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Abstract
This paper studies a continuous-time mean-variance asset-liability management
problem under the Heston model. Specifically, an asset-liability manager is allowed to
invest in a risk-free asset and a risky asset whose price process is governed by the
Heston model. By applying the Lagrange duality theorem and stochastic control
theory, we derive the closed-form expressions of the efficient investment strategy
and the efficient frontier. Moreover, we provide numerical experiments to analyze the
sensitivity of the efficient frontier with respect to the relevant parameters in the
Heston model.
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1 Introduction
Asset-liability management (ALM) is essential for financial security systems such as banks,
life insurance companies, property insurance companies and pension funds. In recent
years, dynamic allocation strategies for mean–variance (M–V) ALM problems have been
studied widely. These studies consider optimization problems of selecting optimal port-
folios that can yield sufficient returns in compensating the corresponding liability. Sharpe
and Tint [1] first consider an ALM problem under the static M–V framework. Keel and
Müller [2] study a portfolio choice with liabilities and show that liabilities affect the effi-
cient frontier. Based on the multi-period M–V framework, Leippold et al. [3] investigate
a multi-period ALM problem and derive explicit expressions for the efficient investment
strategy and the efficient frontier. By using the stochastic linear-quadratic control theory,
Chiu and Li [4] study a continuous-time ALM problem where the risky assets’ prices and
the liability value are both governed by geometric Brownian motions. Xie et al. [5] also
study a continuous-time ALM problem while the liability process is governed by a Brow-
nian motion with drift. Chen et al. [6] and Chen and Yang [7] extend the work of Chiu and
Li [4] and Leippold et al. [3] to the cases with a Markovian regime switching market. Chiu
and Wong [8, 9] apply the backward stochastic differential equation (BSDE) method to
study the M–V ALM problems with cointegrated risky assets. Yao et al. [10, 11], respec-
tively, consider a continuous-time M–V ALM problem and a multi-period M–V ALM
problem with uncertain time horizon. Chiu and Wong [12] investigate a M–V ALM prob-
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lem with asset correlation risks, which are modeled by a multivariate Wishart process.
Pan and Xiao [13] study an optimal M–V ALM problem with stochastic interest rates and
inflation risks.

In most of the existing literature, it is standard to assume that the price of the risky as-
set (stock) follows a geometric Brownian motion, which implies that the volatility of risky
asset price is a constant or a deterministic function. However, many phenomena, such
as the volatility clustering, the volatility smile, the heavy-tailed nature of return distri-
butions, etc., cannot be explained within the framework of deterministic volatility mod-
els. As natural extensions, stochastic volatility (SV) models have been proposed by many
scholars such as the constant elasticity of variance (CEV) model (see Cox and Ross [14]),
Stein–Stein model (see Stein and Stein [15]) and Heston model (see Heston [16]), where
the CEV model and the Heston model have widely used in portfolio selection problems.
Zhang and Chen [17] investigate a M–V ALM problem under the CEV model and derive
the corresponding efficient investment strategy and efficient frontier by using the method
of BSDE. Li et al. [18] consider a derivative-based optimal investment strategy for a M–V
ALM problem under the Heston model and apply the BSDE method to obtain the explicit
expressions of the efficient investment strategies and efficient frontiers for three special
cases. In this paper, we also consider a continuous-time M–V ALM problem under the
Heston model. Different from the work of Li et al. [18], we use a generalized Brownian
motion to characterize the liability process, in which the expected growth rate of liabili-
ties is cointegrated with the volatility of risky assets. Moreover, we apply the Hamilton–
Jacobi–Bellman (HJB) equation method to derive the closed-form expressions of the ef-
ficient investment strategy and the efficient frontier. To the best of our knowledge, this
problem has not yet received a complete treatment in the existing literature. The reason
is that when both the Heston model and the more general liability model are introduced,
this ALM problem becomes more complicated for adding the two new state variables. The
dimension enlargement in the state space drastically increases the difficulty level in solv-
ing the associated HJB equation which comes from the dynamic programming approach.
Here we need to point out that to reduce the dimension and obtain the closed-form ex-
pression, many scholars directly absorb the liability process into the dynamic process of
assets instead of the traditional surplus process (the difference of liability from the as-
set). To solve this problem, we first apply the Lagrange multiplier method to transform
the original problem into a standard stochastic optimal control problem and establish the
corresponding extended HJB equation. Then we obtain the closed-form expression of the
optimal investment strategy by solving the extended HJB equation. Furthermore, by the
Lagrange duality theorem, we derive the efficient investment strategy and efficient fron-
tier of this M–V ALM problem explicitly, which is our main contribution. We also discuss
the effects on the efficient frontier of the stochastic volatility model parameters.

The remainder of this paper is organized as follows. Section 2 formulates the dynamic
M–V ALM problem under the Heston model. Section 3 gives the efficient investment
strategy and efficient frontier of the M–V ALM problem by applying the stochastic con-
trol theory and partial differential equation (PDE) method. Section 4 provides numerical
examples to analyze the sensitivity of the efficient frontier based on the Heston model.
Section 5 concludes this paper.
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2 Problem formulation
In this section, we introduce the financial market and establish the optimal dynamic M–V
ALM problem under the Heston model.

2.1 The financial market
Let (�, F , {Fs}t≤s≤T , P) be a filtered complete probability space satisfying the usual condi-
tions, where T > 0 is a finite constant representing the investment time horizon; {Fs}t≤s≤T

is generated by two standard one-dimensional Brownian motions WS(t) and Wm(t), P is a
real-world probability measure, and the expectation with respect to P is denoted E[·].

In this probability space, we consider the manager who can invest in a risk-free asset
(cash) and a risky asset (stock). The price process of the risk-free asset B(t) is governed by

dB(t)
B(t)

= r dt, B(0) = B0 > 0, (1)

where the constant r represents the risk-free interest rate. The price process of the risky
asset S(t) follows the Heston model,

⎧
⎨

⎩

dS(t)
S(t) = [r + λ1m(t)] dt +

√
m(t) dWS(t), S(0) = S0 > 0,

dm(t) = k[θ – m(t)] dt + σm
√

m(t) dWm(t), m(0) = m0 > 0,
(2)

where λ1 > 0 is a constant coefficient capturing the market price of the risk factor WS(t);
k, θ and σm are all positive constants and denote the mean-reversion rate, the long-run
mean and the volatility coefficient of the instantaneous variance process m(t), respec-
tively; WS(t) and Wm(t) are correlated with a constant correlation coefficient ρSm ∈ [–1, 1],
namely, Cov(dWS(t), dWm(t)) = ρSm dt.

Assumption 1 To ensure that m(t) > 0, there exist parameters k, θ and σm such that
2kθ ≥ σ 2

m.

In what follows, we consider the situation where the manager endowed with an initial
wealth X(0) = X0 > 0 at time 0 plans to invest in the financial market dynamically in the
horizon [0, T]. Let π (t) be the proportion of money invested in the stock at time t, and
suppose that there are no transaction costs as well as other restrictions in the market.
According to Eqs. (1) and (2), the dynamic of the total asset process X(t) is

dX(t)
X(t)

= π (t)
dS(t)
S(t)

+
[
1 – π (t)

]dB(t)
B(t)

=
[
r + λ1π (t)m(t)

]
dt + π (t)

√
m(t) dWS(t). (3)

Here π (t) is called an admissible portfolio strategy, i.e., if π (t) is F-adapted, E[
∫ T

0 π2(s) ds] <
+∞ and the stochastic differential equation in Eq. (3) together with X0 has a unique strong
solution X(·) corresponding to π (·). The set of all admissible portfolio strategies is denoted
by �.

On the other hand, in the course of investment practice, the investor may encounter un-
controllable liabilities and assume that the accumulative liability process L(t) is described
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by

dL(t) =
[
α(t) + λ2m(t)

]
dt + σL

√
m(t) dWS(t), L(0) = L0 > 0, (4)

where σL
√

m(t) is the volatility of L(t) and σL is a non-negative constant. Moreover, α(t) +
λ2m(t) denotes the appreciation rate of L(t), where α(t) is assumed to be a deterministic
function of time t and λ2 is a constant.

Remark 1 To derive an explicit solution, we assume that the random term of liabilities is√
m(t) dWS(t) in the interval (t, t + dt).

2.2 The mean-variance asset-liability management optimization problem
In ALM models, one main concern is the surplus which is the difference of asset value and
liability value. Thus ALM is also known as the surplus management. Let Y (t) = X(t) – L(t)
be the surplus. Then, by Eqs. (3) and (4), Y (t) satisfies the following stochastic differential
equation:

dY (t) =
[(

Y (t) + L(t)
)(

r + λ1π (t)m(t)
)

– α(t) – λ2m(t)
]

dt

+
[(

Y (t) + L(t)
)
π (t) – σL

]√
m(t) dWS(t), (5)

where the initial value Y (0) = X0 – L0 > 0.
With the initial surplus Y (0), the manager’s objective is to find a strategy π (t) ∈ � to

minimize the variance of the terminal surplus for a given level of the expected terminal
surplus. More specifically, we consider the following optimization problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minπ (t)∈� Var[Y (T)] = E[Y (T) – C]2,

subject to

⎧
⎨

⎩

E[Y (T)] = C,

Y (t) satisfies Eq. (5).

(6)

The solution π∗(t) to Problem (6) is called an efficient investment strategy for C ≥ C∗,
where C∗ is the expected terminal surplus corresponding to the global minimum variance
of the terminal surplus over all feasible strategies. The point (Var[Y (T)], E[Y (T)]) corre-
sponds to an efficient investment strategy is called an efficient point. The set of all efficient
points forms the efficient frontier in the variance-mean plane.

3 Solution of the optimization problem
In this section, we apply the Lagrange multiplier technique and stochastic control method
to obtain a closed-form solution of Problem (6).

3.1 Transformation of the original problem
As widely adopted in the literature, we apply the Lagrange multiplier technique to deal
with the constraint E[Y (T)] = C. Define

J
(
Y (t), t;π (t),γ

)
= E

[
Y (T) – C

]2 + 2γ E
[
Y (T) – C

]

= E
[
Y (T) + γ – C

]2 – γ 2, (7)
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where γ ∈ R is the Lagrange multiplier. Then by the Lagrange duality theorem (see Luen-
berger [19]), the original M–V portfolio selection problem (6) is equivalent to the following
max–min stochastic control problem:

⎧
⎨

⎩

maxγ∈R minπ (t)∈� J(Y (t), t;π (t),γ ) = E[Y (T) + γ – C]2 – γ 2,

subject to Y (t) satisfies Eq. (5).
(8)

Clearly, to solve the above max–min stochastic control problem (8), we first need to con-
sider the following quadratic loss minimization problem:

⎧
⎨

⎩

minπ (t)∈� J0(Y (t), t;π (t),γ ) = E[Y (T) – u]2,

subject to Y (t) satisfies Eq. (5),
(9)

where u = C – γ .
Problem (9) can be solved by using the stochastic control method. We now consider

a truncated form of Problem (9) beginning at time t and define the corresponding value
function as

H(t, m, y, l) = inf
π (t)∈�

E
{[

Y (T) – u
]2 | m(t) = m, Y (t) = y, L(t) = l

}
(10)

with the boundary condition H(T , m, y, l) = (y – u)2.
If H(t, m, y, l) ∈ C1,2,2,2([0, T] × R+ × R × R), then by the principle of dynamic program-

ming, H(t, m, y, l) satisfies the following HJB equation:

Ht + k(θ – m)Hm +
σ 2

m
2

mHmm +
[
α(t) + λ2m

]
Hl +

σ 2
L

2
mHll

+ ρSmσmσLmHml +
[
(y + l)r – α(t) – λ2m

]
Hy – mσL[σLHyl

+ σmρSmHym] + inf
π (t)∈�

{

(y + l)λ1π (t)mHy + (y + l)mπ (t)[σLHyl

+ σmρSmHym] +
[(y + l)π (t) – σL]2m

2
Hyy

}

= 0, (11)

where H is short for H(t, m, y, l), Ht , Hm, Hy, Hl , Hmm, Hyy, Hyl , Hlm, Hym and Hll denote
the partial derivatives of first and second orders with respect to t, m, y and l, respectively.

We first assume that Hyy > 0, which will be verified later. The first-order condition for
the optimization problem in the HJB Eq. (11) yields the optimal control as

π∗(t) =
σLHyy – σLHyl – σmρSmHym – λ1Hy

(y + l)Hyy
. (12)

Substituting (12) into (11), after simplification, we have

Ht + k(θ – m)Hm +
σ 2

m
2

mHmm +
[
α(t) + λ2m

]
Hl +

σ 2
L

2
mHll

+ ρSmσmσLmHml +
[
(y + l)r – α(t) + mλ1σL – λ2m

]
Hy
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–
m

2Hyy

[
σ 2

L H2
yl + λ2

1H2
y + σ 2

mρ2
SmH2

ym + 2λ1σLHyHyl

+ 2σmσLρSmHylHym + 2λ1σmρSmHyHym
]

= 0. (13)

Therefore, Problem (10) can be transformed into the following non-linear PDE problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ht + k(θ – m)Hm + σ 2
m
2 mHmm + [α(t) + λ2m]Hl + σ 2

L
2 mHll

+ ρSmσmσLmHml + [(y + l)r – α(t) + mλ1σL – λ2m]Hy

– m
2Hyy

[σ 2
L H2

yl + λ2
1H2

y + σ 2
mρ2

SmH2
ym + 2λ1σLHyHyl

+ 2σmσLρSmHylHym + 2λ1σmρSmHyHym] = 0,

H(T , m, y, l) = (y – u)2.

Here we need to point out that it is very difficult to obtain an explicit solution of the com-
plicated non-linear PDE problem for the market is not self-financing (i.e., the manager has
a continuous payment dL(t) in the interval (t, t + dt)). However, in a particular case, this
problem can be solved.

3.2 Solution of the auxiliary problem (10)
In this subsection, we shall apply the variable transform techniques and PDE method to
a special solution of the auxiliary problem (10). By the terminal condition H(T , m, y, l) =
(y – u)2, we may look for a candidate solution in the form

H(t, m, y, l) = f (t, m)
[
y + l – g(t, m, l)

]2, (14)

where f (t, m) and g(t, m, l) are two undetermined functions with the boundary conditions
f (T , m) = 1 and g(T , m, l) = l + u.

After substituting (14) into (13) and by some tedious calculations, we have

[y + l – g]2
{

ft +
[
k(θ – m) – 2λ1σmρSmm

]
fm +

σ 2
m
2

mfmm

– mσ 2
mρ2

Sm
f 2
m
f

+
[
2r – mλ2

1
]
f
}

– 2f [y + l – g]
{

gt +
[

k(θ – m)

– mσ 2
m
(
ρ2

Sm – 1
) fm

f
– mλ1σmρSm

]

gm +
σ 2

m
2

mgmm +
σ 2

L
2

mgll +
[
α(t)

+ λ2m – mσLλ1
]
gl + mσLσmρSmglm – rg

}

+ mfg2
mσ 2

m
(
1 – ρ2

Sm
)

= 0, (15)

where f and g are short for f (t, m) and g(t, m, l), respectively.
Note that Eq. (15) can be taken as a polynomial of variable y+ l–g . Thus, by the boundary

conditions f (T , m) = 1 and g(T , m, l) = l + u, we have

⎧
⎪⎪⎨

⎪⎪⎩

ft + [k(θ – m) – 2λ1σmρSmm]fm + σ 2
m
2 mfmm

– mσ 2
mρ2

Sm
f 2
m
f + [2r – mλ2

1]f = 0,

f (T , m) = 1,

(16)
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⎧
⎪⎪⎨

⎪⎪⎩

gt + [k(θ – m) – mσ 2
m(ρ2

Sm – 1) fm
f – mλ1σmρSm]gm + σ 2

m
2 mgmm

+ σ 2
L
2 mgll + [α(t) – mσLλ1 + mλ2]gl + mσLσmρSmglm – rg = 0,

g(T , m, l) = l + u,

(17)

mfg2
mσ 2

m
(
1 – ρ2

Sm
)

= 0. (18)

In what follows, we aim to solve the two terminal value problems (16) and (17) based
on Eq. (18). We first solve the problem (16) and postulate that f (t, m) has the following
exponential affine form:

f (t, m) = eA1(t)m+A2(t), (19)

where A1(t) and A2(t) are two undetermined functions with the boundary conditions
A1(T) = 0 and A2(T) = 0.

Note that σm > 0, m > 0 and f > 0. Then Eq. (18) is equivalent to gm = 0 (false) or ρ2
Sm = 1.

In such a case, substituting (19) into (16) and by some simplifications, Problem (16) can
be decomposed into the following ordinary differential equation (ODE) problems:

⎧
⎨

⎩

dA1(t)
dt = σ 2

m
2 A2

1(t) + (k + 2λ1σmρSm)A1(t) + λ2
1,

A1(T) = 0,
(20)

⎧
⎨

⎩

dA2(t)
dt + kθA1(t) + 2r = 0,

A2(T) = 0.
(21)

The following proposition presents an explicit solution for Problem (20).

Proposition 1 The solution to Problem (20) is given by

A1(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n1n2(1–e
√

�(T–t))
n1–n2e

√
�(T–t) , ρ2

Sm = 1 and � > 0,
σ 2

m(T–t)n2

σ 2
m(T–t)n–2 , ρ2

Sm = 1 and � = 0,
√

–�

σ 4
m

tan(arctan( k+2λ1σmρSm√
–�

) –
√

–�(T–t)
2 ) + n, ρ2

Sm = 1 and � < 0,

(22)

where

� = (k + 2λ1σmρSm)2 – 2λ2
1σ

2
m,

n1 =
–(k + 2λ1σmρSm) +

√
�

σ 2
m

,

n2 =
–(k + 2λ1σmρSm) –

√
�

σ 2
m

,

n =
–(k + 2λ1σmρSm)

σ 2
m

.

Proof See the Appendix. �
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According to the result of Proposition 1, the solution to Problem (21) can be expressed
in terms of A1(t), that is,

A2(t) =
∫ T

t
kθA1(s) ds + 2r(T – t). (23)

Furthermore, we have the following proposition.

Proposition 2 The solution to Problem (16) is given by

f (t, m) = eA1(t)m+A2(t),

where A1(t) and A2(t) are given by Eqs. (22) and (23), respectively.

We now solve Problem (17). Let

g(t, m, l) = A3(t)l + A4(t)m + A5(t), (24)

where A3(t), A4(t) and A5(t) are three undetermined functions with the boundary condi-
tions A3(T) = 1, A4(T) = 0 and A5(T) = u.

Substituting (24) into (17) and by some simplifications, Problem (17) can be decomposed
into the following ODE problems:

⎧
⎨

⎩

dA3(t)
dt – rA3(t) = 0,

A3(T) = 1,
(25)

⎧
⎨

⎩

dA4(t)
dt – (k + λ1σmρSm + r)A4(t) – (λ1σL – λ2)A3(t) = 0,

A4(T) = 0,
(26)

⎧
⎨

⎩

dA5(t)
dt – rA5(t) + kθA4(t) + α(t)A3(t) = 0,

A5(T) = u.
(27)

By a simple calculation, we have

A3(t) = er(t–T). (28)

Then the solutions of Problems (26)–(27) are given by

A4(t) =

⎧
⎨

⎩

–(λ1σL – λ2)er(t–T)(T – t), k + λ1σmρSm = 0,
(λ1σL–λ2)er(t–T)[e(k+λ1σmρSm)(t–T)–1]

k+λ1σmρSm
, k + λ1σmρSm �= 0,

(29)

and

A5(t) =
{

u +
∫ T

t

[
kθA4(s) + α(s)A3(s)

]
er(T–s) ds

}

er(t–T), (30)

respectively. Furthermore, we have the following conclusion.
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Proposition 3 The solution to Problem (17) is given by

g(t, m, l) = A3(t)l + A4(t)m + A5(t),

where A3(t), A4(t) and A5(t) are given by Eqs. (28), (29) and (30), respectively.

Based on the results of Propositions 2–3 and the expression for H(t, m, y, l) in Eq. (14),
we have

H(t, m, y, l) = eA1(t)m+A2(t)[y – A4(t)m +
(
1 – A3(t)

)
l – A5(t)

]2. (31)

Obviously, Hyy = 2eA1(t)m+A2(t) > 0, which means that Problem (10) does have the optimal
solution. Substituting (31) into (12) further reveals the optimal investment strategy of the
optimal control problem (10) as

π∗(t) =
σLA3(t) + σmρSmA4(t) – λ1[X(t) – A3(t)l – A4(t)m – A5(t)]

X(t)
. (32)

To sum up, we have the following theorem.

Theorem 1 For any t ∈ [0, T], the value function of the optimization problem (10) under
the condition of ρ2

Sm = 1 is given by Eq. (31), while the corresponding optimal solution is
given by Eq. (32).

3.3 Efficient investment strategy and efficient frontier
In this subsection, we shall apply the Lagrange duality theorem (see Luenberger [19]) to
derive the efficient investment strategy of Problem (6). Since the optimal control prob-
lem (9) is the same as the optimal control problem (10) when t = 0, the value function of
Problem (9) is

H(0, m0, y0, l0) = eA1(0)m0+A2(0)[y0 – A4(0)m0 +
(
1 – A3(0)

)
l0 – A5(0)

]2, (33)

where y0 = Y (0) and l0 = L(0). By the analysis of Sect. 3.1, to solve the original M–V port-
folio selection problem, we only need to maximize the following function:

J
(
Y (0), 0;π (t),γ

)
= eA1(0)m0+A2(0)[y0 – A4(0)m0

+
(
1 – A3(0)

)
l0 – A5(0)

]2 – γ 2 (34)

over γ . By the expression of A5(t) and u = C – γ , Eq. (34) can be reduced to

J
(
Y (0), 0;π (t),γ

)
= γ 2[eA1(0)m0+A2(0)–2rT – 1

]
– 2γ eA1(0)m0+A2(0)–2rT

{

C

– erT
[

y0 – A4(0)m0 +
(
1 – A3(0)

)
l0

–
∫ T

0

(
kθA4(s) + α(s)A3(s)

)
e–rs ds

]}
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+ eA1(0)m0+A2(0)–2rT C2

+ eA1(0)m0+A2(0)
[

y0 – A4(0)m0 +
(
1 – A3(0)

)
l0

–
∫ T

0

(
kθA4(s) + α(s)A3(s)

)
e–rs ds

]2

– 2CeA1(0)m0+A2(0)–rT
[

y0 – A4(0)m0 +
(
1 – A3(0)

)
l0

–
∫ T

0

(
kθA4(s) + α(s)A3(s)

)
e–rs ds

]

. (35)

Note that Eq. (35) is a quadratic function with respect to γ , which implies that for (35)
there may exist a finite maximum value while the existence of finite maximum value de-
pends on the coefficient of γ 2. For this purpose, in this paper, we need to add one more
assumption as follows.

Assumption 2 There exists a constant m0 such that eA1(0)m0+A2(0)–2rT – 1 < 0.

Under Assumption 2, the optimal value of J(Y (0), 0;π (t),γ ) can be achieved when γ is
given by

γ ∗ =
C – [y0 – A4(0)m0 + (1 – A3(0))l0 –

∫ T
0 (kθA4(s) + α(s)A3(s))e–rs ds]erT

1 – e–[A1(0)m0+A2(0)–2rT] . (36)

Substituting (36) into (35), the optimal investment strategy and the minimum variance of
the M–V ALM problem (9) are given by

π∗(t) =
1

X(t)

{

σLA3(t) + σmρSmA4(t) – λ1

[

X(t) – A3(t)l – A4(t)m

–
{

C – γ ∗ +
∫ T

t

(
kθA4(s) + α(s)A3(s)

)
er(T–s) ds

}

er(t–T)
]}

(37)

and

Var∗
[
Y (T)

]
=

1
e–[A1(0)m0+A2(0)] – e–2rT

{

Ce–rT – [y0 – A4(0)m0

+
(
1 – A3(0)

)
l0 –

∫ T

0

(
kθA4(s) + α(s)A3(s)

)
e–rs ds

}2

, (38)

respectively. Furthermore, setting

C∗ = erT
[

y0 – A4(0)m0 +
(
1 – A3(0)

)
l0 –

∫ T

0

(
kθA4(s) + α(s)A3(s)

)
e–rs ds

]

,

then we can get the global minimum variance Var∗
min[Y (T)] = 0. Moreover, according to

the definition of efficient investment strategy, the rational investors should not select the
expected terminal wealth less than C∗.

In conclusion, we summarize the above results in the following theorem.
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Theorem 2 Under Assumptions 1–2, the efficient investment strategy and the efficient
frontier of this M–V ALM problem under the condition of ρ2

Sm = 1 for C ≥ C∗ are given
by Eqs. (37) and (38), respectively.

Remark 2 Based on the result of Theorem 2, we can derive the efficient investment strat-
egy and efficient frontier for the corresponding asset allocation problem (i.e., the case of
no liability).

4 Numerical analysis
In this section, we give some numerical examples to analyze the sensitivity of the efficient
frontier with respect to the parameters derived from the Heston model. The basic param-
eters in the model are given by

r = 0.05, λ1 = –4, k = 5, θ = 0.0169, σm = 0.25, m0 = 0.0225,

α(t) = 0.05, λ2 = 0.5, σL = 2, X0 = 1, L0 = 0.1, ρSm = 1,

t = 0, T = 5.

Here the above parameters are the same as those in Li et al. [18] and satisfy Assumptions
1–2. We now analyze how the main parameters in the model affect the efficient frontier.

From Fig. 1, we can see clearly that, as the parameter λ1 increases from –5 to 5, the effi-
cient frontier rapidly moves upwards. This means that the expected terminal wealth with
the same terminal variance Var[Y (T)] becomes higher. The main reason is that by Eq. (2),
the parameter λ1 determines the additional appreciation rate of the stock. In the case of
other parameters unchanged, the bigger λ1 leads to the higher additional appreciation rate
of the stock, which makes the manager get the higher expected returns by investing in the
stock.

Figures 2–4 depict the impacts of the parameters k, σm, m0 in the Heston model on the
efficient frontiers. From Fig. 2, we find that, as the mean-reversion rate k increases, the ef-
ficient frontier moves downwards, i.e., the terminal variance Var[Y (T)] with the same ex-
pected terminal wealth E[Y (T)] becomes larger. This is mainly because in the case of other
parameters having remained unchanged, a bigger k means a higher risk from stochastic
volatility, which makes the terminal variance larger. In Fig. 3, we find that when σm in-
creases from 0.0225 to 0.0625, the efficient frontier moves up and the expected terminal
wealth increases rapidly. In this case, the manger adopts a more aggressive investment

Figure 1 Impact of λ1 on the efficient frontier
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Figure 2 Impact of k on the efficient frontier

Figure 3 Impact of σm on the efficient frontier

Figure 4 Impact ofm0 on the efficient frontier

strategy (i.e., more money is allocated to the stock). Similarly, we can analyze the effect of
m0 on the efficient frontier.

By Eq. (2), we know that the uncertainty of the stock’s price is related to the value of
ρSm, i.e., if ρSm > 0, the uncertainty of the stock’s price and its volatility m(t) changes in the
same way, while ρSm < 0, the uncertainty of m(t) and S(t) changes in the different way. In
Fig. 5, we find that when ρSm varies from –1 to 1, the efficient frontier moves upward and
the expectation improvement increases remarkably. In the current market environment,
the manager expects to earn more money from investing in the stock.

In Fig. 6, we can see that the efficient frontier moves down with the increase of λ2, but
at a slow pace. This can be attributed to the fact that in the case of other parameters un-
changed, as the parameter λ2 increases, the appreciation rate of liability becomes higher
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Figure 5 Impact of ρSm on the efficient frontier

Figure 6 Impact of λ2 on the efficient frontier

and so is the liability value. To hedge against the risk from the liability, the manager invests
more money in the stock, which makes the terminal variance larger.

5 Conclusions
In this paper, we study the optimal dynamic M–V ALM problem under the Heston model.
Due to some technical difficulties, we only derive the closed-form expressions of the effi-
cient investment strategy and the efficient frontier for the special case: dWS(t) and dWm(t)
are perfectly correlated or anti-correlated (ρSm = ±1). Nevertheless, we are convinced that
the results can provides some effective methods for managers in characterizing their op-
timal portfolio strategies under stochastic volatility environment. Moreover, we provide
numerical examples to illustrate how the main parameters of the model affect the efficient
frontier. From numerical examples, we find that the effective frontier is obviously affected
by the parameters of the stochastic volatility model, which also shows the effectiveness of
our model.

Appendix
In this Appendix, we give the proof of Proposition 1.

Let � = k2 + 4kλ1σmρSm + 2λ2
1σ

2
m be the discriminant of the following equation:

1
2
σ 2

mA2
1(t) + (k + 2λ1σmρSm)A1(t) + λ2

1 = 0. (39)
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If � > 0, then (39) has two different real roots, namely,

n1 =
–(k + 2λ1σmρSm) +

√
�

σ 2
m

, n2 =
–(k + 2λ1σmρSm) –

√
�

σ 2
m

.

In this case, Problem (20) is equivalent to

⎧
⎨

⎩

dA1(t)
dt = σ 2

m
2 [A1(t) – n1][A1(t) – n2],

A1(T) = 0.
(40)

By applying the separation variable method to the ODE in Problem (40), we have

dA1(t)
[A1(t) – n1][A1(t) – n2]

=
σ 2

m
2

dt. (41)

Furthermore, (41) can be rewritten as

dA1(t)
A1(t) – n1

–
dA1(t)

A1(t) – n2
=

√
�dt. (42)

Integrating (42) on both sides with respect to t, we obtain

∫ T

t

dA1(s)
A1(s) – n1

–
∫ T

t

dA1(s)
A1(s) – n2

=
√

�(T – t).

Combined with the boundary condition A1(T) = 0, the solution to Problem (40) is

A1(t) =
n1n2(1 – e

√
�(T–t))

n1 – n2e
√

�(T–t)
.

If � = 0, then (39) has only one real root, namely,

n =
–(k + 2λ1σmρSm)

σ 2
m

.

Similar to the former case, A1(t) can be derived by solving the following ODE problem:

⎧
⎨

⎩

dA1(t)
[A1(t)–n]2 = σ 2

m
2 dt,

A1(T) = 0.
(43)

Integrating the ODE in Problem (43) on both sides with respect to t, we have

∫ T

t

dA1(s)
[A1(s) – n]2 =

σ 2
m
2

(T – t).

Furthermore, by the boundary condition A1(T) = 0, we obtain

A1(t) =
n2σ 2

m(T – t)
nσ 2

m(T – t) – 2
.
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If � < 0, (39) has two imaginary roots. However, we consider the optimization problem in
real spaces instead of complex spaces. It is gratifying that in this case A1(t) can be derived
by solving the following ODE problem:

⎧
⎪⎨

⎪⎩

dA1(t)
[A1(t)+ k+2λ1σmρSm

σ2m
]2+ –�

σ4m

= σ 2
m
2 dt,

A1(T) = 0.
(44)

Applying the separation variable method to Problem (44) and after the more complex
integral calculation, we have

A1(t) =

√
–�

σ 4
m

tan

(

arctan

(
k + 2λ1σmρSm√

–�

)

–
√

–�(T – t)
2

)

+ n.

Thus, the proof is completed.
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