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Abstract
In this paper, the existence and uniqueness of solutions for a class of nonlinear
integro-differential equations on unbounded domains in Banach spaces are
established under more general conditions by constructing a special Banach space
and using cone theory and the Banach contraction mapping principle. The results
obtained herein improve and generalize some well-known results.
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1 Introduction
Nonlinear integro-differential equations in abstract spaces arise in different fields of phys-
ical sciences, engineering, biology, and applied mathematics. The theory of nonlinear
integro-differential equations in abstract spaces is a fast growing field with important ap-
plications to a number of areas of analysis as well as other branches of science [1]. In recent
years, there has been a significant development in nonlinear integro-differential equations
(see [1–20] and the references therein).

Using the upper and lower solutions method and monotone iterative technique, Guo,
Liu and Zheng et al. [2–4] studied the existence and uniqueness of solutions for the first
order integro-differential equations

⎧
⎨

⎩

u′(t) = f (t, u(t), (Tu)(t), (Su)(t)), t ∈ I = [t0, t0 + a],

u(t0) = u0,

in Banach space E, where u0 ∈ E, f : I × E × E × E → E, for any u ∈ C[I, E], g(t) =
f (t, u(t), (Tu)(t), (Su)(t)) : I → E is continuous, and T is a Volterra integral operator de-
fined by

(Tu)(t) =
∫ t

t0

k(t, s)u(s) ds,
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S is a Hammerstein integral operator defined by

(Su)(t) =
∫ t0+a

t0

h(t, s)u(s) ds,

where k ∈ C[D1, R], h ∈ C[D2, R], D1 = {(t, s) ∈ I × I : t ≥ s}, D2 = {(t, s) ∈ I × I}.
In [5], the authors studied the second order integro-differential equations

⎧
⎨

⎩

u′′(t) = f (t, u(t), (Tu)(t)), t ∈ I = [0, a],

u(0) = u0, u′(0) = u1,
(1.1)

in Banach space E, where u0, u1 ∈ E, f : I × E × E → E, for any u ∈ C[I, E], g(t) =
f (t, u(t), (Tu)(t)) : I → E is continuous, and T is a Volterra integral operator defined by

(Tu)(t) =
∫ t

0
k(t, s)u(s) ds,

where k ∈ C[D, R], D = {(t, s) ∈ I × I : t ≥ s}. By using an iteration method, the existence
and uniqueness results for second order integro-differential equations (1.1) are obtained
without demanding the existence of upper and lower solutions and monotonicity condi-
tions.

In [1], Guo, Lakshmikantham and Liu studied the IVP for first order integro-differential
equations of Volterra type on an infinite interval in Banach space E:

⎧
⎨

⎩

u′(t) = f (t, u(t), (Tu(t)), t ∈ J = [0,∞),

u(0) = u0,
(1.2)

where u0 ∈ E, f : J × E × E → E, for any u ∈ C[J , E], g(t) = f (t, u(t), (Tu)(t)) : J →
E is continuous, and T is a Volterra integral operator defined by

(Tu)(t) =
∫ t

0
k(t, s)u(s) ds,

where k ∈ C[D, R], D = {(t, s) ∈ J × J : t ≥ s}. By using the Banach contraction mapping
principle, the authors obtained the following results.

Theorem 1.1 If the following conditions are satisfied:
(H1) ‖f (t, u, v)– f (t, u, v)‖ ≤ β(t)(a‖u–u‖+b‖v–v‖),∀t ∈ J , u, v, u, v ∈ E, where constants

a ≥ 0, b ≥ 0,β ∈ C[J , R+];
(H2)

k∗ = sup
t∈J

∫ t

0

∣
∣k(t, s)

∣
∣ds < ∞,

β∗ =
∫ ∞

0
β(t) dt < ∞,

a∗ =
∫ ∞

0

∥
∥f (t, θ , θ )

∥
∥dt < ∞,

here θ denotes the zero element of E;
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(H3) c0 = (a + bk∗)β∗ < 1, then IVP (1.2) has a unique solution x∗(t) in C1[J , E] ∩ BC[J , E].

Remark 1.1 Clearly, the assumptions imposed in Theorem 1.1 are too strict. As is well
known, there is no research focused on the improvement of the assumptions in Theo-
rem 1.1. By constructing a special Banach space and using cone theory and the Banach
contraction mapping principle, this paper improves Theorem 1.1 without assumptions
(H2) and (H3).

2 Preliminaries and lemmas
Let (E,‖ · ‖) be a real Banach space and P be a cone in E which defines a partial ordering
in E by x ≤ y if and only if y – x ∈ P. θ denotes the zero element in E. A cone P is said
to be normal if there exists a constant N > 0 such that, for any x, y ∈ E, θ ≤ x ≤ y implies
‖x‖ ≤ N‖y‖. A cone P is said to be generating if E = P – P, i.e., every element x ∈ E can be
represented in the form x = y – z, where y, z ∈ P. A cone is called solid if it contains interior
points, i.e., P̊ �= Ø. An operator T : E → E is said to be a positive operator if x ≥ θ implies
Tx ≥ θ . The detailed contents of the cone and partial ordering may be found in [6–8].

Let β(t) be a nonnegative continuous function on J , k(t, s) be continuous on D =
{(t, s)|0 ≤ s ≤ t < ∞}. Set

λ(t) = max{t, 1}, φ(t) = max{a, b, 1} · sup
s∈[0,t]

{
β(s) + 1

}
,

ϕ(t, s) = max
{∣
∣k(t, s)

∣
∣, 1

}
, K(t) = sup

0≤s≤t

{
ϕ(t, s)

}
,

�1(t) =
∫ t

0

[
λ(s)φ(s)K(s) +

∥
∥f (s, θ , θ )

∥
∥
]

ds, �2(t) =
∫ t

0
λ(s)φ(s)K(s) ds,

(T1u)(t) =
∫ t

0
ϕ(t, s)u(s) ds,

‖u‖β1 = sup
t∈J

{
e–4�1(t)∥∥u(t)

∥
∥
}

, ‖u‖β2 = sup
t∈J

{[
λ(t)

]–1e–4�2(t)∥∥u(t)
∥
∥
}

,

Cβ1 =
{‖u‖β1 < ∞|u : J → E is continuous

}
,

Cβ2 =
{‖u‖β2 < ∞|u : J → E is continuous

}
.

Then Cβ1 is a Banach space with norm ‖ · ‖β1, and Cβ2 is a Banach space with norm ‖ · ‖β2.
Let P be a cone of E, Pβ2 = {u ∈ Cβ2|u ≥ θ , t ∈ J}. Clearly, Pβ2 is a cone of Cβ2.

Lemma 2.1 Let

(σu)(t) =
∫ t

0
β(s)

(
a
∥
∥u(s)

∥
∥ + b

∥
∥(Tu)(s)

∥
∥
)

ds, u ∈ Cβ1, t ∈ J ,

then

(σu)(t) ≤ 1
2
‖u‖β1e4�1(t).

Proof Direct calculations shows that, for u ∈ Cβ1 and t ∈ J ,

(σu)(t) =
∫ t

0
β(s)

(
a
∥
∥u(s)

∥
∥ + b

∥
∥(Tu)(s)

∥
∥
)

ds
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≤
∫ t

0
φ(s)

(
∥
∥u(s)

∥
∥ +

∫ s

0
K(s)

∥
∥u(τ )

∥
∥dτ

)

ds

≤
∫ t

0
φ(s)

(

‖u‖β1e4�1(s) +
∫ s

0
K(s)‖u‖β1e4�1(τ ) dτ

)

ds

≤ ‖u‖β1

∫ t

0
φ(s)

(

e4�1(s) + K(s)
∫ s

0

(
λ(τ )φ(τ )K(τ ) +

∥
∥f (τ , θ , θ )

∥
∥
)
e4�1(τ ) dτ

)

ds

≤ ‖u‖β1

∫ t

0
φ(s)

(

e4�1(s) +
1
4

K(s)e4�1(s)
)

ds

≤ 2‖u‖β1

∫ t

0
λ(s)φ(s)K(s)e4�1(s) ds

≤ 1
2
‖u‖β1e4�1(t). �

Lemma 2.2 Let

(δu)(t) =
∫ t

0
(t – s)β(s)

(
a
∥
∥u(s)

∥
∥ + b

∥
∥(T1u)(s)

∥
∥
)

ds, u ∈ Cβ2, t ∈ J ,

then

(δu)(t) ≤ 1
2
‖u‖β2λ(t)e4�2(t).

Proof Direct calculations show that, for u ∈ Cβ2 and t ∈ J ,

(δu)(t) =
∫ t

0
(t – s)β(s)

(
a
∥
∥u(s)

∥
∥ + b

∥
∥(T1u)(s)

∥
∥
)

ds

≤
∫ t

0
λ(t)φ(s)

(
∥
∥u(s)

∥
∥ +

∫ s

0
K(s)

∥
∥u(τ )

∥
∥dτ

)

ds

≤ λ(t)
∫ t

0
φ(s)

(

‖u‖β2λ(s)e4�2(s) +
∫ s

0
K(s)‖u‖β2λ(τ )e4�2(τ ) dτ

)

ds

≤ ‖u‖β2λ(t)
∫ t

0
φ(s)

(

λ(s)e4�2(s) + K(s)
∫ s

0
λ(τ )φ(τ )K(τ )e4�2(τ ) dτ

)

ds

≤ ‖u‖β2λ(t)
∫ t

0
φ(s)

(
λ(s)e4�2(s) + K(s)e4�2(s))ds

≤ 2‖u‖β2λ(t)
∫ t

0
λ(s)φ(s)K(s)e4�2(s) ds

≤ 1
2
‖u‖β2λ(t)e4�2(t). �

Lemma 2.3 ([6]) Let P be a generating normal cone and B a positive linear operator whose
spectral radius satisfies r(B) < 1. If the operator A satisfies the estimate

–B(x – y) ≤ Ax – Ay ≤ B(x – y) (x, y ∈ E; x ≥ y),

then A has a unique fixed point in E, and for each initial approximation x0 ∈ E, let xn =
Axn–1(n = 1, 2, . . .), then we have xn → x∗ (n → ∞).
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3 Main results
Theorem 3.1 Suppose that (H1) holds. Then IVP (1.2) has a unique solution u ∈ Cβ1.

Proof It is well known that u is a solution of IVP (1.2) if and only if

u(t) = u0 +
∫ t

0
f
(
s, u(s), (Tu)(s)

)
ds, t ∈ J .

Define the operator A : Cβ1 → Cβ1 by

(Au)(t) = u0 +
∫ t

0
f
(
s, u(s), (Tu)(s)

)
ds, t ∈ J . (3.1)

It follows from (H1) that

∥
∥f (t, u, v)

∥
∥ ≤ ∥

∥f (t, θ , θ )
∥
∥ + β(t)

(
a‖u‖ + b‖v‖), ∀t ∈ J , u, v ∈ E. (3.2)

For any u ∈ Cβ1, by (H1), (3.1) and (3.2),

∥
∥(Au)(t)

∥
∥ ≤ ‖u0‖ +

∫ t

0

[∥
∥f (s, θ , θ )

∥
∥ + β(s)

(
a
∥
∥u(s)

∥
∥ + b

∥
∥(Tu)(s)

∥
∥
)]

ds

≤ ‖u0‖ + �1(t) +
1
2
‖u‖β1e4�1(t), ∀t ∈ J ,

then Au ∈ Cβ1, so A : Cβ1 → Cβ1.
On the other hand, for any u, v ∈ Cβ1, by (H1) and Lemma 2.1,

∥
∥Au(t) – Av(t)

∥
∥ ≤

∫ t

0
β(s)

(
a
∥
∥u(s) – v(s)

∥
∥ + b

∥
∥(Tu)(s) – (Tv)(s)

∥
∥
)

ds

≤ 1
2
‖u – v‖β1e4�1(t),

then ‖Au – Av‖β1 ≤ 1
2‖u – v‖β1. Thus the Banach contraction mapping principle implies

that A has a unique fixed point in Cβ1. �

In the following, we consider the second order nonlinear integro-differential equations
of Volterra type on an infinite interval,

⎧
⎨

⎩

u′′ = f (t, u(t), (Tu)(t)), t ∈ J = [0,∞),

u(0) = u0, u′(0) = u1.
(3.3)

Suppose f : J × E × E → E, for any u ∈ C[J , E], g(t) = f (t, u(t), (Tu)(t)) : J → E is continu-
ous, u0, u1 ∈ E.

Theorem 3.2 Let P be a normal solid cone of E. Assume that there exists β ∈ C[J , R+] such
that, for any y1, y2, y1, y2,∈ E, y1 ≥ y1, y2 ≥ y2, we have

–β(t)
[
a(y1 – y1) + b(y2 – y2)

] ≤ f (t, y1, y2) – f (t, y1, y2)

≤ β(t)
[
a(y1 – y1) + b(y2 – y2)

]
. (3.4)
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Then IVP (3.3) has a unique solution in Cβ2.

Proof It is clear that u is a solution of IVP (3.3) if and only if u is a solution of the following
integral equation:

u(t) = u0 + tu1 +
∫ t

0
(t – s)f

(
s, u(s), (Tu)(s)

)
ds, t ∈ J .

Define operators A and B by

(Au)(t) = u0 + tu1 +
∫ t

0
(t – s)f

(
s, u(s), (Tu)(s)

)
ds, t ∈ J .

(Bu)(t) =
∫ t

0
(t – s)β(s)

(
au(s) + b(T1u)(s)

)
ds, t ∈ J .

By Lemma 2.2, it is easy to see that B is a positive linear bounded operator on Cβ2, and
‖B‖ < 1

2 , then r(B) < 1
2 . By (3.4), for any u, v ∈ Cβ2, u ≥ v,

–B
(
u(t) – v(t)

) ≤ (Au)(t) – (Av)(t) ≤ B
(
u(t) – v(t)

)
, ∀t ∈ J .

Since P is a normal cone of E, it is easy to show that Pβ2 is normal in Cβ2. Since P is
a solid cone of E, by Lemma 2.1.2 in [1] we see that Pβ2 is also a solid cone in Cβ2, and
so, from Lemma 1.4.1 in [7], we know that Pβ2 is a generating cone in Cβ2. Hence all the
conditions of Lemma 2.3 are satisfied, and the conclusion of Theorem 3.2 holds. �

Remark 3.1 In most of the early work, for example [1], the conditions (H2) and (H3) play
an important role in the proof of the main results. Undoubtedly, it is interesting and im-
portant to remove these conditions, which is very helpful for the applications of IVPs (1.2)
and (3.3). In this paper, the existence and uniqueness of solutions for a class of nonlinear
integro-differential equations of mixed type on unbounded domains in Banach spaces are
established under more general conditions. The restrictive conditions (H2) and (H3) are
removed; this implies that our results in essence improve and generalize the correspond-
ing conclusions of [1–20].
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