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Abstract
In this paper, we consider the almost sure stability of the delayed reaction–diffusion
neural networks (RDNNs) with Markovian jump parameters and Dirichlet boundary
conditions. By constructing new Lyapunov functional and utilizing some inequality
techniques we give sufficient conditions ensuring the almost sure stability. The
criteria can also ensure the almost sure global exponential stability when the input is
equal to zero. Two numerical examples are given to demonstrate the effectiveness of
the proposed approach.
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1 Introduction
During the past few decades, neural networks(NNs)have been successfully applied in
many areas such as signal processing, image processing, pattern recognition, fault diag-
nosis, associative memory, and combinatorial optimization [1–3]. Sontag [4] firstly intro-
duced the concept of input-to-state stability (ISS). The theory of ISS plays a central role in
modern control theory, in particular, in robust stabilization of nonlinear systems, design
of nonlinear observers, analysis of large-scale networks, etc. [4–9]. Roughly speaking, the
ISS property implies that no matter what the initial state is, if the external input is small,
then the state must be eventually small. In last years, many interesting results on ISS prop-
erties of various systems such as discrete systems, switched systems, and hybrid systems
have been reported [10–12]. Since the ISS property implies that not only the unperturbed
system is asymptotically stable at the equilibrium for the unforced system, but also its be-
havior remains bounded when its inputs are bounded. It also offers an effective way to
tackle the stabilization of nonlinear control in the presence of various uncertainties aris-
ing from observer design, new small-gain theorems, and control engineering applications
[7–9]. Because of these research backgrounds, the ISS properties of NNs are considered in
recent years. It is well known that NNs are often affected by noise, such as perturbations
in control or errors on observation. Thus, NNs are required not only to be stable, but also
to have the property of ISS. Therefore, finding sufficient conditions to guarantee the ISS
of NNs is an important and meaningful research topic. A great number of results on this
topic have appeared in the literature [13–17]. For instance, Sanchez and Perez [13] firstly
proposed the ISS properties and presented some matrix norm conditions on ISS for NNs.
Ahn [14] considered a passivity-based learning law to investigate the ISS for a class of
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switched Hopfield neural networks with time delay. Some LMI sufficient conditions have
been proposed to guarantee the ISS by using Lyapunov function method [16]. In [17], two
new criteria on ISS of NNs with time-varying delays are given.

Many pattern formation and wave propagation phenomena that appear in nature can
be described by systems of coupled nonlinear differential equations, generally known as
reaction–diffusion equations [18]. These wave propagation phenomena are exhibited by
systems belonging to very different scientific disciplines. Therefore, the reaction–diffusion
effects cannot be neglected in both biological and man-made NNs, especially when elec-
trons are moving in a noneven electromagnetic field. So we must consider that the ac-
tivations vary in space and time. Recently, the stability or synchronization criteria for
NNs involving diffusion and time-varying delays are found in [18–31]. Moreover, note
that many systems such as biological networks and man-made NNs are described by par-
tial differential equations with Dirichlet boundary conditions [19, 21, 23, 32], instead of
Neumann boundary conditions. For example, in [29], the global exponential synchro-
nization stability in an array of linearly diffusively coupled delayed RDNNs was studied
via adding an impulsive controller to a small fraction of nodes. In [30], the authors dis-
cussed the sampled-data synchronization for a class of RDNNs with Dirichlet boundary
conditions. Unlike other studies, a sampled-data controller with stochastic sampling is
designed to synchronize the concerned delayed RDNNs. In [31], the global asymptotic
sampled-data synchronization problem of an array of N randomly coupled RDNNs with
Markovian jumping parameters and mixed delays was investigated. The jump parame-
ters are determined by a continuous-time discrete-state Markovian chain, and the mixed
time delays under consideration comprise both discrete and distributed delays. Hence,
it is necessary to study ISS of reaction–diffusion delayed NNs with Dirichlet boundary
conditions.

Over the past few years, stability analysis for stochastic systems with Markovian jump
parameters or Brownian motion defined in a complete probability space or stochastic dis-
turbances was widely investigated [31, 33–37]. Markovian jump systems can be described
by a set of linear systems with the transitions among models determined by a Markovian
chain in a finite mode set. Applications of this kind of systems can be found in economic
systems, power systems, solar-powered systems, battle management in command, control
and communication systems, etc. NNs in real life often have a phenomenon of informa-
tion latching. It is recognized that a way for dealing with this information latching problem
is to extract finite-state representations (also called modes or clusters). In fact, such NNs
with information latching may have finite modes, the modes may switch (or jump) from
one to another at different times, and the switching (or jumping) between two arbitrarily
different modes can be governed by a Markovian chain. Hence, the NNs with Markovian
jump parameters are of great significance in modeling a class of NNs with finite modes.
Recently, some results on the stability, estimation, and control problems related to such
systems have been reported in the literature [35–40].

To the best of author’s knowledge, there are few results or even no results concerning
the ISS issues for Markovian jump RDNNs with mixed time-varying delays and Dirich-
let boundary conditions. The issues of integrating mixed time-varying delays, Markovian
jump parameters and diffusion effects into the study of almost sure ISS for NNs require
more complicated analysis, which is very important in both theory and applications. In
the present paper, we give some sufficient conditions for almost sure ISS for RDNNs with
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mixed delays and Markovian jump parameters. It is a challenging and interesting problem
how to develop Lyapunov methods to solve the ISS problem of mixed delayed stochas-
tic RDNNs with Markovian jump parameters. As far as we know, this extension has not
been reported in the literature at the present stage. Compared with the existing results,
the main contributions of this paper can be summarized as follows: the first involves that
we make the first attempt to address the ISS analysis for a class of RDNNs with mixed de-
lays and Markovian jump parameters; the second relates to that we apply the well-known
Hardy–Poincaré inequality and Lyapunov method to investigate ISS properties for mixed
delayed stochastic RDNNs with Markovian jump parameters; the third aspect is that the
established algebraic criteria for ISS of such a system are new in terms of mixed delays,
Markovian jump parameters, and reaction–diffusion terms. We conclude that both the
reaction–diffusion coefficients and the regional feature have an effect on the almost sure
ISS. The provided ISS criteria are true to Dirichlet boundary conditions and concerned
with the regional feature, the reaction–diffusion coefficients, and the first eigenvalue of the
Dirichlet Laplacian. Finally, two examples are employed to demonstrate the usefulness of
the obtained results.

The structure of this paper is outlined as follows. In Sect. 2, we introduce some pre-
liminaries and lemmas. In Sect. 3, we state the main results. In Sect. 4, we present
two numerical examples to illustrate the results and, finally, make some conclusions in
Sect. 5.

2 Model description and preliminaries
To begin with, we introduce some notations. Let � is an open domain containing the ori-
gin and radially bounded byπ , with smooth boundary ∂� and mes� > 0 in space Rm,where
mes� is the measure of the set �. By L2(�) we denote the space of real Lebesgue-
measurable functions defined on �; it is a Banach space with the L2-norm ‖η(t, x)‖2 =
[
∑n

i=1 ‖ηi(t, x)‖2
2] 1

2 , where η(t, x) = (η1(t, x), . . . ,ηn(t, x))T , ‖ηi(t, x)‖2 = (
∫
�

|ηi(t, x)|2 dx)1/2,
| · | denotes the absolute value. By C = C((–∞, 0] × �, Rn) we denote the Banach space
of continuous functions mapping the set (–∞, 0] × � into Rn with the norm ‖ϕ‖ =√∑n

i=1 ‖ϕi‖2
2, where ϕ(t, x) = (ϕ1(t, x), . . . ,ϕn(t, x))T , ‖ϕi‖2 =

√∫
�

|ϕi(·, x)|2τ dx, |ϕi(·, x)|τ =
sup–∞<s≤0 |ϕi(s, x)|. Let (�, F , {Ft}t≥0, P) be a complete probability space with filtration
{Ft}t≥0 satisfying the usual conditions (i.e., the filtration contains all P -null sets and is
right continuous). By Lp

F0
((–∞, 0] × �; Rn) we denote the family of all F0-measurable

C((–∞, 0] × �; Rn)-valued random variables ϕ = {ϕ(s, x) : –∞ < s ≤ 0, x ∈ �} such that
E‖ϕ‖2

2 < +∞, where E{·} stands for the mathematical expectation operator with respect
to the given probability measure P. By κ we denote the class of continuous strictly increas-
ing functions μ from R+ to R+ with μ(0) = 0. Let κ∞ denote the class of functions μ ∈ κ

with μ(r) → ∞ as r → ∞. Functions in κ and κ∞ are called class κ and κ∞ functions,
respectively. In this note, a function β : R+ × R+ → R+ is said to be of class κL if, for each
fixed t, the mapping β(·, t) is of class κ and, for each fixed s, the function β(s, t) is decreas-
ing to zero in t as t → ∞. By Ln∞(�) we denote the class of functions v(t, x) : R+ × � → R+

with the supremum norm ‖v(t, x)‖� = supt≥0 ‖v(t, x)‖ < ∞.
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Consider the following delayed RDNNs with Markovian jump parameters:

∂ui(t, x)
∂t

=
m∑

l=1

∂

∂xl

(

Dil
∂ui(t, x)

∂xl

)

– ai
(
r(t)

)
ui(t, x) +

n∑

j=1

wij
(
r(t)

)
gj
(
uj(t, x)

)

+
n∑

j=1

hij
(
r(t)

)
gj
(
uj

(
t – τj(t), x

))
+

n∑

j=1

bij
(
r(t)

)
∫ t

–∞
kij(t – s)gj

(
uj(s, x)

)
ds

+ vi(t, x), t ≥ 0, x ∈ �, (1)

where x = (x1, . . . , xm)T ∈ �, ui(t, x) represents the state of the ith neuron at time t
and in space x; the diagonal matrix A(r(t)) = diag(a1(r(t)), . . . , an(r(t))) has positive en-
tries ai(r(t)) > 0, B(r(t)) = (bij(r(t)))n×n, W (r(t)) = (wij(r(t)))n×n, and H(r(t)) = (hij(r(t)))n×n

are the interconnection matrices representing the weight coefficients of the neurons, gj

denotes the activation functions of the jth neuron at time t and in space x, v(t, x) =
(v1(t, x), v2(t, x), . . . , vn(t, x))T denotes an external input vector to neurons, τj(t) are time-
varying delays of NNs satisfying 0 ≤ τj(t) ≤ τ and τ̇j(t) ≤ μ < 1, smooth functions Dil =
Dil(t, x, u) ≥ 0 stand for the transmission diffusion operators along the ith neuron, and
kij(·) are delay kernels.

Let {r(t), t ≥ 0} be a right-continuous Markovian chain on the probability space taking
values in the finite space S = {1, 2, . . . , N}with generator 
 = (γij)N×N given by

P
{

r(t + δ) = j|r(t) = i
}

=

{
γijδ + o(δ), if i �= j,
1 + γijδ + o(δ), if i = j,

with δ > 0 and limδ→0 o(δ)/δ = 0, where γij ≥ 0 is the transition rate from i to j if i �= j and
γii = –

∑
i�=j γij. It is known that almost every sample path of r(t) is a right-continuous step

function with finite number of simple jumps in any finite subinterval of R+.
System (1) is supplemented with the following Dirichlet boundary conditions and initial

value:

ui(t, x) = 0, (t, x) ∈ [0, +∞) × ∂�,

ui(s, x) = ϕi(s, x), (s, x) ∈ (–∞, 0] × �,
(2)

where ϕ(s, x) = (ϕ1(s, x), . . . ,ϕn(s, x))T with given bounded and continuous functions
ϕi(s, x).

We denote ui(t, x) = ui(t), ϕi(s, x) = ϕi(s), vi(t, x) = vi(t) if no confusion occurs.
To obtain our main results, we assume that the following conditions hold.
(A1) There exist positive constants Lj such that, for all η1,η2 ∈ R,

0 ≤ gj(η1) – gj(η2)
η1 – η2

≤ Lj.

(A2) The delay kernels kij(·) : [0, +∞) → [0, +∞) (i, j = 1, 2, . . . , n) are real-valued
nonnegative continuous functions that satisfy the following conditions:

(i)
∫ +∞

0 kij(s) ds = 1,
(ii)

∫ +∞
0 skij(s) ds ≤ +∞ for all s ∈ [0, +∞),

(iii)
∫ +∞

0 skij(s)eξ s ds < +∞, where ξ is a positive constant.
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Remark 1 By assumptions (A1) and (A2), when v(t) is given, it is not difficult to prove that
there exists a unique equilibrium point u∗ for system (1)–(2) based on Mawhin’s continu-
ation theorem [40].

Definition 1 System (1)–(2) is said to be input-to-state stable if there exist a class κL
function β and a class κ function γ such that, for any initial state ϕ and any bounded
input v(t), the solution u(t) exists for all t ≥ 0 and satisfies

E
∥
∥u(t)

∥
∥

2 ≤ β
(
E‖ϕ‖, t

)
+ γ

(∥
∥v(t)

∥
∥

�

)
. (3)

Remark 2 Inequality (3) guarantees that for any bounded inputs v(t), the state u(t) will be
bounded. That is, if the delayed RDNNs are globally input-to-state stable, then the state
of the delayed RDNNs should remain bounded when its inputs are bounded. Hence, the
delayed RDNNs are bounded-input bounded-output stable.

Lemma 1 ([39, 41] Hardy–Poincaré inequality) Let � ⊂ Rm (m ≥ 3) be a bounded open
set containing the origin. Then

∫

�

|∇u|2 dx –
(m – 2)2

4

∫

�

u2

|x|2 dx ≥ �2

R2
�

∫

�

u2dS,

u ∈ H1
0 (�) =

{

y
∣
∣
∣y ∈ L2(�), y|∂� = 0, Diy =

∂y
∂xi

∈ L2(�), 1 ≤ i ≤ m
}

,

�2 = 5.783 . . . is the first eigenvalue of the Dirichlet Laplacian of the unit disk in R2, and
R� is the radius of the ball �∗ ⊂ Rm centered at the origin having the same measure as �.

Remark 3 In this paper, we employ different inequalities to deal with the reaction–
diffusion terms, and consequently we are convinced that the diffusion does contribute
to the stability analysis of RDNNs. The Hardy–Poincaré inequality is an important result
and has been widely utilized in the study of partial differential equation [39, 41]. The intro-
duction of Lemma 1 is mostly for evaluating the reaction–diffusion terms. In [23, 27, 29],
there is a similar estimate regarding the reaction–diffusion terms; meanwhile, u ∈ C1

0(�) is
required in [23, 27, 29]. Here we suppose that u ∈ H1

0 (�). Obviously, u ∈ C1
0(�) is stronger

than u ∈ H1
0 (�).

3 Main results
Theorem 1 Suppose that (A1)–(A2) hold. System (1)–(2) is almost sure ISS if there exist
constants qi(i) > 0 for any r(t) = i ∈ S, i, j = 1, 2, . . . , n, such that

–� – 2ai(i) + 2
∣
∣wii(i)

∣
∣Li +

n∑

j=1,j �=i

∣
∣wij(i)

∣
∣ +

n∑

j=1,j �=i

qj(i)
qi(i)

∣
∣wji(i)

∣
∣L2

i +
n∑

j=1

∣
∣hij(i)

∣
∣Lj +

n∑

j=1

∣
∣bij(i)

∣
∣

+
n∑

j=1

qj(i)
qi(i)

∣
∣bji(i)

∣
∣L2

i +
n∑

j=1

|hji(i)|
1 – μ

e2ατ
qj(i)
qi(i)

Li +
n∑

j=1

γijqi(j) + 1

< 0. (4)

Here � = α(m–2)2

2π2 + 2α�2
R2

�

, α = min{Dil, i = 1, . . . , n; l = 1, . . . , m} > 0, and π is a radial bound
of an open domain �.
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Proof If condition (4) holds, then we can choose a positive number ε (may be very small)
such that, for i = 1, 2, . . . , n,

–� – 2ai(i) + 2
∣
∣wii(i)

∣
∣Li +

n∑

j=1,j �=i

∣
∣wij(i)

∣
∣ +

n∑

j=1,j �=i

qj(i)
qi(i)

∣
∣wji(i)

∣
∣L2

i +
n∑

j=1

∣
∣hij(i)

∣
∣Lj

+
n∑

j=1

∣
∣bij(i)

∣
∣ +

n∑

j=1

qj(i)
qi(i)

∣
∣bji(i)

∣
∣L2

i +
n∑

j=1

|hji(i)|
1 – μ

e2ατ
qj(i)
qi(i)

Li +
n∑

j=1

γijqi(j) + 1 + ε

< 0. (5)

Consider the following functions:

Fi(yi) = 2yi – � – 2ai(i) + 2
∣
∣wii(i)

∣
∣Li +

n∑

j=1,j �=i

∣
∣wij(i)

∣
∣ +

n∑

j=1,j �=i

qj(i)
qi(i)

∣
∣wji(i)

∣
∣L2

i +
n∑

j=1

∣
∣hij(i)

∣
∣Lj

+
n∑

j=1

∣
∣bij(i)

∣
∣ +

n∑

j=1

qj(i)
qi(i)

∣
∣bji(i)

∣
∣L2

i

∫ +∞

0
kji(s)e2yis ds +

n∑

j=1

|hji(i)|
1 – μ

e2ατ
qj(i)
qi(i)

Li

+
n∑

j=1

γijqi(j) + 1. (6)

From (6) and (A2) we obtain that Fi(0) < –ε < 0 and Fi(yi) is continuous for yi ∈ [0, +∞);
moreover, Fi(yi) → +∞ as yi → +∞, and thus there exists constant αi ∈ (0, +∞) such that

Fi(αi) = 2αi – � – 2ai(i) + 2
∣
∣wii(i)

∣
∣Li +

n∑

j=1,j �=i

∣
∣wij(i)

∣
∣ +

n∑

j=1,j �=i

qj(i)
qi(i)

∣
∣wji(i)

∣
∣L2

i +
n∑

j=1

∣
∣hij(i)

∣
∣Lj

+
n∑

j=1

∣
∣bij(i)

∣
∣ +

n∑

j=1

qj(i)
qi(i)

L2
i
∣
∣bji(i)

∣
∣
∫ +∞

0
kji(s)e2αis ds +

n∑

j=1

|hji(i)|
1 – μ

e2ατ
qj

qi
Li

+
n∑

j=1

γijqi(j) + 1

= 0. (7)

Let α = min1≤i≤n{αi}. Clearly, α > 0, and we can get

Fi(α) = 2α – � – 2ai(i) + 2
∣
∣wii(i)

∣
∣Li +

n∑

j=1,j �=i

∣
∣wij(i)

∣
∣ +

n∑

j=1,j �=i

qj(i)
qi(i)

∣
∣wji(i)

∣
∣L2

i +
n∑

j=1

∣
∣hij(i)

∣
∣Lj

+
n∑

j=1

∣
∣bij(i)

∣
∣ +

n∑

j=1

qj(i)
qi(i)

∣
∣bji(i)

∣
∣L2

i

∫ +∞

0
kji(s)e2αs ds +

n∑

j=1

|hji(i)|
1 – μ

e2ατ
qj

qi
Li

+
n∑

j=1

γijqi(j) + 1

≤ 0. (8)
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Given ϕ ∈ Lp
F0

((–∞, 0] × �; Rn), fix the system mode i ∈ S arbitrarily. Let φj(t) = t – τj(t).
Since the derivative φ̇j(t) = 1 – τ̇j(t) ≥ 1 – μ > 0, φj(t) has an inverse function. We denote
this inverse function by φ–1

j (t). Construct the Lyapunov functional

V
(
t, u(t), r(t) = i

)
=

∫

�

n∑

i=1

qi(i)

[

e2αtui(t)2

+
1

1 – μ

n∑

j=1

∣
∣hij(i)

∣
∣Lj

∫ t

t–τj(t)
uj(s)2e2α(s+τj(φ–1

j (s))) ds

+
n∑

j=1

∣
∣bij(i)

∣
∣
∫ +∞

0
kij(s)

∫ t

t–s
gj
(
uj(z)

)2e2α(z+s) dz ds

]

dx. (9)

Along the solutions of model (1), we have

LV
(
t, u(t), r(t) = i

)
= lim

�→0+

1
�

[
E
{

V
(
t + �, u(t + �), r(t + �)

)|u(t), r(t) = i
}

– V
(
t, u(t), r(t) = i

)]

=
∫

�

e2αt
n∑

i=1

qi(i)

{

2ui(t)

[ m∑

l=1

∂

∂xl

(

Dil
∂ui(t)
∂xl

)

– ai(i)ui(t)

+
n∑

j=1

wij(i)gj
(
uj(t)

)
+

n∑

j=1

hij(i)gj
(
uj

(
t – τj(t)

))

+
n∑

j=1

bij(i)
∫ t

–∞
kij(t – s)gj

(
uj(s)

)
ds + vi(t)

]

+ 2αu2
i (t)

+
n∑

j=1

|hij(i)|
1 – μ

Lj
[
e2ατ uj(t)2 – (1 – μ)uj

(
t – τj(t)

)2]

+ e2αt
n∑

j=1

γijqi(j)ui(t)2

+
n∑

j=1

∣
∣bij(i)

∣
∣
[∫ +∞

0
e2αskij(s)gj

(
uj(t)

)2 ds

–
∫ +∞

0
kij(s)gj

(
uj(t – s)

)2 ds
]}

dx

≤
∫

�

e2αt
n∑

i=1

qi(i)

{[

2ui(t)
m∑

l=1

∂

∂xl

(

Dil
∂ui(t)
∂xl

)

– 2ai(i)ui(t)2

+ 2
∣
∣wii(i)

∣
∣Liui(t)2 + 2

n∑

j=1,j �=i

∣
∣wij(i)

∣
∣
∣
∣ui(t)

∣
∣
∣
∣gj

(
uj(t)

)∣
∣

+ 2
∣
∣ui(t)

∣
∣

n∑

j=1

∣
∣hij(i)

∣
∣Lj

∣
∣uj

(
t – τj(t)

)∣
∣

+ 2
∣
∣ui(t)

∣
∣

n∑

j=1

∣
∣bij(i)

∣
∣
∫ t

–∞
kij(t – s)

∣
∣gj

(
uj(s)

)∣
∣ds + 2

∣
∣ui(t)

∣
∣vi(t)

]
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+ 2αui(t)2 +
n∑

j=1

|hij(i)|
1 – μ

Lj
[
e2ατ uj(t)2 – (1 – μ)uj

(
t – τj(t)

)2]

+
n∑

j=1

γijqi(j)ui(t)2

+
n∑

j=1

∣
∣bij(i)

∣
∣
[∫ +∞

0
kij(s)e2αs∣∣gj

(
uj(t)

)∣
∣2 ds

–
∫ +∞

0
kij(s)

∣
∣gj

(
uj(t – s)

)∣
∣2 ds

]}

dx. (10)

From Young’s inequality and (A2), we obtain

2
n∑

j=1,j �=i

∣
∣wij(i)

∣
∣
∣
∣ui(t)

∣
∣
∣
∣gj

(
uj(t)

)∣
∣ ≤

n∑

j=1,j �=i

∣
∣wij(i)

∣
∣
∣
∣ui(t)

∣
∣2 +

n∑

j=1,j �=i

∣
∣wij(i)

∣
∣
∣
∣gj

(
uj(t)

)∣
∣2 (11)

and

2
∣
∣ui(t)

∣
∣

n∑

j=1

∣
∣bij(i)

∣
∣
∫ t

–∞
kij(t – s)

∣
∣gj

(
uj(s, x)

)∣
∣ds

≤
n∑

j=1

∣
∣bij(i)

∣
∣
∣
∣ui(t)

∣
∣2 +

n∑

j=1

∣
∣bij(i)

∣
∣
∫ t

–∞
kij(t – s)

∣
∣gj

(
uj(s, x)

)∣
∣2 ds. (12)

Applying the Green formula, the Dirichlet boundary condition, and Lemma 1, we have

2
∫

�

m∑

l=1

ui(t)
∂

∂xl

(

Dil
∂ui(t)
∂xl

)

dx = –2
m∑

l=1

∫

�

Dil

(
∂ui(t)
∂xl

)2

dx

< –
(

α(m – 2)2

2π2 +
2α�2

R2
�

)∫

�

ui(t)2 dx

= –�

∫

�

ui(t)2 dx. (13)

By (11)–(13) and (A2) we derive

LV (t, u, i) ≤
∫

�

e2αt
n∑

i=1

qi(i)

{[

–�ui(t)2 – 2ai(i)ui(t)2

+ 2
∣
∣wii(i)

∣
∣Liui(t)2 +

n∑

j=1,j �=i

∣
∣wij(i)

∣
∣
∣
∣ui(t)

∣
∣2 +

n∑

j=1,j �=i

∣
∣wij(i)

∣
∣L2

j
∣
∣uj(t)

∣
∣2

+
n∑

j=1

∣
∣hij(i)

∣
∣Lj

(∣
∣ui(t)

∣
∣2 +

∣
∣uj

(
t – τj(t)

)∣
∣2) +

n∑

j=1

∣
∣bij(i)

∣
∣
∣
∣ui(t)

∣
∣2

+
n∑

j=1

∣
∣bij(i)

∣
∣
∫ t

–∞
kij(t – s)

∣
∣gj

(
uj(s)

)∣
∣2 ds +

∣
∣ui(t)

∣
∣2 + vi(t)2

]

+
n∑

j=1

|hij(i)|
1 – μ

Lje2ατ
∣
∣uj(t)

∣
∣2
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–
n∑

j=1

∣
∣hij(i)

∣
∣Lj

∣
∣uj

(
t – τj(t)

)∣
∣2 +

n∑

j=1

γijqi(j)ui(t)2 + 2αui(t)2

+
n∑

j=1

∣
∣bij(i)

∣
∣
[∫ +∞

0
kij(s)e2αs∣∣gj

(
uj(t)

)∣
∣2 ds

–
∫ +∞

0
kij(s)

∣
∣gj

(
uj(t – s)

)∣
∣2 ds

]}

dx

=
∫

�

e2αt
n∑

i=1

qi(i)

[(

–� – 2ai(i) + 2
∣
∣wii(i)

∣
∣Li +

n∑

j=1,j �=i

∣
∣wij(i)

∣
∣

+
n∑

j=1,j �=i

qj(i)
qi(i)

∣
∣wji(i)

∣
∣L2

i

+
n∑

j=1

∣
∣hij(i)

∣
∣Lj +

n∑

j=1

∣
∣bij(i)

∣
∣ +

n∑

j=1

qj(i)
qi(i)

∣
∣bji(i)

∣
∣L2

i

∫ +∞

0
kji(s)e2αs ds

+
n∑

j=1

|hji(i)|
1 – μ

e2ατ
qj(i)
qi(i)

Li + 1 + 2α +
n∑

j=1

γijqi(j)

)
∣
∣ui(t)

∣
∣2 + vi(t)2

]

dx. (14)

It follows from Dynkin’s formula and (14) that

EV (t, u, i) ≤ EV
(
0,ϕ(0), i

)
+

{∫ t

0
e2αξ

n∑

i=1

qi(i)

[(

–� – 2ai(i) + 2
∣
∣wii(i)

∣
∣Li

+
n∑

j=1,j �=i

∣
∣wij(i)

∣
∣ +

n∑

j=1,j �=i

qj(i)
qi(i)

∣
∣wji(i)

∣
∣L2

i +
n∑

j=1

∣
∣hij(i)

∣
∣Lj +

n∑

j=1

∣
∣bij(i)

∣
∣

+
n∑

j=1

qj(i)
qi(i)

∣
∣bji(i)

∣
∣L2

i

∫ +∞

0
kji(s)e2αs ds

+
n∑

j=1

|hji(i)|
1 – μ

e2ατ
qj(i)
qi(i)

Li + 1 + 2α +
n∑

j=1

γijqi(j)

)

E
∥
∥ui(ξ )

∥
∥2

2

]

dξ

}

+
n

2α
E
∥
∥v(t)

∥
∥2

�

(
e2αt – 1

)
. (15)

Since

V (t, u, i) ≥
n∑

i=1

qi(i)e2αt∥∥ui(t)
∥
∥2

2 ≥ min
1≤i≤n

{
qi(i)

}
e2αt

n∑

i=1

∥
∥ui(t)

∥
∥2

2, t ≥ 0, (16)

and

V
(
0,ϕ(0), 0

)
=

∫

�

n∑

i=1

qi(i)

[

ϕi(0)2 +
1

1 – μ

n∑

j=1

∣
∣hij(0)

∣
∣Lj

∫ 0

–τj(0)
u2

j (s, x)e2α(s+τj(ψ–1
j (s))) ds

+
n∑

j=1

∣
∣bij(0)

∣
∣
∫ +∞

0
kij(s)

∫ 0

–s
gj
(
uj(z, x)

)2e2α(z+s) dz ds

]

dx
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≤ max
1≤i≤n

{
qi(0)

} n∑

i=1

{
∥
∥ϕi(0)

∥
∥2

2

+
n∑

j=1

∣
∣bij(0)

∣
∣L2

j

∫ +∞

0
kij(s)

[∫ 0

–s

∥
∥uj(z, x)

∥
∥2

2e2α(z+s) dz
]

ds

+
1

1 – μ

n∑

j=1

∣
∣hij(0)

∣
∣Lj

∫ 0

–τ

∥
∥ui(s)

∥
∥2

2e2α(s+τj(ψ–1
j (s))) ds

}

≤ max
1≤i≤n

{
qi(0)

}
{

1 + max
1≤i≤n

{ n∑

j=1

∣
∣bji(0)

∣
∣L2

i

∫ +∞

0
se2αskji(s) ds

}

+
τe2ατ

1 – μ

n∑

j=1

∣
∣hij(0)

∣
∣Lj

}

‖ϕi‖2
2, (17)

combining (4) and (15)–(17), we derive

E
[∥
∥u(t)

∥
∥

2

] ≤
(

max1≤i≤n{qi(0)}
min1≤i≤n{qi(i)}

)1/2

e–αt

{

1 + max
1≤i≤n

{ n∑

j=1

∣
∣bji(0)

∣
∣L2

i

∫ +∞

0
se2αskji(s) ds

}

+
τe2ατ

1 – μ

n∑

j=1

∣
∣hij(0)

∣
∣Lj

}1/2

E
[‖ϕ‖] +

(
n

2α min1≤i≤n{qi(i)}
)1/2

E
[∥
∥v(t)

∥
∥

�

]
.

(18)

Hence, from (3) we get that system (1)–(2) is almost sure ISS. This completes the proof of
Theorem 1. �

Remark 4 In this paper, we concern with the Markovian jump RDNNs with Dirichlet
boundary conditions. The results are expressed by a set of inequalities. These conditions
are easy to verify, and our results play an important role in the design and applications of
almost sure ISS. It is worth mentioning that the effect of reaction–diffusion terms is con-
sidered by the Hardy–Poincaré inequality. In Theorem 1, the Hardy–Poincaré inequality
is used firstly. Moreover, we can see a very interesting fact that as long as diffusion coef-
ficients Dil in system (1) are large enough, (4) always be satisfied. This shows that a large
enough diffusion can always make system (1)–(2) almost sure ISS.

Remark 5 If we do not consider Markov jump parameters, that is, the Markov chain
{r(t), t ≥ 0} only takes a unique value 1 (i.e., S = {1}), then, for simplicity, we write ai(1) = ai,
wij(1) = wij, hij(1) = hij, bij(1) = bij. Then system (1) will be reduced to the following deter-
ministic delayed RDNNs:

∂ui(t, x)
∂t

=
m∑

l=1

∂

∂xl

(

Dil
∂ui(t, x)

∂xl

)

– aiui(t, x) +
n∑

j=1

wijgj
(
uj(t, x)

)

+
n∑

j=1

hijgj
(
uj

(
t – τj(t), x

))
+

n∑

j=1

bij

∫ t

–∞
kij(t – s)gj

(
uj(s, x)

)
ds

+ vi(t), t ≥ 0, x ∈ �. (19)

It is worth pointing out that particular cases of system (19) were studied in [19, 23].
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The next theorem shows that the equilibrium solution of system (19) is ISS. The proof
of Theorem 2 is similar to that in Theorem 1, and thus we omit it.

Theorem 2 Suppose that (A1)–(A2) hold. System (19) and (2) is ISS if there exist constants
qi > 0 for any i, j = 1, 2, . . . , n such that

–� – 2ai + 2|wii|Li +
n∑

j=1,j �=i

|wij| +
n∑

j=1,j �=i

qj

qi
|wji|L2

i +
n∑

j=1

|hij|Lj +
n∑

j=1

|bij|

+
n∑

j=1

qj

qi
|bji|L2

i +
n∑

j=1

|hji|
1 – μ

e2ατ
qj

qi
Li + 1 < 0. (20)

Remark 6 Theorem 1 reduces to almost sure exponential stability condition for delayed
RDNNs with Markovian jump parameters if v(t) = 0. Similarly, Theorem 2 becomes an
exponential stability condition for delayed RDNNs when v(t) = 0. In [34], the authors em-
ployed the Lyapunov direct method to consider the almost sure stability of Itô stochastic
reaction–diffusion systems with Brownian motion defined in a complete probability space,
including asymptotic stability in probability and almost sure exponential stability. In ad-
dition, the stability criteria in [34] are independent on reaction–diffusion coefficients and
the regional feature. Compared with [34], this paper studies the ISS analysis for a class of
RDNNs with mixed delays and Markovian jump parameters. Furthermore, the given ISS
criteria are true to Dirichlet boundary conditions and concerned with the regional feature,
the reaction–diffusion coefficients, and the first eigenvalue of the Dirichlet Laplacian.

Some famous NN models are particular cases of model (1). In system (1)–(2), ignoring
the role of reaction–diffusion, system (1) reduces to the following delayed NNs:

dui(t) =

[

–ai
(
r(t)

)
ui(t) +

n∑

j=1

wij
(
r(t)

)
gj
(
uj(t)

)
+

n∑

j=1

hij
(
r(t)

)
gj
(
uj

(
t – τj(t)

))

+
n∑

j=1

bij
(
r(t)

)
∫ t

–∞
kij(t – s)gj

(
uj(s)

)
ds + vi(t)

]

dt, t ≥ 0,

ui(s) = ϕi(s), s ∈ (–∞, 0]. (21)

As a consequence of Theorems 1 and 2, we get the following results.

Corollary 1 Assume that (A1) and (A2) are satisfied. System (21) is almost sure ISS if there
exist constants qi(i) > 0 for any r(t) = i ∈ S, i, j = 1, 2, . . . , n, such that

–2ai(i) + 2
∣
∣wii(i)

∣
∣Li +

n∑

j=1,j �=i

∣
∣wij(i)

∣
∣ +

n∑

j=1,j �=i

qj(i)
qi(i)

∣
∣wji(i)

∣
∣L2

i +
n∑

j=1

∣
∣hij(i)

∣
∣Lj +

n∑

j=1

∣
∣bij(i)

∣
∣

+
n∑

j=1

qj(i)
qi(i)

∣
∣bji(i)

∣
∣L2

i +
n∑

j=1

|hji(i)|
1 – μ

e2ατ
qj(i)
qi(i)

Li +
n∑

j=1

γijqi(j) + 1

< 0. (22)
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Corollary 2 Assume that (A1) and (A2) are satisfied. System (21) is ISS if there exist con-
stants qi > 0 for any i, j = 1, 2, . . . , n such that

–2ai + 2|wii|Li +
n∑

j=1,j �=i

|wij| +
n∑

j=1,j �=i

qj

qi
|wji|L2

i +
n∑

j=1

|hij|Lj +
n∑

j=1

|bij|

+
n∑

j=1

qj

qi
|bji|L2

i +
n∑

j=1

|hji|
1 – μ

e2ατ
qj

qi
Li + 1 < 0. (23)

Remark 7 Our model in (21) is more general than some well-studied NNs. When bij = 0,
the model in (21) reduces the model studied in [15]. The authors in [15] present criteria for
the ISS of NNs with time-varying delays. Corollary 2 in this paper is much less conservative
than those in [15]. Moreover, our results depend on Markovian jump parameters and can
be easily checked by simple computation. To the best of authors’ knowledge, up to now,
little work is reported on almost sure ISS of NNs with Markovian jump parameters and
mixed time-varying delays.

4 Illustrative examples
We present two examples to illustrate the usefulness of our main results. Our aim is to
examine the almost sure ISS of given RDNNs with Markovian jump parameters and mixed
time delays.

Example 1 Consider the two-neuron delayed RDNNs with Markovian jump parameters

∂ui(t, x)
∂t

=
m∑

l=1

∂

∂xl

(

Dil
∂ui(t, x)

∂xl

)

– ai
(
r(t)

)
ui(t, x) +

n∑

j=1

wij
(
r(t)

)
gj
(
uj(t, x)

)

+
n∑

j=1

hij
(
r(t)

)
gj
(
uj

(
t – τj(t), x

))
+

n∑

j=1

bij
(
r(t)

)
∫ t

–∞
kij(t – s)gj

(
uj(s, x)

)
ds

+ vi(t), t ≥ 0, x ∈ �,

ui(t, x) = 0, (t, x) ∈ [0, +∞) × ∂�, ui(s, x) = ϕi(s, x), (s, x) ∈ (–∞, 0] × �, (24)

where � = {(x1, . . . , x4)T | – 1 < xk < 1, k = 1, . . . , 4} ⊂ R4, kij(s) = se–s, n = 2, m = 3, π = 2,
R� = 2, μ = 0.5, �2 = 5.783, τ = ln 2, α = 0.5, gj(η) = 1

2 (|η + 1| – |η – 1|), Lj = 1, Dil = 1,
i, j = 1, 2, l = 1, . . . , 4, τ1(t) = τ2(t) = 0.5(1 + sin t), v(t) = [ sin t cos 2t ]T , and the generator of
the Markov chain and parameters are


 =

(
–0.1 0.1
0.2 –0.2

)

, A(1) =

(
3 0
0 2

)

, A(2) =

(
3 0
0 1.5

)

,

W (1) =

(
0.2 –0.1
0.1 –0.3

)

, W (2) =

(
0.1 0
0.1 –0.1

)

,

H(1) =

(
0.2 0
0 0.1

)

, H(2) =

(
0.5 –0.1
0.3 0.1

)

,
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B(1) =

(
0 1
1 –1

)

, B(2) =

(
1 0

–1 1

)

.

Then a simple computation yields

–� – 2a1(1) + 2
∣
∣w11(1)

∣
∣L1

+
n∑

j=1,j �=i

∣
∣w1j(1)

∣
∣ +

n∑

j=1,j �=i

qj(1)
q1(1)

∣
∣wj1(1)

∣
∣L2

1 +
n∑

j=1

∣
∣h1j(1)

∣
∣Lj +

n∑

j=1

∣
∣b1j(1)

∣
∣

+
n∑

j=1

qj(1)
q1(1)

∣
∣bj1(1)

∣
∣L2

1 +
n∑

j=1

|hj1(1)|
1 – μ

e2ατ
qj(1)
q1(1)

L1 +
n∑

j=1

γ1jq1(j) + 1

= –6.21 < 0,

–� – 2a2(1) + 2
∣
∣w22(1)

∣
∣L2

+
n∑

j=1,j �=i

∣
∣w2j(1)

∣
∣ +

n∑

j=1,j �=i

qj(1)
q2(1)

∣
∣wj2(1)

∣
∣L2

2 +
n∑

j=1

∣
∣h2j(1)

∣
∣Lj +

n∑

j=1

∣
∣b2j(1)

∣
∣

+
n∑

j=1

qj(1)
q2(1)

∣
∣bj2(1)

∣
∣L2

2 +
n∑

j=1

|hj2(1)|
1 – μ

e2ατ
qj(1)
q2(1)

L2 +
n∑

j=1

γ2jq2(j) + 1

= –3.61 < 0.

–� – 2a1(2) + 2
∣
∣w11(2)

∣
∣L1

+
n∑

j=1,j �=i

∣
∣w1j(2)

∣
∣ +

n∑

j=1,j �=i

qj(2)
q1(2)

∣
∣wj1(2)

∣
∣L2

1 +
n∑

j=1

∣
∣h1j(2)

∣
∣Lj +

n∑

j=1

∣
∣b1j(2)

∣
∣

+
n∑

j=1

qj(2)
q1(2)

∣
∣bj1(2)

∣
∣L2

1 +
n∑

j=1

|hj1(2)|
1 – μ

e2ατ
qj(2)
q1(2)

L1 +
n∑

j=1

γ1jq1(j) + 1

= –4.31 < 0,

–� – 2a2(2) + 2
∣
∣w22(2)

∣
∣L2

+
n∑

j=1,j �=i

∣
∣w2j(2)

∣
∣ +

n∑

j=1,j �=i

qj(2)
q2(2)

∣
∣wj2(2)

∣
∣L2

2 +
n∑

j=1

∣
∣h2j(2)

∣
∣Lj +

n∑

j=1

∣
∣b2j(2)

∣
∣

+
n∑

j=1

qj(2)
q2(2)

∣
∣bj2(2)

∣
∣L2

2 +
n∑

j=1

|hj2(2)|
1 – μ

e2ατ
qj(2)
q2(2)

L2 +
n∑

j=1

γ2jq2(j) + 1

= –3.21 < 0.

According to Theorem 1, system (24) is almost sure ISS. Figures 1–6 show that the state
of RDNNs (24) in the presence of input and illustrate the feature of ISS that its behavior
remains bounded when its inputs are bounded for RDNNs (24). The evolutions of states
are shown in Figs. 1–6, which also demonstrate that system (24) is almost sure ISS, whereas
Fig. 7 is given to show the situation of the Markovian switching sequence.
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Figure 1 The state surface of u1(x1, 0.1, –0.2, t)

Figure 2 The state surface of u2(x1, 0.1, –0.2, t)

Example 2 Consider the two-neuron delayed RDNNs with Markovian jump parameters

∂ui(t, x)
∂t

=
m∑

l=1

∂

∂xl

(

Dil
∂ui(t, x)

∂xl

)

– ai
(
r(t)

)
ui(t, x) +

n∑

j=1

wij
(
r(t)

)
gj
(
uj(t, x)

)

+
n∑

j=1

hij
(
r(t)

)
gj
(
uj

(
t – τj(t), x

))
+

n∑

j=1

bij
(
r(t)

)
∫ t

–∞
kij(t – s)gj

(
uj(s, x)

)
ds

+ vi(t), t ≥ 0, x ∈ �,

ui(t, x) = 0, (t, x) ∈ [0, +∞) × ∂�, ui(s, x) = ϕi(s, x), (s, x) ∈ (–∞, 0] × �, (25)

where � = {(x1, . . . , x4)T | – 1 < xk < 1, k = 1, . . . , 4} ⊂ R4, kij(s) = se–s, n = 2, m = 3, π = 2,
R� = 2, μ = 0.5, �2 = 5.783, τ = ln 2, α = 0.5, gj(η) = tanh(η), x = (x1, 0.1, –0.2) Lj = 1, Dil = 1,
i, j = 1, 2, l = 1, . . . , 4, τ1(t) = τ2(t) = 0.5(1 + sin t), v(t) = [ sin 2t cos t ]T , and the generator of
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Figure 3 The state surface of u1(0.4, x2, 0.1, t)

Figure 4 The state surface of u2(0.4, x2, 0.1, t)

the Markov chain and parameters are


 =

(
–0.1 0.1
0.2 –0.2

)

, A(1) =

(
2 0
0 1.5

)

, A(2) =

(
2 0
0 1.8

)

,

W (1) =

(
0.2 –0.1
0.1 –0.3

)

, W (2) =

(
0.2 0
0.1 –0.2

)

,

H(1) =

(
0.2 0
0 0.1

)

, H(2) =

(
0.2 –0.1
0.3 0.1

)

,

B(1) =

(
0 1
1 –1

)

, B(2) =

(
1 0

–1 1

)

.
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Figure 5 The state surface of u1(0.1, 0.1, x3, t)

Figure 6 The state surface of u2(0.1, 0.1, x3, t)

Figure 7 The Markov switching sequence

Then a simple computation yields

–� – 2a1(1) + 2
∣
∣w11(1)

∣
∣L1 +

n∑

j=1,j �=i

∣
∣w1j(1)

∣
∣ +

n∑

j=1,j �=i

qj(1)
q1(1)

∣
∣wj1(1)

∣
∣L2

1 +
n∑

j=1

∣
∣h1j(1)

∣
∣Lj
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+
n∑

j=1

∣
∣b1j(1)

∣
∣ +

n∑

j=1

qj(1)
q1(1)

∣
∣bj1(1)

∣
∣L2

1 +
n∑

j=1

|hj1(1)|
1 – μ

e2ατ
qj(1)
q1(1)

L1 +
n∑

j=1

γ1jq1(j) + 1

= –1.41 < 0,

–� – 2a2(1) + 2
∣
∣w22(1)

∣
∣L2 +

n∑

j=1,j �=i

∣
∣w2j(1)

∣
∣ +

n∑

j=1,j �=i

qj(1)
q2(1)

∣
∣wj2(1)

∣
∣L2

2 +
n∑

j=1

∣
∣h2j(1)

∣
∣Lj

+
n∑

j=1

∣
∣b2j(1)

∣
∣ +

n∑

j=1

qj(1)
q2(1)

∣
∣bj2(1)

∣
∣L2

2 +
n∑

j=1

|hj2(1)|
1 – μ

e2ατ
qj(1)
q2(1)

L2 +
n∑

j=1

γ2jq2(j) + 1

= –0.71 < 0.

–� – 2a1(2) + 2
∣
∣w11(2)

∣
∣L1 +

n∑

j=1,j �=i

∣
∣w1j(2)

∣
∣ +

n∑

j=1,j �=i

qj(2)
q1(2)

∣
∣wj1(2)

∣
∣L2

1 +
n∑

j=1

∣
∣h1j(2)

∣
∣Lj

+
n∑

j=1

∣
∣b1j(2)

∣
∣ +

n∑

j=1

qj(2)
q1(2)

∣
∣bj1(2)

∣
∣L2

1 +
n∑

j=1

|hj1(2)|
1 – μ

e2ατ
qj(2)
q1(2)

L1 +
n∑

j=1

γ1jq1(j) + 1

= –0.51 < 0,

–� – 2a2(2) + 2
∣
∣w22(2)

∣
∣L2 +

n∑

j=1,j �=i

∣
∣w2j(2)

∣
∣ +

n∑

j=1,j �=i

qj(2)
q2(2)

∣
∣wj2(2)

∣
∣L2

2 +
n∑

j=1

∣
∣h2j(2)

∣
∣Lj

+
n∑

j=1

∣
∣b2j(2)

∣
∣ +

n∑

j=1

qj(2)
q2(2)

∣
∣bj2(2)

∣
∣L2

2 +
n∑

j=1

|hj2(2)|
1 – μ

e2ατ
qj(2)
q2(2)

L2 +
n∑

j=1

γ2jq2(j) + 1

= –0.91 < 0.

According to Theorem 1, we can say that system (25) is almost sure ISS. Figures 8 and 9
show that the states of RDNNs (25) in the presence of input and illustrate the feature of
ISS that its behavior remains bounded when its inputs are bounded for RDNNs (25). The
evolutions of states are shown in Figs. 8 and 9, which also demonstrate that system (25) is
almost sure ISS. Figures 10 and 11 show the states of RDNNs (25) in the absence of input.
Therefore we can see that these RDNNs have bounded input–bounded output stability
and exponential stability.

Figure 8 The transient state of u1(x, t) for RDNNs
(25) in presence of input v(t)
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Figure 9 The transient state of u2(x, t) for RDNNs
(25) in presence of input v(t)

Figure 10 The transient state of u1(x, t) for RDNNs
(25) in absence of input v(t)

Figure 11 The transient state of u2(x, t) for RDNNs
(25) in absence of input v(t)

5 Conclusions
In this paper, we have considered the almost sure ISS problem for Markovian jump delayed
NNs with reaction–diffusion terms and Dirichlet boundary conditions. Sufficient criteria
have been obtained guaranteeing almost sure ISS of the considered systems. Different in-
equalities are employed to deal with the reaction–diffusion terms, and consequently we
are convinced that the diffusion do contribute to the ISS analysis of RDNNs. The well-
known Hardy–Poincaré inequality in partial differential equation is used firstly in the ISS
problem. Two numerical examples have demonstrated the effectiveness of the proposed
approach.
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