=

1
2τ

(
δα

h un+1 + δα
h un–1, un+1 – un–1)

=
1

2τ

[(
δα

h un+1, un+1) –
(
δα

h un–1, un–1) +
(
δα

h un–1, un+1) –
(
δα

h un+1, un–1)]

=
1

2τ

[(
δα

h un+1, un+1) –
(
δα

h un–1, un–1)]

=
∥∥�α

h un∥∥2
t̂ .

The proof ends. �

Lemma 3.3 ([8]) Let ω(k) and ρ(k) be nonnegative mesh functions. If C > 0, ρ(k) is non-
decreasing, and

ω(k) ≤ ρ(k) + Cτ

k–1∑
l=0

ω(l)

for all k, then

ω(k) ≤ ρ(k)eCkτ

for all k.
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Lemma 3.4 (Discrete Sobolev inequality [24]) For every 1
2 < σ ≤ 1, there exists a constant

C = C(σ ) > 0 independent of h > 0 such that

‖u‖l∞h ≤ C‖u‖Hσ

for all u ∈ l2
h.

Lemma 3.5 (Uniform norm equivalence [25]) For any grid function u = {uj} and every
1 < α ≤ 2, we have

(
2
π

)α

|u|2Hα/2 ≤ (
h–α�α

h u, u
) ≤ |u|2Hα/2 .

Lemma 3.6 ([26], Lemma 1.4, Ch. 2) Let X be a finite-dimensional Hilbert space with
scalar product [·, ·] and norm [·], and let � be a continuous mapping from X into itself
such that

[
�(ξ ), ξ

]
> 0 for any [ξ ] = k > 0.

Then there exists ξ ∈ X with [ξ ] ≤ k such that

�(ξ ) = 0.

3.2 Conservation
Theorem 3.1 The scheme (2.9)–(2.11) is conservative in the sense that

εn = εn–1 = · · · = ε0,

where

εn =
1
2
∥∥un

t
∥∥2 +

1
4
∥∥�α

h un+1∥∥2 +
1
4
∥∥�α

h un∥∥2 +
h
2

M–1∑
i=0

[(
1 – cos un+1

i
)

+
(
1 – cos un

i
)]

is the energy in the discrete sense.

Proof Making the discrete inner product of (2.9) with 2un
t̂ , we get that

((
un)

tt̄ , 2un
t̂

)
+

(
δα

h ūn, 2un
t̂

)
=

(
ζ
(
ūn), 2un

t̂

)
. (3.4)

Directly computing, we have

(
ζ
(
ūn), 2un

t̂

)
=

h
τ

M–1∑
i=0

(
cos un+1

i – cos un–1
i

)

= –
h
τ

M–1∑
i=0

{[(
1 – cos un+1

i
)

+
(
1 – cos un

i
)]

–
[(

1 – cos un
i
)

+
(
1 – cos un–1

i
)]}

. (3.5)
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Notice that other inner products in (3.4) can be calculated by Lemma 3.2. Substituting
(3.2), (3.3), and (3.5) into (3.4), we obtain

(∥∥un
t
∥∥2)

t̄ +
1

2τ

[(∥∥�α
h un+1∥∥2 +

∥∥�α
h un∥∥2) –

(∥∥�α
h un∥∥2 +

∥∥�α
h un–1∥∥2)]

+
h
τ

M–1∑
i=0

{[(
1 – cos un+1

i
)

+
(
1 – cos un

i
)]

–
[(

1 – cos un
i
)

+
(
1 – cos un–1

i
)]}

= 0,

and hence

εn =
1
2
∥∥un

t
∥∥2 +

1
4
[(∥∥�α

h un+1∥∥2 +
∥∥�α

h un∥∥2)] +
h
2

M–1∑
i=0

[(
1 – cos un+1

i
)

+
(
1 – cos un

i
)]

=
1
2
∥∥un–1

t
∥∥2 +

1
4

(
∥∥�α

h un∥∥2 +
∥∥�α

h un–1∥∥2 +
h
2

M–1∑
i=0

[(
1 – cos un

i
)

+
(
1 – cos un–1

i
)]

,

that is,

εn = εn–1 = · · · = ε0. �

3.3 The boundedness, solvability, and convergence
Theorem 3.2 Assume that {un

i |0 ≤ i ≤ M, 0 ≤ n ≤ N} is a solution of the difference scheme
(2.9)–(2.11). Then

∥∥un
t
∥∥ ≤ C,

∥∥�α
h un∥∥ ≤ C,

∥∥un∥∥ ≤ C,
∥∥un∥∥

l∞h
≤ C.

Here and later, C denotes a generic positive constant; in different places, it may represent
different constants.

Proof By Theorem 3.1 we get

2εn =
∥∥un

t
∥∥2 +

1
2
[(∥∥�α

h un+1∥∥2 +
∥∥�α

h un∥∥2)] + h
M–1∑
i=0

[(
1 – cos un+1

i
)

+
(
1 – cos un

i
)]

= C.

Notice that

(
1 – cos un+1

i
)

+
(
1 – cos un

i
) ≥ 0.

Then

∥∥un
t
∥∥ ≤ C,

∥∥�α
h un∥∥ ≤ C.

Moreover,

‖uk+1‖ – ‖uk‖
τ

≤ ∥∥uk
t
∥∥ ≤ C.
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By summing this equality for k = 0, 1, . . . , n – 1 (nτ ≤ T), we get

∥∥un∥∥ ≤ nτC +
∥∥u0∥∥ ≤ CT +

∥∥u0∥∥ ≤ C.

Combining Lemma 3.1 and Lemma 3.5, we derive

∣∣un∣∣2
Hα/2 ≤

(
π

2

)α(
h–α�α

h un, un) =
(

π

2

)α(
h–αGun, un) =

(
π

2

)α∥∥�α
h un∥∥2 ≤ C.

Hence

∥∥un∥∥2
Hα/2 =

∥∥un∥∥2 +
∣∣un∣∣2

Hα/2 ≤ C.

According to Lemma (3.4),

∥∥un∥∥
l∞h

≤ C
∥∥un∥∥

Hα/2 ≤ C.

Thus we get the desired results. �

For the existence and uniqueness of a solution for the difference scheme (2.9)–(2.11),
we have the following theorems.

Theorem 3.3 The difference scheme (2.9)–(2.11) has at least one solution.

Proof We carry out the proof by mathematical induction. Assume that u0, u1, . . . , un are
given solutions. We aim to prove that there exists yet one un+1 satisfying the difference
scheme. Let X = νh with the scalar product (·, ·) defined in (2.1). We define the mapping
� : X → X such that

(
�(ω),υ

)
=

(
ω

τ 2 ,υ
)

–
(

2
τ

un–1
t ,υ

)
+

(
1
2
δα

h ω,υ
)

+
(
δα

h un–1,υ
)

+
(

cos un–1 – cos(ω + un–1)
ω

,υ
)

, ∀ω,υ ∈ X,

where

cos un–1 – cos(ω + un–1)
ω

= (χ1,χ2, . . . ,χM–1)T ,

χi =
cos un–1

i – cos(ωi + un–1
i )

ωi
, 1 ≤ i ≤ M – 1.

Obviously, the mapping � is continuous. Moreover, we have

(
�(ω),ω

)
=

‖ω‖2

τ 2 –
2
τ

(
un–1

t ,ω
)

+
1
2
(
δα

h ω,ω
)

+
(
δα

h un–1,ω
)

+
(

cos un–1 – cos(ω + un–1)
ω

,ω
)

.
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Applying Young’s inequality and Theorem 3.2, we have

2
τ

(
un–1

t ,ω
)

=
(

2
√

2un–1
t ,

1√
2τ

ω

)

≤ 4
∥∥un–1

t
∥∥2 +

1
4

‖ω‖2

τ 2

≤ 8ε0 +
1
4

‖ω‖2

τ 2

and

(
δα

h un–1,ω
) ≤ τ 2

2
∥∥δα

h un–1∥∥2 +
1
2

‖ω‖2

τ 2

≤ 4τ 2h–αg(α)
0 ε0 +

1
2

‖ω‖2

τ 2 ,

where we used the fact that

∥∥δα
h un–1∥∥2 =

(
h–αGun–1, h–αGun–1)

≤ h–αλmax(G)
(
h–αGun–1, un–1)

≤ 2h–αg(α)
0

∥∥�α
h un–1∥∥2

≤ 8h–αg(α)
0 ε0.

Noticing that

(
δα

h ω,ω
)

=
(
�α

hω,�α
hω

) ≥ 0

and

(
cos un–1 – cos(ω + un–1)

ω
,ω

)
= h

M–1∑
i=1

(
cos un–1

i – cos
(
ωi + un–1

i
)) ≤ 2L,

where L = XR – XL, we have

(
�(ω),ω

) ≥ 1
4

‖ω‖2

τ 2 –
[(

8 + 4τ 2h–αg(α)
0

)
ε0 + 2L

]
.

Let

K = 2τ

√(
8 + 4τ 2h–αg(α)

0
)
ε0 + 2L.

Then, for any ‖ω‖ > K , we have (�(ω),ω) > 0. By Lemma 3.6 there exists ω ∈ X such that
�(ω) = 0. Setting ω = un+1 – un–1, we get the desired result. �

Theorem 3.4 The solution of the difference scheme (2.9)–(2.11) is unique.
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Proof Suppose that two sequences u0, u1, . . . , un, v and u0, u1, . . . , un, v′ both satisfy the dif-
ference scheme (2.9)–(2.11). Let v∗ = v – v′. Then we obtain that

1
τ 2 v∗

i + δα
h v∗

i – pi = 0, 1 ≤ i ≤ M – 1, (3.6)

where {pi} are given by (3.8).
Making the inner product of (3.6) with v∗, we obtain that

(
1
τ 2 v∗, v∗

)
+

(
δα

h v∗, v∗) –
(
p, v∗) = 0. (3.7)

Noticing that

pi =
cos vi – cos un–1

i
vi – un–1

i
–

cos v′
i – cos un–1

i
v′

i – un–1
i

=
∫ 1

0
sin

[
λv′

i + (1 – λ)un–1
i

]
dλ –

∫ 1

0
sin

[
λvi + (1 – λ)un–1

i
]

dλ

= –2
∫ 1

0
cos

[
λ

vi + v′
i

2
+ (1 – λ)un–1

i

]
sin

(
λ

v∗
i

2

)
dλ, (3.8)

we have

∣∣piv∗
i
∣∣ ≤ 1

2
(
v∗

i
)2,

and therefore

∣∣(p, v∗)∣∣ ≤ 1
2
∥∥v∗∥∥2.

Thus for the right-hand side of (3.7), we get

(
1
τ 2 v∗, v∗

)
+

(
δα

h v∗, v∗) –
(
p, v∗) ≥

(
1
τ 2 –

1
2

)∥∥v∗∥∥2. (3.9)

Then supposing that τ <
√

2 and combining (3.7) and (3.9), we derive

∥∥v∗∥∥ = 0, i.e., v = v′.

The proof ends. �

Denote

en
i = Un

i – un
i , 0 ≤ i ≤ M, 0 ≤ n ≤ N .

Theorem 3.5 Assume that problem (1.2)–(1.4) has a smooth solution and {un
i |0 ≤ i ≤

M, 0 ≤ n ≤ N} is the solution of the finite difference scheme (2.9)–(2.11). If τ2

hα ≤ S (0 <
S < +∞), then there exists a positive constant C such that

∥∥en∥∥
l∞h

≤ C
(
h2 + τ 2).
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Proof Subtracting (2.9)–(2.11) from (2.6)–(2.8), respectively, we get the following error
equations:

(
en

i
)

tt̄ + δα
h ēn

i = V
(
ēn

i
)

+ rn
i , 1 ≤ i ≤ M – 1, 1 ≤ n ≤ N , (3.10)

en
0 = 0, en

M = 0, 0 ≤ n ≤ N , (3.11)

e0
i = 0, 1 ≤ i ≤ M – 1, (3.12)

where

V
(
ēn

i
)

= ζ
(
Ūn

i
)

– ζ
(
ūn

i
)

= –2
∫ 1

0
cos

[
λ

Un+1
i + un+1

i
2

+ (1 – λ)
Un–1

i + un–1
i

2

]

× sin

[
λ

Un+1
i – un+1

i
2

+ (1 – λ)
Un–1

i – un–1
i

2

]
dλ. (3.13)

Similarly to the proof of Theorem 3.1, making the discrete inner product of (3.10) with
2en

t̂ , we get that

(∥∥en
t
∥∥2)

t̄ +
1

2τ

[(∥∥�α
h en+1∥∥2 +

∥∥�α
h en∥∥2) –

(∥∥�α
h en∥∥2 +

∥∥�α
h en–1∥∥2)]

=
(
V

(
ēn) + rn, 2en

t̂

)
. (3.14)

By summing this equality for n = 1, 2, . . . , k (kτ ≤ T), we derive

∥∥ek
t
∥∥2 +

1
2
∥∥�α

h ek+1∥∥2 +
1
2
∥∥�α

h ek∥∥2

=
∥∥e0

t
∥∥2 +

1
2
∥∥�α

h e1∥∥2 +
1
2
∥∥�α

h e0∥∥2 + τ

k∑
n=1

(
V

(
ēn) + rn, 2en

t̂

)
. (3.15)

From (3.13) we get

∣∣V (
ēn

i
)∣∣ ≤

∣∣∣∣2
∫ 1

0
sin

[
λ

en+1
i
2

+ (1 – λ)
en–1

i
2

]
dλ

∣∣∣∣

≤
∫ 1

0

∣∣λen+1
i + (1 – λ)en–1

i
∣∣dλ

≤
∫ 1

0

∣∣τλ
(
en

i
)

t + λen
i + (1 – λ)en–1

i
∣∣dλ

=
1
2
τ
∣∣(en

i
)

t

∣∣ +
1
2
∣∣en

i
∣∣ +

1
2
∣∣en–1

i
∣∣,

and hence

∥∥V
(
ēn)∥∥2 ≤ 3

4
(
τ 2∥∥en

t
∥∥2 +

∥∥en∥∥2 +
∥∥en–1∥∥2). (3.16)
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Noticing that en
i = e0

i + τ
∑n–1

j=0 (ej
i)t and using the Cauchy–Schwarz inequality, we obtain

∥∥en∥∥2 ≤ 2
∥∥e0∥∥2 + 2τ 2

∥∥∥∥∥
n–1∑
j=0

ej
t

∥∥∥∥∥
2

≤ 2
∥∥e0∥∥2 + 2Tτ

n–1∑
j=0

∥∥ej
t
∥∥2. (3.17)

According to (3.16)–(3.17) and noticing that en
t̂ = 1

2 en
t + 1

2 en–1
t , we get

∣∣∣∣∣τ
k∑

n=1

(
V

(
ēn), 2en

t̂

)∣∣∣∣∣ ≤ τ

k∑
n=1

(∥∥V
(
ēn)∥∥2 +

1
2
∥∥en

t
∥∥2 +

1
2
∥∥en–1

t
∥∥2

)

≤ 3T
∥∥e0∥∥2 +

3τ 3 + 2τ

4
∥∥ek

t
∥∥2

+
(

3
4
τ 3 + 3T2τ + τ

) k–1∑
n=0

∥∥en
t
∥∥2. (3.18)

On the other hand,

∣∣∣∣∣τ
k∑

n=1

(
rn, 2en

t̂

)∣∣∣∣∣ ≤ τ

k∑
n=1

(∥∥rn∥∥2 +
∥∥en

t̂

∥∥2)

≤ τ

k∑
n=1

∥∥rn∥∥2 +
1
2
τ

k∑
n=0

∥∥en
t
∥∥2 +

1
2
τ

k–1∑
n=0

∥∥en
t
∥∥2. (3.19)

Substituting (3.18) and (3.19) into (3.15) and noticing that e0 = 0, we get

(
1 –

(
3τ 3

4
+ τ

))∥∥ek
t
∥∥2 +

1
2
∥∥�α

h ek+1∥∥2 +
1
2
∥∥�α

h ek∥∥2

≤ ∥∥e0
t
∥∥2 +

1
2
∥∥�α

h e1∥∥2 + τ

k∑
n=1

∥∥rn∥∥2

+
(

3
4
τ 3 + 3T2τ + 2τ

) k–1∑
n=0

∥∥en
t
∥∥2. (3.20)

In addition,

(
1 –

(
3τ 3

4
+ τ

))∥∥ek
t
∥∥2 +

1
2
∥∥�α

h ek+1∥∥2 +
1
2
∥∥�α

h ek∥∥2

≥
(

1 –
(

3τ 3

4
+ τ

))∥∥ek
t
∥∥2 +

1
2
τ 2∥∥�α

h ek
t
∥∥2

≥
(

1 –
(

3τ 3

4
+ τ

)
+

1
2
τ 2h–αλmin(G)

)∥∥ek
t
∥∥2.
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Supposing that σ = 1 – ( 3τ3

4 + τ ) + 1
2τ 2h–αλmin(G) > 0 (it is easily to verify that when τ ≤

0.72, the condition is satisfied), then inequality (3.20) can be rewritten as

∥∥ek
t
∥∥2 +

1
2σ

∥∥�α
h ek∥∥2 ≤ 1

σ

∥∥e0
t
∥∥2 +

1
2σ

∥∥�α
h e1∥∥2 +

τ

σ

k∑
n=1

∥∥rn∥∥2

+
3τ 2 + 12T2 + 8

4σ
τ

k–1∑
n=0

(∥∥en
t
∥∥2 +

1
2σ

∥∥�α
h en∥∥2

)
. (3.21)

Let

ρ(k) =
1
σ

∥∥e0
t
∥∥2 +

1
2σ

∥∥�α
h e1∥∥2 +

τ

σ

k∑
n=1

∥∥rn∥∥2,

H(k) =
∥∥ek

t
∥∥2 +

1
2σ

∥∥�α
h ek∥∥2.

(3.22)

Substituting (3.22) into (3.21), we derive

H(k) ≤ ρ(k) +
3τ 2 + 12T2 + 8

4σ
τ

k–1∑
n=0

H(n).

Applying Lemma 3.3 to ρ(k) and H(k), we arrive at

H(k) ≤ ρ(k)e
3τ2+12T2+8

4σ kτ ≤ ρ(k)e
(3τ2+12T2+8)T

4σ . (3.23)

Noticing that if τ and h are sufficiently small, then we have

e0
i = 0, rn

i = O
(
h2 + τ 2), 1 ≤ i ≤ M – 1, 1 ≤ n ≤ N – 1.

Applying the Taylor expansion, we get

u1
i = u0

i + τψ(xi) +
τ 2

2
[
–(–�)

α
2 u0

i – sin
(
u0

i
)]

+ O
(
τ 3), 1 ≤ i ≤ M – 1.

According to Lemma 2.1, we obtain

–(–�)
α
2 u0

i = –δα
h u0

i + O
(
h2).

Therefore, we have the following equality:

e1
i = O

(
τ 3 + h2τ 2), 1 ≤ i ≤ M – 1. (3.24)

Due to e0
i = 0, τ2

hα < S, and (3.24), we derive

∥∥e0
t
∥∥2 ≤ L max

1≤i≤M–1

(
e1

i
τ

)2

≤ C
(
τ 2 + h2τ

)2 ≤ C
(
τ 2 + h2)2 = O

(
τ 2 + h2)2, (3.25)

∥∥�α
h e1∥∥2 ≤ h–αλmax(G)

∥∥e1∥∥2
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≤ 2h–αg(α)
0 L max

1≤i≤M–1

(
e1

i
)2

≤ C
τ 2

hα

(
τ 2 + h2τ

)2

≤ C · S
(
τ 2 + h2)2

= O
(
τ 2 + h2)2. (3.26)

On the other hand,

τ

k∑
n=1

∥∥rn∥∥2 ≤ T max
1≤n≤k

∥∥rn∥∥2 ≤ T · L max
1≤n≤k,1≤i≤M–1

(
rn

i
)2 = O

(
τ 2 + h2)2. (3.27)

Combining (3.25), (3.26), and (3.27), we derive

ρ(k) = O
(
h2 + τ 2)2. (3.28)

Furthermore, from (3.23) and (3.28) we immediately obtain the following results:

∥∥ek
t
∥∥ ≤ C

(
h2 + τ 2),

∥∥�α
h ek∥∥ ≤ C

(
h2 + τ 2).

Hence

‖ek+1‖ – ‖ek‖
τ

≤ ∥∥ek
t
∥∥ ≤ C

(
h2 + τ 2).

By summing this equality for k = 0, 1, . . . , n – 1 (nτ ≤ T), we get

∥∥en∥∥ ≤ nτC
(
h2 + τ 2) +

∥∥e0∥∥ = O
(
h2 + τ 2).

It follows from Lemma 3.1 and Lemma 3.5 that

∣∣en∣∣2
Hα/2 ≤

(
π

2

)α∥∥�α
h en∥∥2 = O

(
h2 + τ 2)2,

and hence

∥∥en∥∥2
Hα/2 =

∥∥en∥∥2 +
∣∣en∣∣2

Hα/2 = O
(
h2 + τ 2)2.

According to Lemma 3.4,

∥∥en∥∥
l∞h

≤ C
∥∥en∥∥

Hα/2 = O
(
h2 + τ 2).

Thus we get the desired results. �

4 The implementation issue and feasibility analysis of the numerical scheme
4.1 A revised Newton method for the proposed difference scheme
In this subsection, we mainly introduce how to implement the difference scheme (2.9)–
(2.11). First, we rewrite the difference scheme as follows:

(
1
τ 2 I +

1
2hα

G
)

un+1 – Q
(
un+1, un–1) + g = 0 (n = 1, 2, . . . , N – 1), (4.1)
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where

Q
(
un+1, un–1) =

(
ζ
(
ūn

1
)
, ζ

(
ūn

2
)
, . . . , ζ

(
ūn

M–1
))T ,

un =
(
un

1, un
2, . . . , un

M–1
)T ,

g =
1

2hα
Gun–1 –

1
τ 2

(
2un – un–1).

Note that, at each time level k = n + 1, un, un–1, and g are constants. If we define

F(x) =
(

1
τ 2 I +

1
2hα

G
)

x – Q
(
x, un–1) + g

(
x ∈ RM–1),

then un+1 turns out to be a solution of the nonlinear equation

F(x) = 0. (4.2)

In addition, letting un+1 = x, any solution of the nonlinear equation (4.2) satisfies the dif-
ference equations (2.9). Hence the solution of (4.2) is unique.

Applying the Newton method to solve system (4.2), we get

J
(
xs)(xs+1 – xs) = –F

(
xs), s = 0, 1, 2, . . . , (4.3)

that is,

J
(
un+1(s))(un+1(s+1) – un+1(s)) = –F

(
un+1(s)),

where

J
(
un+1(s)) =

1
τ 2 I +

1
2hα

G – diag
(
qn+1

1 , qn+1
2 , . . . , qn+1

M–1
)

and

qn+1
i =

d
dxi

Q
(
xi, un–1

i
)∣∣∣

xi=un+1(s)
i

=

⎧⎨
⎩

– cos(un+1(s)
i ) if un+1(s)

i = un–1
i ,

�(un+1(s)
i , un–1

i ) if un+1(s)
i �= un–1

i ,

with

∣∣�(
un+1(s)

i , un–1
i

)∣∣ =
∣∣∣∣
[

d
dxi

∫ 1

0
sin

(
λxi + (1 – λ)un–1

i
)

dλ

]
xi=un+1(s)

i

∣∣∣∣

=
∣∣∣∣
∫ 1

0
λ cos

(
λun+1(s)

i + (1 – λ)un–1
i

)
dλ

∣∣∣∣

≤
∫ 1

0
λdλ

=
1
2

.
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Therefore |qn+1
i | ≤ 1 (i = 1, 2, . . . , M – 1). Hence, as τ → 0 or h → 0, we have

|qn+1
i |

1
τ2 + 1

2hα g(α)
0

→ 0, i = 1, 2, . . . , M – 1. (4.4)

If we apply the Newton method to solve system (4.2), then we have to renew the Jacobian
matrix of F at each stage, which will be very expensive. However, from (4.4) we observe
that the contribution of the term Q(x, un–1) to the Jacobian matrix can be omitted when τ

and h are sufficiently small. So we revise the Jacobian matrix as

J =
1
τ 2 I +

1
2hα

G.

Then the revised Newton method for solving equations (4.2) is given as follows:

J
(
xs+1 – xs) = –F

(
xs), s = 0, 1, 2, . . . .

4.2 Feasibility analysis
Now we consider the feasibility of the revised Newton method for solving equations (4.2).

Denote

A = J
(
xs), y =

(
xs+1 – xs), b = –F

(
xs).

Then equations (4.3) change into Ay = b. Using the revised Newton method for equations
(4.2), we can rewrite the corresponding perturbed equations as

(A + δA)(y + δy) = b,

where

A + δA = J , δA = – diag
(
qn+1

1 , qn+1
2 , . . . , qn+1

M–1
)
.

Applying the classic perturbation analysis theory, we get

‖δy‖
‖y‖ ≤ cond(A) ‖δA‖

‖A‖
1 – cond(A) ‖δA‖

‖A‖
,

where

‖y‖2 = yT y, ‖A‖ = max
{√

λ : λ is an eigenvalue of AT A
}

,

cond(A) =
∥∥A–1∥∥‖A‖ =

λmax(A)
λmin(A)

.

According to (4.4), as τ , h → 0, we have ‖δA‖
‖A‖ → 0 and

cond(A) ≤
1
τ2 + 1

hα g(α)
0 + max{qn+1

i : i = 1, 2, . . . , M – 1}
1
τ2 + min{qn+1

i : i = 1, 2, . . . , M – 1} ≈ 1 +
τ 2

hα
g(α)

0 .
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Table 1 The convergence order in spatial direction with α = 1.75, 1.95,τ = 1/256 at time t = 1

h E(h) (α = 1.75) order E(h) (α = 1.95) order

1 0.071175803333281 – 0.083949535804123
1/2 0.018280687400889 1.9611 0.020521577513857 2.0324
1/4 0.004463589467647 2.0340 0.004906614930621 2.0643
1/8 0.001108210787441 2.0100 0.001213495898485 2.0156

Hence, if τ , h → 0 and τ2

hα < ∞, we have

‖δy‖
‖y‖ → 0.

In summary, when h, τ are sufficiently small, the revised Newton method for solving equa-
tions (4.2) is feasible.

5 Numerical results
In this section, we present a few numerical results to verify the effectiveness of the con-
servative difference scheme (2.9)–(2.11) and the efficiency of the revised Newton method
developed in Sect. 4 for implementation of the difference scheme. All numerical com-
putations were carried out using MATLAB on a DELL OptiPlex 3046 computer Intel(R)
Core(TM) I5-6500, 3.2 GHz and 4 GB RAM.

Example 1 We take the following initial conditions:

⎧⎨
⎩

u(x, 0) = 0, x ∈ [xL, xR],

ut(x, 0) = 4 sech x, x ∈ [xL, xR].
(5.1)

Firstly, we test the convergence order of the difference scheme (2.9)–(2.11). Denote

E(h) = max
0≤i≤M

∣∣un
i (τ , h) – un

2i(τ , h/2)
∣∣,

E(τ ) = max
0≤i≤M

∣∣un
i (τ , h) – u2n

i (τ /2, h)
∣∣,

p = log2
[
E(h)/E(h/2)

]
,

q = log2
[
E(τ )/E(τ /2)

]
,

where p, q denote the space convergence order and time convergence order, respectively.
We apply the difference scheme (2.9)–(2.11) with fixed time step τ = 1/256 and different
space steps to solve the problem with different values of fractional order α with –xL = xR =
40 and T = 1. The computation results are presented in Table 1. Also with a fixed space step
h = 1/128, we use different time steps to solve these problems. The computation results
are listed in Table 2. According to Tables 1 and 2, the convergence orders in space and time
are both consistent with theoretical results. Moreover, we depict the numerical solution of
the problem with α = 1.75, h = 1/16, and τ = 1/200 in Fig. 1, which shows that the results
we get are qualitatively similar to those obtained in [4, 20].

Secondly, we pay attention to investigate the relationship between the fractional order α

and the shape of the soliton for the problem with different fractional order α. We choose
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Table 2 The convergence order in temporal direction with α = 1.75, 1.95,h = 1/128 at time t = 1

τ E(τ ) (α = 1.75) order E(τ ) (α = 1.95) order

1/4 0.076360499008544 – 0.077602598777544 –
1/8 0.020013445313199 1.9319 0.020188901056871 1.9425
1/16 0.005060174214254 1.9837 0.005092254511141 1.9872
1/32 0.001268571271052 1.9960 0.001275824597592 1.9969

Figure 1 The numerical solution of the initial boundary value problem in Example 1 with α = 1.75,
h = 1/16,τ = 1/200 and corresponding solution for u(x, t) when t = 0.4

–xL = xR = 100 and T = 150 for the problem. The numerical results are presented in Fig. 2,
from which we derive that the shape of the soliton is changes dramatically when value of
the order α is changed from 2.0 to 1.99. When 1 < α < 2, along with α becoming smaller,
the period of the soliton turns out to be smaller.

Finally, we test the discrete energy conservation law of the difference scheme (2.9)–
(2.11). The values of the discrete energy at different moments for α = 1.1, 1.75, 1.99, 2.0
are listed in Table 3, where the numerical results are derived with h = τ = 1

10 . From Table 3
we obtain that the difference scheme preserves the energy conservation very well and the
energy varies with different α.

Example 2 We take the following initial conditions:

⎧⎨
⎩

u(x, 0) = 3.2 sech x, x ∈ [xL, xR],

ut(x, 0) = 0, x ∈ [xL, xR].

Firstly, the convergence order of the difference scheme (2.9)–(2.11) in space and time
are tested for the problem with different values of fractional order α with –xL = xR = 40
and T = 1. The computation results are presented in Tables 4 and 5. According to Tables 4
and 5, the convergence orders in space and time are both consistent with theoretical re-
sults.

Secondly, we test the discrete energy conservation law of the difference scheme
(2.9)–(2.11) for the problem with different values of fractional order α with –xL =
xR = 100 and T = 100. The values of the discrete energy at different moments for
α = 1.1, 1.5, 1.95, 2.0 are listed in Table 6, where the numerical results are derived with
h = 1

10 and τ = 1
20 . From Table 6 we can observe that the difference scheme can pre-

serve the energy conservation very well in a long time interval and the energy depends
on the order α. Moreover, the numerical results are presented in Fig. 3. We find that
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Figure 2 Approximate solution of the initial boundary value problem in Example 1 with various orders α

with h = 1/10 and τ = 1/20

the fractional order α affects the shape of the wave of the initial boundary problem.

Finally, we test the efficiency of the revised Newton method developed in Sect. 4. In
Table 7, we display the consumed CPU time to implement the difference scheme by the
regular Newton method and the revised Newton method for different space steps for
the problem in Example 2 with α = 1.75, –xL = xR = 40, T = 1, and τ = 1/200. We con-
clude that the revised Newton method significantly reduces the computational cost of
the difference scheme. It reduces the CPU time from more than 2 hours 12 minutes con-
sumed by the regular Newton method to less than 8 minutes for the model with space step
h = 1

128 .

6 Conclusions
In this paper, we propose a conservative implicit difference scheme for SGEs with the
Riesz space fractional derivative. We give a rigorous theoretical analysis of its conserva-
tion property, boundedness, and convergence. We introduce a revised Newton iterative



Xing and Wen Advances in Difference Equations  (2018) 2018:238 Page 20 of 22

Table 3 εn at t = tn for different values of α with h = 1
10 ,τ = 1

20

t α = 1.1 α = 1.75 α = 1.99 α = 2.0

0 16.028375166427221 16.026853085312613 16.026621262922639 16.026614500015587
10 16.028375167453508 16.026853083065745 16.026621263595434 16.026614500665112
20 16.028375167026866 16.026853083341813 16.026621263623838 16.026614500693057
30 16.028375169429935 16.026853082109128 16.026621263611123 16.026614500697043
40 16.028375169276917 16.026853082184989 16.026621262942438 16.026614500697779
50 16.028375174037464 16.026853082023688 16.026621263929581 16.026614500697725
60 16.028375172694766 16.026853081374647 16.026621263991700 16.026614500697306
70 16.028375173733984 16.026853080731076 16.026621263988194 16.026614500697072
80 16.028375174760189 16.026853081190453 16.026621263850092 16.026614500696731
90 16.028375175956295 16.026853082788968 16.026621264363811 16.026614500696208
100 16.028375178909357 16.026853082989092 16.026621264523360 16.026614500696372
110 16.028375178244517 16.026853083445701 16.026621264528124 16.026614500695700
120 16.028375179698422 16.026853085066683 16.026621264471139 16.026614500695260
130 16.028375180814812 16.026853085383230 16.026621264061959 16.026614500694873
140 16.028375181940007 16.026853087126149 16.026621264895454 16.026614500694507
150-τ 16.028375183321515 16.026853087643513 16.026621264907444 16.026614500694265

Table 4 The convergence order in spatial direction with α = 1.5, 1.95,τ = 1/400 at time t = 1

h E(h) (α = 1.5) order E(h) (α = 1.95) order

1 0.175728570098761 – 0.130474954167071 –
1/2 0.030927558960760 2.0768 0.033480284841195 2.3920
1/4 0.007465839195053 2.0505 0.007679396860666 2.1242
1/8 0.002086595144613 1.8392 0.001888044160022 2.0241

Table 5 The convergence order in temporal direction with α = 1.5, 1.95,h = 1/300 at time t = 1

τ E(τ ) (α = 1.5) order E(τ ) (α = 1.95) order

1/20 8.0262e–004 – 6.1903e–004 –
1/40 2.0469e–004 1.9713 1.6227e–004 1.9317
1/80 5.1690e–005 1.9855 4.1427e–005 1.9697
1/160 1.2989e–005 1.9926 1.0459e–005 1.9858

Table 6 εn at t = tn for different values of α with h = 1
10 and τ = 1

20

t α = 1.1 α = 1.5 α = 1.95 α = 2.0

0 10.087375775801739 9.515393309522924 9.204583910317352 9.186084289597257
10 10.087375779384356 9.515393313821262 9.204583911659553 9.186084292149856
20 10.087375780023113 9.515393315532492 9.204583913085234 9.186084295906156
30 10.087375780648971 9.515393316223834 9.204583914395832 9.186084297443383
40 10.087375781657538 9.515393316456663 9.204583914934780 9.186084298335000
50 10.087375783376320 9.515393317054322 9.204583915129753 9.186084299068263
60 10.087375785301962 9.515393318461506 9.204583915590725 9.186084300186360
70 10.087375786753782 9.515393320281280 9.204583917024371 9.186084300778976
80 10.087375787805106 9.515393321510466 9.204583919287133 9.186084299627677
90 10.087375788916159 9.515393321706426 9.204583919632452 9.186084299527717
100-τ 10.087375790133651 9.515393321480675 9.204583918662443 9.186084299808456

method for implementation of the proposed difference scheme. Both theoretical analysis
and numerical experiments show that the difference scheme is efficient for solving space-
fractional SGE.
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Figure 3 Approximate solution of the initial boundary value problem in Example 2 with various orders α

with h = 1/10 and τ = 1/20

Table 7 The consumed CPU time of the regular Newton method and the revised Newton method

h CPU time of the regular Newton method

1/8 18.7031 s
1/16 72.8281 s
1/32 302.9375s
1/64 1.1886e+03 s
1/128 7.9377e+03 s≈ 2 h 12 m 18 s

h CPU time of the revised Newton method

1/8 4.9688 s
1/16 14.0938 s
1/32 42.7500 s
1/64 142.3594 s
1/128 467.7500 s ≈ 7 m 48 s
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