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Abstract
In this manuscript, we utilize the algorithm of (G′/G) expansion method to construct
new solutions of three important models, the Ablowitz–Kaup–Newell–Segur water
wave equation, the (2 + 1)-dimensional Boussinesq equation, and the
(3 + 1)-dimensional Yu–Toda–Sasa–Fukuyama equation, having numerous application
in plasma physics, fluid dynamics, and optical fibers. Some new types of traveling
wave solutions are acquired, which have not been obtained previously by using this
our new technique. The achieved solutions appear with all necessary constraint
conditions, which are compulsory for them to exist. The constructed new solutions
have vital applications in applied sciences. To understand the physical phenomena of
these models, we have also presented graphically movements of the obtained results.
It is shown that the our technique provides a more powerful mathematical tool for
constructing exact traveling wave solutions for many other nonlinear waves models
in mathematics and physics.
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1 Introduction
In various branches of mathematical and physical sciences, nonlinear evolution equations
have been the subject of concentrated study to understand the physical phenomena of
nonlinear sciences. Among the possible solutions to NLEEs, certain particular form solu-
tions may depend only on a single combination of the variables such as soliton solutions.
A soliton is defined as a self-reinforcing solitary wave in the form of a wave packet or a
pulse that always maintains its shape while it travels at steady speed. Solitons occur as the
solutions of an extensive class of weakly nonlinear dispersive partial differential equations
for describing physical structures. The soliton solutions are usually obtained by means of
the inverse scattering transform [1] and their constancy to the integrability of the field
equations. Analytical solutions of nonlinear PDEs play a significant rule to perfect under-
standing qualitative features and physical interpretation of numerous phenomena. Ana-
lytical solutions of nonlinear PDEs symbolically and graphically demonstrate unraveling
the mechanisms of many nonlinear complex phenomena such as absence or multiplicity
of steady states under different necessary conditions, the existence of peaking regimes,
a spatial localization of transfer processes, and many others.
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Several methods have been constructed for finding exact traveling wave solutions of
nonlinear PDEs in the form of soliton, solitary wave, and elliptic function solutions such
as Hirota’s bilinear method [2], Jacobi elliptic function method [3], semiinverse variational
principle [4], Darboux transformation [5, 6], expansion method [7, 8], extended direct al-
gebraic method [9, 10], auxiliary method [11], sine–cosine method [12], the Kudryashov
method [13], and extended simple equation method [14]. The study of solutions, struc-
tures, interaction, and further properties of solitons and solitary wave solutions gained
much consideration [15–43].

In this work, we have employed novel ( G′
G ) expansion method on the three important

models for constructing exact and solitary wave solutions of the nonlinear Ablowitz–
Kaup–Newell–Segur water wave equation, which is used as a reduction for some nonlin-
ear evolution equations, (2 + 1)-dimensional Boussinesq dynamical wave equation, which
explains the gravity of wave propagation on the surface of the water and also describes
the collision of oblique waves transformation movement in different aspects, and (3 + 1)-
dimensional Yu–Toda–Sasa–Fukuyama wave equation, which is used for investigation of
the dynamics of solutions and nonlinear waves in fluid dynamics, plasma physics, weakly
dispersive media, and many others. Our new constructed solutions are helpful in explor-
ing nonlinear wave phenomena in physical problems, and the results involve long and
classified computations.

The paper is organized as follows. The chief steps of the description method are specified
in Sect. 2. In Sect. 3, we apply the present method to our three selective models for con-
structing exact and solitary wave solutions. Discussions of the results are given in Sect. 4.
Lastly, a summary of the work is given in Sect. 5.

2 Description of the method
We consider a nonlinear partial differential equation of the form

R(u, ux, uy, ut , uxx, uyy, utt , . . .) = 0, (1)

where R is a polynomial function of u(x, y, t) and its partial derivatives, in which the highest
order derivatives and nonlinear terms are involved. The main steps of our method are as
follows.

Step 1. The traveling wave transformations can be deduced as

u(x, y, t) = U(ζ ), ζ = x + y + ωt. (2)

Utilizing this transformation in Eq. (1), we have the ODE of the form

S
(
U , U ′, U ′′, U ′′′, . . .

)
= 0, (3)

where S is a polynomial of U(ζ ) and its derivatives with respect to ζ .
Step 2. Let us assume that the solution of Eq. (3) has the form

V (ζ ) = A0 +
m∑

i=1

Ai

(
G′

G

)i

, Am �= 0, (4)
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where Ai (i = 0, 1, 2, . . . , m) are arbitrary constants to be determined latter, and m is a pos-
itive integer, which can be calculated by applying the homogeneous balance principle to
Eq. (3).

Let G(ζ ) satisfy the second-order LODE

G′′ + λ1G′ + λ2G = 0, (5)

where λ1 and λ2 are arbitrary constants.
Step 3. Substituting Eq. (4) along with Eq. (5) into Eq. (3) and collecting the coefficients at

( G′
G )i and then equating the coefficients to zero, we acquire a system of algebraic equations,

which can be solved by Mathematica, and consider the following solution cases:
Case 1. When λ2

1 – 4λ2 > 0,

(
G′

G

)
=

√
λ2

1 – 4λ2

2

(B1 sinh( 1
2

√
λ2

1 – 4λ2)ζ + B2 cosh( 1
2

√
λ2

1 – 4λ2)ζ
B1 cosh( 1

2

√
λ2

1 – 4λ2)ζ + B2 sinh( 1
2

√
λ2

1 – 4λ2)ζ

)
–

λ1

2
. (6)

Case 2. When λ2
1 – 4λ2 < 0,

(
G′

G

)
=

√
4λ2 – λ2

1
2

(–B1 sin( 1
2

√
4λ2 – λ2

1)ζ + B2 cos( 1
2

√
4λ2 – λ2

1)ζ
B1 cos( 1

2

√
4λ2 – λ2

1)ζ + B2 sin( 1
2

√
4λ2 – λ2

1)ζ

)
–

λ1

2
. (7)

Case 3. When λ2
1 – 4λ2 = 0,

(
G′

G

)
=

B2

B1 + B2ζ
–

λ1

2
. (8)

Step 4. Substituting all solutions of Eq. (5) into Eq. (3), we obtain the required solutions
of Eq. (1).

3 Applications of description method
3.1 Fourth-order nonlinear Ablowitz–Kaup–Newell–Segur water equation
In this section, we apply our method to the well-known AKNS equation [44] of the general
form

4uxt + uxxxt + 8uxuxy + 4uxxuy – γ uxx = 0. (9)

This equation includes some nonlinear evolution equations such as sine-Gordon, non-
linear Schrödinger, KdV, and other equations having numerous application in physical
science.

The traveling wave transformations can be reduced to the form

u(x, y, t) = U(ζ ), ζ = x + y + ωt, (10)

where ω is an arbitrary constant to be determined latter. Applying this transformation to
Eq. (10) and integrating, we arrive at the ordinary differential equation

(4ω – γ )U ′ + 6U ′2 + ωU
′′′

= 0. (11)
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Applying the homogeneous balance principle between U ′2 and U ′′′ in Eq. (11), we get
m = 1. We assume that solution of Eq. (11) is of the form

U(ζ ) = A0 + A1

(
G′

G

)
. (12)

Substituting Eq. (12) along with Eq. (5) into Eq. (11), we get algebraic equations in param-
eters A0, A1, and ω. This system of equations can be solved with the help of Mathematica:

A1 =
(

γ

λ2
1 – 4λ2 + 4

)
, A0 = A0, ω =

(
β

6 + λ2
1 – 4λ2 – 2

)
. (13)

Substituting Eq. (13) into Eq. (12), we obtain the exact traveling solution

U(ζ ) = A0 +
(

γ

λ2
1 – 4λ2 + 4

)(
G′

G

)
. (14)

Now we discuss three different cases regarding the solution (14).
Case 1. When λ2

1 –4λ2 > 0, substituting Eq. (6) into Eq. (14), we get the following solution
of Eq. (9):

U1(ζ )

= A0 +
(

γ

λ2
1 – 4λ2 + 4

)

×
(√

λ2
1 – 4λ2

2

(B1 sinh( 1
2

√
λ2

1 – 4λ2)ζ + B2 cosh( 1
2

√
λ2

1 – 4λ2)ζ
B1 cosh( 1

2

√
λ2

1 – 4λ2)ζ + B2 sinh( 1
2

√
λ2

1 – 4λ2)ζ

)
–

λ1

2

)
. (15)

Case 2. When λ2
1 – 4λ2 < 0, substituting Eq. (7) into Eq. (14), we get the following solution

of Eq. (9):

U2(ζ )

= A0 +
(

γ

λ2
1 – 4λ2 + 4

)

×
(√

4λ2 – λ2
1

2

(–B1 sin( 1
2

√
4λ2 – λ2

1)ζ + B2 cos( 1
2

√
4λ2 – λ2

1)ζ
B1 cos( 1

2

√
4λ2 – λ2

1)ζ + B2 sin( 1
2

√
4λ2 – λ2

1)ζ

)
–

λ1

2

)
. (16)

Case 3. When λ2
1 –4λ2 = 0, substituting Eq. (9) into Eq. (14), we get the following solution

of Eq. (9):

U3(ζ ) = A0 +
(

γ

λ2
1 – 4λ2 + 4

)(
B2

B1 + B2ζ
–

λ1

2

)
. (17)

3.2 (2 + 1)-D Boussinesq dynamical equation
The general form of the (2 + 1)-dimensional Boussinesq dynamical equation [45] is the
following;

utt – uxx – β
(
u2)

xx – uyy – uxxxx = o, β �= 0. (18)
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The extreme merit of this equation is that it is used to describe the gravity waves propa-
gation on the water surface and also clarifies the collision of oblique wave transformation.

The traveling wave transformations for Eq. (18) can be deduced as

u(x, y, t) = U(ζ ), ζ = x + y + kt. (19)

Using these transformations to Eq. (18), we obtain the ordinary differential equation

2βU ′2 + 2βUU ′′ +
(
2 – k2)U ′′ + U ′′′′ = 0. (20)

Here, applying the homogeneous balance principle to Eq. (20), we get m = 2. We suppose
that the solution of Eq. (20) is of the form

U(ζ ) = A0 + A1

(
G′

G

)
+ A2

(
G′

G

)2

. (21)

Substituting Eq. (21) along with Eq. (5) into Eq. (20), we obtain numerous algebraic equa-
tions in parameters A0, A1, A2, and k. These equations can be solved with the help of
Mathematica:

A0 =
–λ2

1 – 8λ2 + k2 – 2
2β

, A1 = –
6λ1

β
, A2 = –

6
β

. (22)

Substituting Eq. (22) into Eq. (21), we obtain the exact traveling solution

U(ζ ) =
–λ2

1 – 8λ2 + k2 – 2
2β

–
6λ1

β

(
G′

G

)
–

6
β

(
G′

G

)2

. (23)

Now we discuss three different cases regarding solution (23).
Case 1. When λ2

1 – 4λ2 > 0, substituting Eq. (6) into Eq. (23), we obtain the following
solution of Eq. (18):

U4(ζ ) =
–λ2

1 – 8λ2 + k2 – 2
2β

–
6λ1

β

(√
λ2

1 – 4λ2

2

(B1 sinh( 1
2

√
λ2

1 – 4λ2)ζ + B2 cosh( 1
2

√
λ2

1 – 4λ2)ζ
B1 cosh( 1

2

√
λ2

1 – 4λ2)ζ + B2 sinh( 1
2

√
λ2

1 – 4λ2)ζ

)
–

λ1

2

)

–
6
β

(√
λ2

1 – 4λ2

2

(B1 sinh( 1
2

√
λ2

1 – 4λ2)ζ + B2 cosh( 1
2

√
λ2

1 – 4λ2)ζ
B1 cosh( 1

2

√
λ2

1 – 4λ2)ζ + B2 sinh( 1
2

√
λ2

1 – 4λ2)ζ

)
–

λ1

2

)2

,

β �= 0. (24)

Case 2. When λ2
1 – 4λ2 < 0, substituting Eq. (7) into Eq. (23), we obtain the following

solution of Eq. (18):

U5(ζ ) =
–λ2

1 – 8λ2 + k2 – 2
2β

–
6λ1

β

(√
4λ2 – λ2

1
2

(–B1 sin( 1
2

√
4λ2 – λ2

1)ζ + B2 cos( 1
2

√
4λ2 – λ2

1)ζ
B1 cos( 1

2

√
4λ2 – λ2

1)ζ + B2 sin( 1
2

√
4λ2 – λ2

1)ζ

)
–

λ1

2

)
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–
6
β

(√
4λ2 – λ2

1
2

(–B1 sin( 1
2

√
4λ2 – λ2

1)ζ + B2 cos( 1
2

√
4λ2 – λ2

1)ζ
B1 cos( 1

2

√
4λ2 – λ2

1)ζ + B2 sin( 1
2

√
4λ2 – λ2

1)ζ

)
–

λ1

2

)2

,

β �= 0. (25)

Case 3. When λ2
1 – 4λ2 = 0, substituting Eq. (8) into Eq. (23), we obtain the following

solution of Eq. (18):

U6(ζ )
–λ2

1 – 8λ2 + k2 – 2
2β

–
6λ1

β

(
B2

B1 + B2ζ
–

λ1

2

)

–
6
β

(
B2

B1 + B2ζ
–

λ1

2

)2

, β �= 0. (26)

3.3 (3 + 1)-Dimensional Yu–Toda–Sasa–Fukuyama equation
The general form of the (3 + 1)-dimensional Yu–Toda–Sasa–Fukuyama equation [46] is

–4uxt + uxxxz + 4uxuxz + 2uzuxx + 3uyy = 0. (27)

The advantage of this equation is that it is used for investigation of the dynamics of solu-
tions and nonlinear waves in fluid dynamics, plasma physics, and weakly dispersive media.

The traveling wave transformations for the Yu–Toda–Sasa–Fukuyama equation can be
deduced as

u(x, y, z, t) = U(ζ ), ζ = x + y + z – ηt. (28)

Using these transformations in Eq. (27) and integrating, we obtain the ordinary differential
equation

U ′′′ + 3U ′2 + (4η + 3)U ′ = 0. (29)

We assume that the solution of Eq. (29) has the form (12). Substituting Eq. (12) along Eq.
(5) into Eq. (29), we obtain a series of algebraic equations in parameters A0, A1, and η. This
class of algebraic equations can be solved, We have:

A1 = 2, A0 = A0, η =
1
4
(
–λ2

1 + 4λ2 – 3
)
. (30)

Substituting Eq. (30) into Eq. (12), we obtain the exact traveling wave solution

U(ζ ) = A0 + 2
(

G′

G

)
. (31)

Now we discuss three different cases regarding solution (31).
Case 1. When λ2

1 – 4λ2 > 0, substituting Eq. (6) into Eq. (31), we obtain the following
solution of Eq. (27):

U7(ζ )

= A0
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+ 2
(√

λ2
1 – 4λ2

2

(B1 sinh( 1
2

√
λ2

1 – 4λ2)ζ + B2 cosh( 1
2

√
λ2

1 – 4λ2)ζ
B1 cosh( 1

2

√
λ2

1 – 4λ2)ζ + B2 sinh( 1
2

√
λ2

1 – 4λ2)ζ

)
–

λ1

2

)
. (32)

Case 2. When λ2
1 – 4λ2 < 0, substituting Eq. (7) into Eq. (31), we obtain the following so-

lution of Eq. (27):

U8(ζ )

= A0

+ 2
(√

4λ2 – λ2
1

2

(–B1 sin( 1
2

√
4λ2 – λ2

1)ζ + B2 cos( 1
2

√
4λ2 – λ2

1)ζ
B1 cos( 1

2

√
4λ2 – λ2

1)ζ + B2 sin( 1
2

√
4λ2 – λ2

1)ζ

)
–

λ1

2

)
. (33)

Case 3. When λ2
1 – 4λ2 = 0, substituting Eq. (8) into Eq. (31), we obtain the following

solution of Eq. (27):

U9(ζ ) = A0 + 2
(

B2

B1 + B2ζ
–

λ1

2

)
. (34)

4 Discussion of the results
In this section, we show a good comparison between our results and those obtained by
other researchers in different papers by different techniques.

• By choosing different values of Ai (i = 1, 2), Eq. (12) and Eq. (21) have numerous types
of particular solutions in the form of trigonometric functions, hyperbolic functions,
and rational functions.

However, some of our constructed solutions are likely similar to the following:
• The solutions of (21) and (22) in [46] are likely similar to our solutions (17) and (34),

respectively.
• The solution of (3.39) and solution of (3.34) in [47] are also likely similar to our

solutions (24) and (25), respectively.
• The solution of (3.12) in [48] is also likely similar to our solution (34).
All our derived solutions are novel and have not been formulated before in any literature

and helpful for solving nonlinear problems in mathematics and physics.
In Fig. 1: Kink solitary waves of solution (15) at (a) and dark solitary waves of solution

(16) at (b) are plotted by taking the following values of parameters: A0 = 1.5, λ = 4, μ = 0.2,
β = –5, B1 = 4, B2 = 2 and A0 = 1.5, λ = 1, μ = 1, β = 1, B1 = –1, B2 = –2, respectively.

In Fig. 2: Solitary wave of solution (17) at (a) and dark solitary wave of solution (24) at
(b) are schemed by choosing the following values of parameters: A0 = 1.5, λ = 2, μ = 1,
β = –1, B1 = –0.2, B2 = 2 and A0 = 1.5, λ = 4, μ = 0.2, α = –1, B1 = –4, B2 = –1, ω = –1,
respectively.

In Fig. 3: Solitary wave solution (25) at (a) and bright solitary wave solution (26) at (b)
are plotted by choosing the following values of parameters: A0 = 1.5, λ = 1, μ = 1, α = –3,
B1 = 1, B2 = 2, ω = 1 and A0 = 1.5, λ = 2, μ = 1, α = 1, B1 = 2, B2 = 2, ω = 1, respectively.

In Fig. 4: Kink solitary wave solution (32) at (a) and periodic solitary wave solution (33)
at (b) are plotted from the following values of parameters: A0 = 1.5, λ = 4, μ = 0.2, B1 = –4,
B2 = –1 and A0 = –1.5, λ = –1, μ = 1, B1 = –1, B2 = –1, respectively.

The movement of different kinds of solitary waves and comparison of our results with
those of other researchers illustrate that our method is more efficient and powerful tool
to solve nonlinear wave problems in nonlinear sciences.



Ali et al. Advances in Difference Equations  (2018) 2018:232 Page 8 of 12

(a) (b)

(c) (d)

Figure 1 The 3D surfaces of Eq. (9) for solution (15) at (a) and solution (16) at (b) are plotted by assigning
different values to the parameters under the constrain conditions

(a) (b)

(c) (d)

Figure 2 The 3D surfaces of Eq. (9) for solution (17) at (a) and of Eq. (18) for solution (24) at (b) are plotted by
passing on with different values of the parameters under constrain conditions on the solutions
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(a) (b)

(c) (d)

Figure 3 The 3D surfaces of Eq. (18) for the solution (25) at (a) and for solution (26) at (b) by assigning
different values to the parameters

(a) (b)

(c) (d)

Figure 4 The 3D surfaces of Eq. (27) for solution (32) at (a) and for solution (33) at (b) are plotted under the
necessary constrain conditions on the parameter values



Ali et al. Advances in Difference Equations  (2018) 2018:232 Page 10 of 12

5 Conclusion
In this paper, we have investigated exact and solitary wave solutions of three impor-
tant models: the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur equation, the
(2 + 1)-dimensional Boussinesq dynamical equation, and the (3 + 1)-dimensional Yu–
Toda–Sasa–Fukuyama equation by successfully applying the algorithm of the (G′/G) ex-
pansion method. These solutions help us to appreciate the complex physical phenomena
and have crucial importance in applied sciences. The extreme merit of our method is that
all calculations are very simple and straightforward, which gives more general solutions
than other existing methods, and the reduction in the size of computational work and
consistency gives its wider applicability.
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