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Abstract
In this paper, we propose and investigate persistence and Turing instability of a
cross-diffusion predator–prey system with generalist predator. First, by virtue of the
comparison principle, we obtain sufficient conditions of persistence for a
corresponding reaction–diffusion system without self- and cross-diffusion. Second, by
using the linear stability analysis, we prove that under some conditions the unique
positive equilibrium solution is locally asymptotically stable for the corresponding
ODE system and the corresponding reaction–diffusion system without cross-diffusion
and self-diffusion. Hence it does not belong to the classical Turing instability. Third,
under some appropriate sufficient conditions, we obtain that the uniform positive
equilibrium solution is linearly unstable for the cross-reaction–diffusion and partial
self-diffusion system. The results indicate that cross-diffusion and partial self-diffusion
play an important role in the study of Turing instability about reaction–diffusion
systems with generalist predator. Fourth, we elaborate on the relations between the
theoretical results and the cross-diffusion predator–prey system by relying on some
examples. In the end, we conclude our findings and give a brief discussion.
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1 Introduction
It is well known that ecosystems are characterized by the interaction of species with a wide
range of spatial and temporal scales natural environment. From the early beginning of this
discipline, one of the most important interactions that affect the dynamics of all species
is predation. Therefore, predator–prey models have become the key to population system
investigation. Predator–prey dynamic has been one of the main research topics in math-
ematical ecology since the pioneering work of Lotka [1] and Volterra [2]. The main pur-
pose of mathematical ecology is to investigate the relationship between different species
and their living environment. As one of the most important interactions, the interaction
between the predator and the prey has aroused great concern and predator–prey models
with self-diffusion and cross-diffusion have been extensively investigated by many spe-
cialist and scholars [3–10]. More and more evidence indicates that in many cases where
predators must search, share, and compete for food, ratio-dependent predator–prey mod-
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els are considered reasonable. To put it briefly, the reaction functions have important effect
on the dynamical behavior of predator–prey modes, the functional response is classified
into four types: Lotka–Volterra type, Holling type II (Michaelis–Menten type), generalized
Holling type III (Sigmoidal), and IV functional response. In [3], Zhang et al. performed
Hopf and steady state bifurcation analysis in a ratio-dependent predator–prey model and
derived explicit conditions for the existence of non-constant steady states that emerged
through steady state bifurcation from related constant steady states. Li [4] studied sta-
bility and bifurcation of a ratio-dependent predator–prey model with cross-diffusion by
virtue of Fourier decomposition, fixed index theory, bifurcation theory, energy estimates,
and the differential method of implicit function and inverse function, and obtained the
asymptotic stabilities of nonnegative constant solutions, the existence and nonexistence of
non-constant positive steady states, the bifurcation and multiplicity of positive solutions.
For more works on predator–prey systems with ratio-dependent functional response, we
refer to [11–13].

The formation of spatial patterns is one of the important fields in biological research.
The pioneering work of pattern formation was conducted and investigated by Turing
[14], who derived the appropriate conditions under which the spatially homogeneous
steady state is stable in the absence of diffusion but becomes unstable in the presence
of diffusion, yielding a spatially heterogeneous steady state. This process is well known as
diffusion-driven instability, and the associated spatial pattern is usually named the Turing
pattern. Since the seminal work of Turing in 1952, the most widely investigated model
for spatial pattern formation is the reaction–diffusion model [15–22]. It is worth notic-
ing that Yan and Zhang investigated a diffusion two-species predator–prey system with
the Beddington–DeAngelis functional response and subject to homogeneous Neumann
boundary conditions by means of the upper and lower solutions method and the mono-
tone iteration principle in [11]. Sun et al. [23] studied pattern formation in a predator–prey
diffusion model with stage structure for the predator by using the bootstrap technique
and higher-order energy estimates. Sebestyén et al. [18] analyzed stability of patterns and
of constant steady states for a cross-diffusion system with two dependent variables by
virtue of numerical simulations and numerical models. Lacitignola et al. [24] studied Tur-
ing pattern formation on the sphere for a morphochemical reaction–diffusion model for
electrodeposition by means of the lumped surface finite element method and the system-
atic numerical simulations and numerical method. In [25], Song et al. investigated pattern
dynamics in a Gierer–Meinhardt model with a saturating term by the linear stability anal-
ysis, the multiple scales methods, and the numerical simulations. Peng and Zhang [26]
investigated Turing instability and pattern induced by cross-diffusion in a predator–prey
system with Allee effect by the multiple time scales and the weakly nonlinear analysis. For
more research on Turing instability in a cross-diffusive system, please refer to [27–30] and
relevant references therein.

It is worth pointing out that the above results show that it has been known that stable
equilibrium solutions of ordinary differential equations can be destabilized by the intro-
duction of diffusion for different species. Mathematically speaking, Turing pattern arising
from the reaction–diffusion ecological system admits at least one non-constant steady
state. Therefore, we are particularly interested in a class of reaction–diffusion predator–
prey models which account for predator–prey–mutualist and generalist predator [5, 31–
33].
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In this paper, motivated by the recent papers [9, 31–34], we will investigate a class of
three-species predator–prey cross-diffusion systems with generalist predator. The aim
of this paper is to construct a mathematical model to describe ecosystems with mutu-
alist interaction and generalist predator, and further investigate Turing instability of the
predator–prey ecosystem by virtue of mathematical analysis and numerical examples. The
rest of the paper is organized as follows. The reaction–diffusion predator–prey model
with generalist is introduced in Sect. 2. In Sect. 3, we demonstrate that the unique posi-
tive equilibrium is persistence for predator–prey reaction–diffusion system with no self-
and cross-diffusion by virtue of the comparison principle. In Sect. 4, we give linear stabil-
ity analysis of uniform positive state for ODES by means of the Routh–Hurwitz criterion.
We prove that a uniform equilibrium solution is also linearly asymptotically stable under
the same conditions for the predator–prey system with generalist predator without self-
and cross-diffusion in Sect. 5. Section 6 is devoted to deriving the conditions on the pa-
rameter values such that the positive equilibrium solution is Turing unstable for a strongly
coupled reaction–diffusion system. In Sect. 7, by some numerical examples we illustrate
correctness of our results. Finally, we give some conclusions and biological discussions in
Sect. 8.

2 The mathematical model
In this section, in order to establish the mathematical model, we will base on the following
three assumptions on biological background: The prey growth is logistic and independent
of the mutualist; The mutualist is independent of the predator; Predation in the absence
of mutualism is Lotka–Volterra predation. To take into account the intra-specific and
inter-specific population pressures between the generalist predator and the competitor–
mutualist, we introduce self-diffusion and cross-diffusions. To account for this scenario,
we obtain the following strongly coupled predator–prey reaction–diffusion system with
generalist predator:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1
∂t – �[(d1 + k11u1 + k12u2 + k13

β+u3
)u1] = u1(a – u1 – αu2

1+γ u3
), x ∈ �, t > 0,

∂u2
∂t – �[(d2 + k21u1 + k22u2 + k23u3)u2] = u2(b – u2 + μu1 + ηu3), x ∈ �, t > 0,

∂u3
∂t – �[(d3 + k31

m+u1
u2 + k33u3)u3] = u3(c – u3

1+δu1
), x ∈ �, t > 0,

∂nu1 = ∂nu2 = ∂nu3 = 0, x ∈ ∂�, t > 0,

ui(x, 0) = ui0(x) ≥ (�≡)0, x ∈ �, i = 1, 2, 3,

(1)

where � is a bounded and connected domain in Rn with smooth boundary ∂�. Here u2,
u1, and u3 represent the population densities of the predator, the prey, and the mutual-
ist, respectively. � represents the domain in which three species inhabit. ∂n is the direc-
tional derivative normal to ∂�. � denotes the usual Laplacian operator in space �. kii

(i = 1, 2, 3), k12, k13, k21, k23, and k31 are nonnegative constants. kii is the self-diffusion rate
of ith species and kij (i �= j) is the cross-diffusion rate of ith species due to the pressure
of the presence of jth species. a, b, c, α, γ , μ, η, δ, m, and β are all positive constants. In
diffusion terms, the positive constant di (i = 1, 2, 3), which is usually termed self-diffusion
coefficient, represents the natural dispersive force of movement of an individual. a, b, c
are intrinsic growth rates of the three species, respectively, while α, μ, η, δ describe inter-
species interactions. The homogeneous Neumann boundary condition indicates that the
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model is self-contained and there is zero population flux across the boundary. This sys-
tem with cross-diffusion represents a model which involves interacting and migration in
the same habitat � among generalist predator u2, prey u1, and u3, while u3 and u1 are
of symbiotic mutualist. For more biological meaning of the parameters, we refer to [17,
31–33].

In this model, predator u2 diffuses with flux

J = –∇(
d2u2 + k21u1u2 + k22u2

2 + k23u3u2
)

= –k21u2∇u1 – (d2 + k21u1 + k23u3)∇u2 – k23∇u3.

As –k21u2 < 0, the part –k21u2∇u1 of the flux is directed toward the decreasing population
density of prey u1. When the predator is chasing the prey, the flux should be directed to-
ward the increasing population density of the prey as in [35]. However, in a natural ecosys-
tem, a great number of prey species congregate and form a huge group to protect them-
selves from the attack of predator.

The first prey u1 diffuses with flux

J1 = –∇
(

d1u1 + k11u2
1 + k12u2u1 +

k13

β + u3
u1

)

= –
(

d1 + 2k11u1 + k12u2 +
k13

β + u3

)

∇u1 – k12u1∇u2 +
k13u1

(β + u3)2 ∇u3.

The second prey u3 diffuses with flux

J2 = –∇
(

d3u3 +
k31

m + u1
u2u3 + k33u3

2
)

=
k31u2u3

(m + u1)2 ∇u1 –
k31u3

m + u1
∇u2 –

(

d3 +
k31u2

m + u1
+ 2k33u3

)

∇u3.

We observe that, as –k12u1 < 0 and – k31u3
m+u1

< 0, the parts –k12u1∇u2 and– k31u3
m+u1

∇u2 of the
flux are directed toward the decreasing population density of predator u2. While k13u1

(β+u3)2 > 0
(or k31u2u3

(m+u1)2 > 0) implies that the flux of u1(or u3) is directed toward the increasing popula-
tion density of u3(or u1), that is, the two mutualist chase each other.

After adding these items, the cross-diffusion predator–prey system (1) means that in
addition to the dispersive force, the diffusion also depends on species pressure from other
species. Hence, the species in (1) are not homogeneously distributed based on the reason
of self-diffusion and cross-diffusions.

In the above system (1), when a = 1, b = 2, c = 1,η = 0, and k11 = k12 = k13 = k22 = k23 =
k31 = k33 = 0, d1 = d3 = 0, Tian et al. [31] investigated Turing pattern formation in a
predator–prey–mutualist system by using the stability analysis and the Leray–Schauder
degree theory. However, Tian et al. only studied the effects of diffusion and cross-diffusion
between predator u2 and prey u1. Wen and Fu [33] investigated Turing instability for a
competitor–competitor–mutualist model with nonlinear cross-diffusion effects by using
a comparison method and a linearization technique when k23 = 0,η = 0,μ = –μ, but they
did not research the effects of cross-diffusion between predator u2 and prey u3. Therefore,
in this work we will study Turing instability of the more complex cross-diffusion predator–
prey with generalist predator (1).
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3 Persistence for the PDES without self-diffusion and cross-diffusion
By solving the equations a – u1 – αu2

1+γ u3
= 0, b – u2 + μu1 + ηu3 = 0, c – u3

1+δu1
= 0, it is easy

to know that model (1) has a unique constant positive equilibrium u∗ = (u∗
1, u∗

2, u∗
3)T =

(u∗
1, b + cη + (μ + cηδ)u∗

1, c(1 + δu∗
1))T provided that a(1 + γ ) > (b + cη)α, where u∗

1 =
–[cηδα+μα+α+1–caδγ ]+

√
(cηδα+μα+α+1–caδγ )2–4cδγ [(b+cη)α–a(1+γ )]

2cδγ .
From the viewpoint of ecology, the constant positive steady-state solution implies the

coexistence of both the predator and the prey.
In this section, we always assume that kij = 0. We will show that system (1) without self-

diffusion and cross-diffusion is persistent.

Theorem 1 Assume that the inequalities

a(1 + γ ) > (b + cη)α and cδ > γ + (μ + ηδ)α (2)

hold, then system (1) is persistent.

Proof By using the maximum principle of the parabolic type equation, we easily know that
all the solutions of (1) are nonnegative since the initial value is nonnegative. By virtue of
the first equation in (1), we can obtain

∂u1

∂t
– d1�u = u1

(

a – u1 –
αu2

1 + γ u3

)

≤ au1

(

1 –
u1

a

)

.

By use of the comparison principle for parabolic equation, we get u1 ≤ w, where w is the
solution of

wt – d1�w = aw
(

1 –
w
a

)

, ∂nw = 0, w(x, 0) = u10(x) ≥ (�≡)0.

Since limt→∞ w(x, t) = a, we have limt→∞ u1(x, t) ≤ a, then for arbitrary ε > 0, there exists
t1 > 0 such that when t > t1, u1(x, t) ≤ c̄1, where c̄1 = a + ε. This implies that

lim sup
t→∞

max
�̄

u1(x, t) ≤ a. (3)

Similarly,

∂u3

∂t
– d3�u3 = u3

(

c –
u3

1 + δu1

)

≤ cu3

(

1 –
u3

c[1 + δ(a + ε)]

)

for t > t1. Thus, for the above ε, there exists t3 > t1 such that when t > t3, u3(x, t) ≤ c̄3,
where c̄3 = c[1 + δ(a + ε)] + ε. Therefore,

lim sup
t→∞

max
�̄

u3(x, t) ≤ c(1 + δa). (4)

Consequently, from the second equation in (1) we furthermore have

∂u2

∂t
– d2�u2 = u2(b – u2 + μu1 + ηu3) ≤ u2(b + aμ + cη + aηδ + με + ηδε + ηε – u2).
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So, for ε > 0, there exists t2 > 0 such that when t > t2, u2(x, t) ≤ c̄2, where c̄2 = b + aμ + cη +
aηδ + με + ηδε + ηε + ε. Thus, we can obtain

lim sup
t→∞

max
�̄

u2(x, t) ≤ b + aμ + cη + aηδ. (5)

On the other hand, according to the third equation in (1), we have

∂u3

∂t
– d3�u3 = u3

(

c –
u3

1 + δu1

)

≥ u3(c – u3).

Thus, for the above ε > 0, there exists t4 > 0 such that when t > t4, u3(x, t) ≥ c3, where
c3 = c – ε. Further, we can get

lim inf
t→∞ min

�̄

u3(x, t) ≥ c. (6)

Similar to the above argument, we can deduce that

∂u2

∂t
– d2�u2 = u2(b – u2 + μu1 + ηu3)

≥ u2(b + c3η – u2), t > t4,

and

∂u1

∂t
– d1�u = u1

(

a – u1 –
αu2

1 + γ u3

)

≥ u1

(

a –
αc̄2

1 + δc3

)

, t > t2, t4.

This implies that for ε > 0, there exist t5 > max{t1, t4} and t6 > max{t2, t4} such that
when t > t5, u2 ≥ c2 and when t ≥ t6, u1 ≥ c1, where c2 = b + η(c – ε) – ε, c1 =
a+aδ(c–ε)–α(b+aμ+cη+aηδ+με+ηδε+ηε+ε)

1+δ(c–ε) – ε. Therefore, we can obtain

lim inf
t→∞ min

�̄

u2(x, t) ≥ b + cη > 0,

lim inf
t→∞ min

�̄

u1(x, t) ≥ a(1 + cδ) – α(b + aμ + cη + aηδ)
1 + cδ

> 0.
(7)

It is worth noticing that since cδ > γ + (μ+ηδ)α, we have 1 + cδ > 1 +γ + (μ+ηδ)α. Further,
we can have a(1 + cδ) > a(1 +γ ) + a(μ+ηδ)α. By virtue of the condition a(1 +γ ) > (b +ηc)α,
we can obtain a(1 + cδ) > (b + cη)α + a(μ + ηδ)α, therefore the above inequality holds.

It is well known that a system of several species is said to be persistent if all species
are persistent, while a species with density u(x, t) (x ∈ �, t > 0) is said to be persistent if
u(x, t) > 0 for all x ∈ �, t > 0 and

lim inf
t→∞ min

�̄

u(x, t) > 0. (8)

According to the definition of persistence for species and the above results of proof, we
can conclude that system (1) is persistent. The proof is completed. �
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4 Stability of the positive equilibrium solution of the ODE system
In this section, we mainly research the stability for the ODE system by virtue of the stability
theory. It is easy to know that the ODE system of (1) is as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du1
dt = u1(a – u1 – αu2

1+γ u3
),

du2
dt = u2(b – u2 + μu1 + ηu3),

du3
dt = u3(c – u3

1+δu1
),

ui(0) = ui0 for i = 1, 2, 3.

(9)

Theorem 2 Suppose that the conditions of the parameters satisfy

a(1 + γ ) > (b + cη)α, μ ≥ (b + cη)δ, αδη ≤ 3γ , α ≤ 2. (10)

Then the stationary uniform solution of system (9) is locally asymptotically stable.

Proof For simplicity, throughout this paper, we denote

F(u) =

⎛

⎜
⎝

f1(u1, u2, u3)
f2(u1, u2, u3)
f3(u1, u2, u3)

⎞

⎟
⎠ =

⎛

⎜
⎝

u1(a – u1 – αu2
1+γ u3

)
u2(b – u2 + μu1 + ηu3)

u3(c – u3
1+δu1

)

⎞

⎟
⎠ .

Noticing F(u∗) = 0, a direct calculation yields

Fu
(
u∗) =

⎛

⎜
⎜
⎝

–u∗
1 – αu∗

1
1+γ u∗

3

αγ u∗
1u∗

2
(1+γ u∗

3)2

μu∗
2 –u∗

2 ηu∗
2

δu∗
3

2

(1+δu∗
1)2 0 – u∗

3
1+δu∗

1

⎞

⎟
⎟
⎠ .

The linearization of problem (9) at positive equilibrium u∗ is

du
dt

= Fu
(
u∗)u, u(0) = (u10, u20, u30)T . (11)

The characteristic polynomial of Fu(u∗) is given by φ(λ) = λ3 + A2λ
2 + A1λ + A0, where

A0 =
u∗

1u∗
2u∗

3
1 + δu∗

1
+

δαηu∗
1u∗

2u∗
3

2

(1 + δu∗
1)2(1 + γ u∗

3)
+

αμu∗
1u∗

2u∗
3

(1 + δu∗
1)(1 + γ u∗

3)
–

αδγ u∗
1u∗

2
2u∗

3
2

(1 + δu∗
1)2(1 + γ u∗

3)2 ,

A1 = u∗
1u∗

2 +
(
u∗

1 + u∗
2
) u∗

3
1 + δu∗

1
+

αμu∗
1u∗

2
1 + γ u∗

3
–

αγ δu∗
1u∗

2u∗
3

2

(1 + δu∗
1)2(1 + γ u∗

3)2 ,

A2 = u∗
1 + u∗

2 +
u∗

3
1 + δu∗

1
.

It is evident that if conditions (10) hold, then it is not hard to verify that A2, A1, A0 are
positive, and A2A1 – A0 > 0. Hence, according to the Routh–Hurwitz criterion for stability,
we can conclude that φ(λ) = 0 only has roots with negative real parts. Therefore u∗ is
locally asymptotically stable. �
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5 Steady state solution of the PDE system without self-diffusion and
cross-diffusion

In this section, our main objective is to search for the conditions on the parameter values
such that the positive stationary uniform solution is linearly stable in the absence of self-
diffusion and cross-diffusion. We now consider system (1) with no self-diffusion and cross-
diffusion of the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1
∂t – d1�u1 = u1(a – u1 – αu2

1+γ u3
), x ∈ �, t > 0,

∂u2
∂t – d2�u2 = u2(b – u2 + μu1 + ηu3), x ∈ �, t > 0,

∂u3
∂t – d3�u3 = u3(c – u3

1+δu1
), x ∈ �, t > 0,

∂nu1 = ∂nu2 = ∂nu3 = 0, x ∈ ∂�, t > 0,

ui(x, 0) = ui0(x) ≥ (�≡)0, x ∈ �, i = 1, 2, 3.

(12)

In order to research the local asymptotic stability of the parabolic system, we set up the
following notation.

Notation Let 0 = μ1 < μ2 < μ3 < · · · → ∞ be the eigenvalues of –� on � with the homo-
geneous Neumann boundary condition and E(μi). We define the following space decom-
position:

(i) Xij := {c · φij : c ∈ R3}, where {φij} are orthonormal basis of E(μi) for
j = 1, . . . , dim E(μi);

(ii) X := {u ∈ [C1(�)]3 : ∂nu1 = ∂nu2 = ∂nu3 = 0 on ∂�} and so X =
⊕∞

i=1 Xi, where
Xi =

⊕dim E(μi)
j=1 Xij.

Theorem 3 Assume that the conditions of (10) hold, then the stationary uniform solution
u∗ of system (12) is locally asymptotically stable.

Proof The linearization of (12) at u∗ can be expressed by

∂u
dt

=
(
D� + Fu

(
u∗))u,

where

D =

⎛

⎜
⎝

d1 0 0
0 d2 0
0 0 d3

⎞

⎟
⎠ .

It is well known that if, for each i ≥ 1, Xi is invariant under the operator D� + Fu(u∗),
then problem (12) has a non-trivial solution of the form ψ = cφ exp(λt) if and only if (λ, c)
is an eigenpair for the matrix –μiD + Fu(u∗), where c is a constant vector. Therefore the
equilibrium u∗ is locally asymptotically stable if all eigenvalues λ have negative real parts
for all μi.

The characteristic polynomial of –μiD + Fu(u∗) is given by

ρi(λ) = λ3 + B2λ
2 + B1λ + B0,
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where

B0 =
(

μid3 +
u∗

3
1 + δu∗

1

)
(
μid1 + u∗

1
)(

μid2 + u∗
2
)

+
d3μiαμu∗

1u∗
2

1 + γ u∗
3

+
αμu∗

1u∗
2u∗

3
(1 + δu∗

1)(1 + γ u∗
3)

+
δαηu∗

1u∗
2u∗

3
2

(1 + δu∗
1)2(1 + γ u∗

3)
–

(μid2 + u∗
2)αδγ u∗

1u∗
2u∗

3
2

(1 + δu∗
1)2(1 + γ u∗

3)2 ,

B1 =
(
u∗

1 + μid1
)(

u∗
2 + μid2

)

+
(
u∗

1 + u∗
2 + μid1 + μid2

)
(

μid3 +
u∗

3
1 + δu∗

1

)

+
αμu∗

1u∗
2

1 + γ u∗
3

–
αγ δu∗

1u∗
2u∗

3
2

(1 + δu∗
1)2(1 + γ u∗

3)2 ,

B2 = μi(d1 + d2 + d3) + u∗
1 + u∗

2 +
u∗

3
1 + δu∗

1
.

Let λ1i, λ2i, λ3i be the three roots of ρi(λ) = 0. In order to obtain the linear stability of u∗,
we need to prove that there exists a positive constant ζ such that

Re{λ1i}, Re{λ2i}, Re{λ3i} ≤ –ζ for all i ≥ 1. (13)

In fact, assume that λ1i, λ2i, λ3i all have negative real parts, that is, Re{λ1i}, Re{λ2i},
Re{λ3i} < 0. Let λ = μiτ , then

ρi(λ) = μ3
i τ

3 + B2μ
2
i τ

2 + B1μiτ + B0
�= ρ̃i(τ ).

Notice that μi → ∞ as i → ∞, we can calculate that

lim
i→∞

ρ̃i(τ )
μ3

i
= τ 3 + (d1 + d2 + d3)τ 2 + (d1d2 + d1d3 + d2d3)τ + d1d2d3.

Since d1d2 + d1d3 + d2d3 > 0 and d1d2d3 > 0 hold, by the Routh–Hurwitz criterion, the
three roots τ1i, τ2i, τ3i of ρ̃i(τ ) = 0 have negative real parts. Therefore we can conclude that
there exists a positive constant ζ̃ such that Re{τ1i}, Re{τ2i}, Re{τ3i} ≤ –ζ̃ . According to con-
tinuity, we see that there exists a positive constant i0 such that the three roots of ρ̃i(τ ) = 0
satisfy Re{τ1i}, Re{τ2i}, Re{τ3i} ≤ –ζ̃ /2 for all i ≥ i0. Then Re{λ1i}, Re{λ2i}, Re{λ3i} ≤ – μi ζ̃

2 ≤
– ζ̃

2 for all i ≥ i0. Let ζ = min{ ζ̃

2 , max1≤i≤i0 Re{λ1i}, Re{λ2i}, Re{λ3i}}, then we can obtain that
(13) holds. Applying the Routh–Hurwitz criterion for stability, the three roots of ρi(λ) all
have negative real parts. Thus the proof is completed. �

6 Turing instability induced by self-diffusion and cross-diffusion
According to Theorem 3, we can easily find that if only free diffusion is introduced to
the ODE system (9), the uniform positive stationary solution is also locally stable, which
means that under conditions (10), only the PDE with no self-diffusion and cross-diffusion
cannot induce Turing instability. In this section, we will mainly discuss the case which is a
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well-known phenomenon of cross-diffusion driven instability. Now let us investigate the
effects of self-diffusion and cross-diffusion for system (1).

For simplicity, we denote that K(u) = (d1u1 + k11u2
1 + k12u1u2 + k13u1

β+u3
, d2u2 + k21u1u2 +

k22u2
2 + k23u2u3, d3u3 + k31

m+u1
u2u3 + k33u2

3)T . Linearizing system (1) at u∗, we have

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t = (Ku� + Fu(u∗))u, x ∈ �, t > 0,

∂nu = 0, x ∈ ∂�, t > 0,

u(x, 0) = (u10(x), u20(x), u30(x))T , x ∈ �,

(14)

where

Ku
(
u∗)

=

⎛

⎜
⎜
⎝

d1 + 2k11u∗
1 + k12u∗

2 + k13
β+u∗

3
k12u∗

1 – k13u∗
1

(β+u∗
3)2

k21u∗
2 d2 + k21u∗

1 + 2k22u∗
2 + k23u∗

3 k23u∗
2

– k31u∗
2u∗

3
(m+u∗

1)2
k31u∗

3
m+u∗

1
d3 + k31u∗

2
m+u∗

1
+ 2k33u∗

3

⎞

⎟
⎟
⎠ .

It is well known that if for each i ≥ 1, X is invariant under the operator Ku(u∗)�+ Fu(u∗),
then problem (1) has a non-trivial solution of the form ψ = cφ exp(λt) if and only if (λ, c) is
an eigenpair for the matrix –μiKu(u∗) + Fu(u∗), where c is a constant vector. Therefore the
equilibrium u∗ is unstable if at least one eigenvalue λ has a positive real part for some μi.

By some computations, the characteristic polynomial of –μiKu(u∗) + Fu(u∗) is given by

ψi(λ) = λ3 + C2λ
2 + C1λ + C0, (15)

where

C2 = μi

[

d1 + d2 + d3 + 2(k11 + k21)u∗
1 +

(

k12 + 2k22 +
k31

m + u∗
1

)

u∗
2

+ (k23 + 2k33)u∗
3 +

k13

β + u∗
3

]

+ u∗
1 + u∗

2 +
u∗

3
1 + δu∗

1
,

C1 =
(
μiL1 + u∗

1
)(

μiL2 + u∗
2
)

+
(
μiL1 + u∗

1
)
(

μiL3 +
u∗

3
1 + δu∗

1

)

+
(
μiL2 + u∗

2
)
(

μiL3 +
u∗

3
1 + δu∗

1

)

–
(

k13μiu∗
1

(β + u∗
3)2 +

αγ u∗
1u∗

2
(1 + γ u∗

3)2

)(
μik31u∗

2u∗
3

(m + u∗
1)2 +

δu∗
3

2

(1 + δu∗
1)2

)

–
(

μik12u∗
1 +

αu∗
1

1 + γ u∗
3

)
(
μik21u∗

2 – μu∗
2
)

–
(
μik23u∗

2 – ηu∗
2
)μik31u∗

3

m + u∗
1

,

C0 =
(

μik12u∗
1 +

αu∗
1

1 + γ u∗
3

)
(
μu∗

2 – μik21u∗
2
)
(

μiL3 +
u∗

3
1 + δu∗

1

)

+
(
μiL1 + u∗

1
)(

ηu∗
2 – μik23u∗

2
)μik31u∗

3
m + u∗

1

+
(
μiL1 + u∗

1
)(

μiL2 + u∗
2
)
(

μiL3 +
u∗

3
1 + δu∗

1

)
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+
(

μik12u∗
1 +

αu∗
1

1 + γ u∗
3

)
(
ηu∗

2 – μik23u∗
2
)
(

μik31u∗
2u∗

3
(m + u∗

1)2 +
δu∗

3
2

(1 + δu∗
1)2

)

+
μik31u∗

3
m + u∗

1

(
μu∗

2 – μik21u∗
2
)
(

μik13u∗
1

(β + u∗
3)2 +

αγ u∗
1u∗

2
(1 + γ u∗

3)2

)

–
(
μiL2 + u∗

2
)
(

μik13u∗
1

(β + u∗
3)2 +

αγ u∗
1u∗

2
(1 + γ u∗

3)2

)(
μik31u∗

2u∗
3

(m + u∗
1)2 +

δu∗
3

2

(1 + δu∗
1)2

)

.

While

L1 = d1 + 2k11u∗
1 + k12u∗

2 +
k13

β + u∗
3

,

L2 = d2 + k21u∗
1 + 2k22u∗

2 + k23u∗
3,

L3 = d3 + 2k33u∗
3 +

k31u∗
2

m + u∗
1

.

Let λ1(μi), λ2(μi), λ3(μi) be the three roots of ψi(λ) = 0, then λ1(μi)λ2(μi)λ3(μi) = –C0.
In order to have at least one Reλj(μi) > 0, it is sufficient that C0 < 0.

In the following we shall find out the conditions such that C0 < 0. In fact C0 =
det(μiKu(u∗) – Fu(u∗)). By simple computation, it follows that

C0 = P3μ
3
i + P2μ

2
i + P1μi – det

(
Fu

(
u∗)), (16)

where

P3 = L1L2L3 –
k12k23k31u∗

1u∗
2

2u∗
3

(m + u∗
1)2

–
k13k21k31u∗

1u∗
2u∗

3
(m + u∗

1)(β + u∗
3)2 –

k13k31L2u∗
1u∗

2u∗
3

(m + u∗
1)2(β + u∗

3)2 – k12k21L3u∗
1u∗

2 –
k23k31L1u∗

2u∗
3

m + u∗
1

,

P2 = L1L3u∗
2 + L2L3u∗

1 +
L1L2u∗

3
1 + δu∗

1
+

ηk12k31u∗
1u∗

2
2u∗

3
(m + u∗

1)2 –
δk12k23u∗

1u∗
2u∗

3
2

(1 + δu∗
1)2

–
k23k31αu∗

1u∗
2

2u∗
3

(1 + γ u∗
3)(m + u∗

1)2 –
k21k31αγ u∗

1u∗
2

2u∗
3

(m + u∗
1)(1 + γ u∗

3)
+

μk13k31u∗
1u∗

2u∗
3

(m + u∗
1)(β + u∗

3)2

–
k31αγ L2u∗

1u∗
2

2u∗
3

(m + u∗
1)2(1 + γ u∗

3)2 –
k13k31u∗

1u∗
2

2u∗
3

(m + u∗
1)2(β + u∗

3)2 –
δk13L2u∗

1u∗
3

2

(1 + δu∗
1)2(β + u∗

3)2

–
k12k21u∗

1u∗
2u∗

3
1 + δu∗

1
–

αk21L3u∗
1u∗

2
1 + γ u∗

3
+ μk12L3u∗

1u∗
2 +

ηk31L1u∗
2u∗

3
m + u∗

1
–

k23k31u∗
1u∗

2u∗
3

m + u∗
1

,

P1 =
L1u∗

2u∗
3

1 + δu∗
1

+
L2u∗

1u∗
3

1 + δu∗
1

+ L3u∗
1u∗

2 +
k12ηδu∗

1u∗
2u∗

3
2

(1 + δu∗
1)2 –

k23αδu∗
1u∗

2u∗
3

2

(1 + γ u∗
3)(1 + δu∗

1)2

+
k31αηu∗

1u∗
2

2u∗
3

(1 + γ u∗
3)(m + u∗

1)2 +
αγμk31u∗

1u∗
2

2u∗
3

(m + u∗
1)(1 + γ u∗

3)2 –
k31αγ u∗

1u∗
2

3u∗
3

(m + u∗
1)2(1 + γ u∗

3)2

–
αγ δL2u∗

1u∗
2u∗

3
2

(1 + δu∗
1)2(1 + γ u∗

3)2 –
δk13u∗

1u∗
2u∗

3
2

(1 + δu∗
1)2(β + u∗

3)2 –
αk21u∗

1u∗
2u∗

3
(1 + γ u∗

3)(1 + δu∗
1)

+
k12μu∗

1u∗
2u∗

3
1 + δu∗

1
+

μαL3u∗
1u∗

2
1 + γ u∗

3
+

k31ηu∗
1u∗

2u∗
3

m + u∗
1

,
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– det
(
Fu

(
u∗)) =

u∗
1u∗

2u∗
3

1 + δu∗
1

+
δαηu∗

1u∗
2u∗

3
2

(1 + δu∗
1)2(1 + γ u∗

3)

+
αμu∗

1u∗
2u∗

3
(1 + δu∗

1)(1 + γ u∗
3)

–
αδγ u∗

1u∗
2

2u∗
3

2

(1 + δu∗
1)2(1 + γ u∗

3)2 .

Let P̃(ν) = P3ν
3 + P2ν

2 + P1ν – det(Fu(u∗)), and let μ̃1, μ̃2, and μ̃3 be the three roots of
P̃(ν) = 0 with Re(μ̃1) ≤ Re(μ̃2) ≤ Re(μ̃3). Then μ̃1μ̃2μ̃3 = det(Fu(u∗)) = –A0 < 0. Notice
that direct calculations show that P3 > 0, thus one of μ̃1, μ̃2, μ̃3 is real and negative and
the product of the other two is positive.

Our following discussion will cover five cases.

Case 1 k21 is a variation parameter and other parameters are fixed.
Consider the following limits:

lim
k21→∞

P3

k21
= d1L3u∗

1 + 2k11L3u∗
1

2 +
k13d3u∗

1
β + u∗

3
+

2k13k33u∗
1u∗

3
β + u∗

3
+

k13k31βu∗
1u∗

2
(β + u∗

3)2(m + u∗
1)

–
k13k31u∗

1
2u∗

2u∗
3

(m + u∗
1)2(β + u∗

3)2 := h3 > 0,

lim
k21→∞

P2

K21
= L3u∗

1
2 +

(d1 + 2k11u∗
1 + k13

β+u∗
3

)u∗
1u∗

3

1 + δu∗
1

–
k31αγ u∗

1u∗
2

2u∗
3

(m + u∗
1)(1 + γ u∗

3)
–

k31αγ u∗
1

2u∗
2

2u∗
3

(m + u∗
1)2(1 + γ u∗

3)2

–
k13δu∗

1
2u∗

3
2

(1 + δu∗
1)2(β + u∗

3)2 –
αL3u∗

1u∗
2

1 + γ u∗
3

:= h2,

lim
k21→∞

P1

k21
=

(

u∗
1 –

αγ δu∗
1u∗

2u∗
3

(1 + δu∗
1)(1 + γ u∗

3)2 –
αu∗

2
1 + γ u∗

3

)
u∗

1u∗
3

1 + δu∗
1

:= h1.

Note that limk21→∞ P̃(ν) = ν(h3ν
2 + h2ν + h1). Thus, when u∗

1 < αγ δu∗
1u∗

2u∗
3

(1+δu∗
1)(1+γ u∗

3)2 + αu∗
2

1+γ u∗
3

, we
show that h1 < 0 < h3. A continuity argument shows that there exists a positive constant
k∗

21 such that, for k21 ≥ k∗
21, the three roots μ̃1, μ̃2, and μ̃3 of P̃(ν) = 0 are all real and satisfy

lim
k21→∞

μ̃1 =
–h2 –

√
h2

2 – 4h1h3

2h3
,

lim
k21→∞

μ̃2 = 0,

lim
k21→∞

μ̃3 =
–h2 +

√
h2

2 – 4h1h3

2h3
,

and we can conclude that –∞ < μ̃1 < 0 < μ̃2 < μ̃3. Furthermore, we can obtain

P̃(ν) < 0, when ν ∈ (–∞, μ̃1) ∪ (μ̃2, μ̃3).

It is well known that since at least one eigenvalue μi of –� satisfies μi ∈ (μ̃2, μ̃3) for some
i, we have C0 < 0 and the number of sign changes for the characteristic polynomial ψ(λ) is
either one or three. By using Descartes’ rule, ψ(λ) has at least one positive root. Therefore,
we can conclude the following theorem.
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Theorem 4 Suppose that

u∗
1 <

αγ δu∗
1u∗

2u∗
3

(1 + δu∗
1)(1 + γ u∗

3)2 +
αu∗

2
1 + γ u∗

3
(17)

and (10) hold. Then there exists a positive constant k∗
21 such that, for k21 ≥ k∗

21, the uniform
stationary solution u∗ of system (1) is unstable.

Case 2 k23 is a variation parameter and other parameters are fixed.
Consider the following limits:

lim
k23→∞

P3

k23
= L1u3

(
d3 + 2k33u∗

3
)

–
k12k31u∗

1u∗
2

2u∗
3

(m + u∗
1)2 –

k13k31u∗
1u∗

2u∗
3

2

(m + u∗
1)2(β + u∗

3)2 := e3 > 0,

lim
k23→∞

P2

K23
=

(
d3 + 2k33u∗

3
)
u∗

1u∗
3 +

L1u∗
3

2

1 + δu∗
1

–
k12δu∗

1u∗
2u∗

3
2

(1 + δu∗
1)2

–
(1 + 2γ u∗

3)k31αu∗
1u∗

2
2u∗

3
(1 + γ u∗

3)2(m + u∗
1)2 –

k13δu∗
1u∗

3
3

(1 + δu∗
1)2(β + u∗

3)2

:= e2,

lim
k23→∞

P1

k23
=

(

1 –
αδu∗

2
(1 + γ u∗

3)(1 + δu∗
1)

–
αγ δu∗

2u∗
3

(1 + δu∗
1)(1 + γ u∗

3)2

)
u∗

1u∗
3

2

1 + δu∗
1

:= e1.

Noticing limk23→∞ P̃(ν) = ν(e3ν
2 + e2ν + e1). If the parameters satisfy αδu∗

2
(1+γ u∗

3)(1+δu∗
1) +

αγ δu∗
2u∗

3
(1+δu∗

1)(1+γ u∗
3)2 > 1, then e1 < 0 < e3. A continuity argument shows that there exists a positive

constant k∗
23 such that, for k23 ≥ k∗

23, the three roots μ̃1, μ̃2, and μ̃3 of P̃(ν) = 0 are all real
and satisfy

lim
k23→∞

μ̃1 =
–e2 –

√
e2

2 – 4e1e3

2e3
,

lim
k23→∞

μ̃2 = 0,

lim
k23→∞

μ̃3 =
–e2 +

√
e2

2 – 4e1e3

2e3
,

and we can conclude that –∞ < μ̃1 < 0 < μ̃2 < μ̃3. Furthermore, we can obtain

P̃(ν) < 0, when ν ∈ (–∞, μ̃1) ∪ (μ̃2, μ̃3).

It is worth noting that since at least one eigenvalue μi of –� satisfies μi ∈ (μ̃2, μ̃3) for some
i, therefore C0 < 0 and the number of sign changes for the characteristic polynomial ψ(λ)
is either one or three. By using Descartes’ rule, ψ(λ) has at least one positive root. Hence,
we have the following theorem.

Theorem 5 If the condition

αδu∗
2

(1 + γ u∗
3)(1 + δu∗

1)
+

αγ δu∗
2u∗

3
(1 + δu∗

1)(1 + γ u∗
3)2 > 1 (18)
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and (10) are fulfilled, then there exists a positive constant k∗
23 such that the uniform sta-

tionary solution u∗ of system (1) is unstable provided k23 ≥ k∗
23.

Case 3 k31 is a variation parameter and other parameters are fixed.
Consider the following limits:

lim
k31→∞

P3

k31
=

L1L2u∗
2

m + u∗
1

–
k12k23u∗

1u∗
2

2u∗
3

(m + u∗
1)2 –

k13k21u∗
1u∗

2u∗
3

(m + u∗
1)(β + u∗

3)2 –
k13L2u∗

1u∗
2u∗

3
(β + u∗

3)2(m + u∗
1)2

–
k12k21u∗

1u∗
2

2

m + u∗
1

–
k23L1u∗

2u∗
3

m + u∗
1

:= f3 > 0,

lim
k31→∞

P2

K31
= L3u∗

1
2 +

(d1 + 2k11u∗
1 + k13

β+u∗
3

)u∗
1u∗

3

1 + δu∗
1

–
k31αγ u∗

1u∗
2

2u∗
3

(m + u∗
1)(1 + γ u∗

3)

–
k31αγ u∗

1
2u∗

2
2u∗

3
(m + u∗

1)2(1 + γ u∗
3)2 –

k13δu∗
1

2u∗
3

2

(1 + δu∗
1)2(β + u∗

3)2 –
αL3u∗

1u∗
2

1 + γ u∗
3

:= f2,

lim
k31→∞

P1

k31
=

(

u∗
2 + ηu∗

3 +
αηu∗

2u∗
3

(1 + γ u∗
3)(m + u∗

1)
+

μαu∗
2 + 2αγμu∗

2u∗
3

(1 + γ u∗
3)2

–
αγ u∗

2
2u∗

3
(m + u∗

1)(1 + γ u∗
3)2

)
u∗

1u∗
2

m + u∗
1

:= f1.

It is worth mentioning that limk31→∞ P̃(ν) = ν(f3ν
2 + f2ν + f1). Thus, when u∗

2 + ηu∗
3 +

αηu∗
2u∗

3
(1+γ u∗

3)(m+u∗
1) + μαu∗

2+2αγμu∗
2u∗

3
(1+γ u∗

3)2 < αγ u∗
2

2u∗
3

(m+u∗
1)(1+γ u∗

3)2 , we show that f1 < 0 < f3. A continuity argu-
ment shows that there exists a positive constant k∗

31 such that, for k31 ≥ k∗
31, the three

roots μ̃1, μ̃2, and μ̃3 of P̃(ν) = 0 are all real and satisfy

lim
k31→∞

μ̃1 =
–f2 –

√
f 2
2 – 4f1f3

2f3
,

lim
k31→∞

μ̃2 = 0,

lim
k31→∞

μ̃3 =
–f2 +

√
f 2
2 – 4f1f3

2f3
,

and we can conclude that –∞ < μ̃1 < 0 < μ̃2 < μ̃3. Furthermore, we can obtain

P̃(ν) < 0, when ν ∈ (–∞, μ̃1) ∪ (μ̃2, μ̃3).

It is well known that since at least one eigenvalue μi of –� satisfies μi ∈ (μ̃2, μ̃3) for
some i, thus C0 < 0 and the number of sign changes for the characteristic polynomial ψ(λ)
is either one or three. By using Descartes’ rule, ψ(λ) has at least one positive root. There-
fore, we can conclude the following theorem.
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Theorem 6 Suppose that

u∗
2 + ηu∗

3 +
αηu∗

2u∗
3

(1 + γ u∗
3)(m + u∗

1)
+

μαu∗
2 + 2αγμu∗

2u∗
3

(1 + γ u∗
3)2 <

αγ u∗
2

2u∗
3

(m + u∗
1)(1 + γ u∗

3)2 (19)

and (10) are satisfied. Then there exists a positive constant k∗
31 such that, for k31 ≥ k∗

31, the
uniform stationary solution u∗ of cross-diffusion predator–prey system (1) is unstable.

Case 4 k13 is a variation parameter and other parameters are fixed.
Perform the following limits:

lim
k13→∞

P3

k13
=

1
β + u∗

3

(

L2L3 –
k21k31u∗

1u∗
2u∗

3
(m + u∗

1)(β + u∗
3)

–
k31L2u∗

1u∗
2u∗

3
(m + u∗

1)2(β + u∗
3)

–
k23k31u∗

2u∗
3

m + u∗
1

)

:= g3 > 0,

lim
k13→∞

P2

k13
=

L3u∗
2

β + u∗
3

+
L2u∗

3
(β + u∗

3)(1 + δu∗
1)

+
k31ηu∗

2u∗
3

(m + u∗
1)(β + u∗

3)
+

k31μu∗
1u∗

2u∗
3

(m + u∗
1)(β + u∗

3)2

–
k31u∗

1u∗
2

2u∗
3

(m + u∗
1)2(β + u∗

3)2 –
δL2u∗

1u∗
3

2

(1 + δu∗
1)2

:= g2,

lim
k13→∞

P1

k13
=

u∗
2u∗

3
β + u∗

3

(
1

1 + δu∗
1

+
k31η

m + u∗
1

–
δu∗

1u∗
3

1 + δu∗
1

)

:= g1.

Also notice that limk13→∞ P̃(ν) = ν(g3ν
2 + g2ν + g1). Thus, when k31η(1+δu∗

1)
m+u∗

1
+1 < δu∗

1u∗
3, we

show that g1 < 0 < g3. A continuity argument shows that there exists a positive constant
k∗

13 such that, for k13 ≥ k∗
13, the three roots μ̃1, μ̃2, and μ̃3 of P̃(ν) = 0 are all real and satisfy

lim
k13→∞

μ̃1 =
–g2 –

√
g2

2 – 4g1g3

2g3
,

lim
k13→∞

μ̃2 = 0,

lim
k13→∞

μ̃3 =
–g2 +

√
g2

2 – 4g1g3

2g3
,

and we can conclude that –∞ < μ̃1 < 0 < μ̃2 < μ̃3. Furthermore, we can obtain

P̃(ν) < 0, when ν ∈ (–∞, μ̃1) ∪ (μ̃2, μ̃3).

It is remarkable that since at least one eigenvalue μi of –� satisfies μi ∈ (μ̃2, μ̃3) for some
i, hence C0 < 0 and the number of sign changes for the characteristic polynomial ψ(λ) is
either one or three. By using Descartes’ rule, ψ(λ) has at least one positive root. Therefore,
we can obtain the following instability theorem.

Theorem 7 Assume that the parameters satisfy

k31η(1 + δu∗
1)

m + u∗
1

+ 1 < δu∗
1u∗

3 (20)
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and (10). Then there exists a positive constant k∗
13 such that, for k13 ≥ k∗

13, the uniform
stationary solution u∗ of cross-diffusion system with generalist (1) is unstable.

Case 5 k22 is a variation parameter and other parameters are fixed.
Perform the following limits:

lim
k22→∞

P3

k22
= 2u∗

2
(
d1 + 2k11u∗

1 + k12u∗
2
)(

d3 + 2k33u∗
3
)

+
2k31u∗

2
2(d1 + 2k11u∗

1 + k12u∗
2)

m + u∗
1

+
2k13u∗

2(d3 + 2k33u∗
3)

β + u∗
3

+
2k13k31u∗

2
2(mβ + mu∗

3 + βu∗
1)

(m + u∗
1)2(β + u∗

3)2

:= s3 > 0,

lim
k22→∞

P2

k22
= 2L3u∗

1u∗
2 +

2L1u∗
2u∗

3
1 + δu∗

1
–

k31αγ u∗
1u∗

2
3u∗

3
(m + u∗

1)2(1 + γ u∗
3)2 –

δk13u∗
1u∗

2u∗
3

2

(1 + δu∗
1)2(β + u∗

3)2

:= s2,

lim
k22→∞

P1

k22
=

2u∗
1u∗

2u∗
3

1 + δu∗
1

(

1 –
αγ δu∗

2u∗
3

(1 + δu∗
1)(1 + γ u∗

3)2

)

:= s1.

It is worth pointing out that limk22→∞ P̃(ν) = ν(s3ν
2 + s2ν + s1). Thus, when

αγ δu∗
2u∗

3
(1+δu∗

1)(1+γ u∗
3)2 > 1, we show that s1 < 0 < s3. A continuity argument shows that there exists

a positive constant k∗
22 such that, for k22 ≥ k∗

22, the three roots μ̃1, μ̃2, and μ̃3 of P̃(ν) = 0
are all real and satisfy

lim
k22→∞

μ̃1 =
–s2 –

√
s2

2 – 4s1s3

2s3
,

lim
k22→∞

μ̃2 = 0,

lim
k22→∞

μ̃3 =
–s2 +

√
s2

2 – 4s1s3

2s3
,

and we can conclude that –∞ < μ̃1 < 0 < μ̃2 < μ̃3. Furthermore, we can obtain

P̃(ν) < 0, when ν ∈ (–∞, μ̃1) ∪ (μ̃2, μ̃3).

It is clear that since at least one eigenvalue μi of –� satisfies μi ∈ (μ̃2, μ̃3) for some i,
therefore C0 < 0 and the number of sign changes for the characteristic polynomial ψ(λ)
is either one or three. By using Descartes’ rule, ψ(λ) has at least one positive root. So, we
can get the following instability theorem.

Theorem 8 Suppose that

αγ δu∗
2u∗

3
(1 + δu∗

1)(1 + γ u∗
3)2 > 1 (21)

and (10) are fulfilled. Then there exists a positive constant k∗
22 such that, for k22 ≥ k∗

22, the
uniform stationary solution u∗ of (1) is unstable.
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Remark
(A) By using the arguments similar to above, we can easily know that if the other

constants are fixed, whereas self-diffusion coefficient k11 or k33 is sufficiently large,
then the self-diffusion predator–prey system cannot induce Turing instability.

(B) k13, k21, k22, k23, k31 can be chosen as variation parameters since the number of sign
changes for the polynomial (16) could be bigger than one for large values of k13, k21,
k22, k23, k31. By using Descartes’ rule, polynomial (16) could have at least a positive
root, which leads to linear instability.

7 Examples
In this section, we will illustrate the correctness of our results by five examples. In order to
facilitate the reading for cross-disciplinary readers, we need to point out that persistence
means that all populations are persistent; symbiotic mutualism is a form of symbiosis, in
which both sides in symbiosis are able to derive some kind of living benefit from each
other; self-diffusion means that the per capita diffusion of each species is influenced only
by its own density; cross-diffusion refers to the per capita diffusion rate of each species
which is influenced by the other ones; and a generalist predator indicates a population
that can feed on multiple species. The parameter values a, b, c are intrinsic growth rates
of the three species, respectively, while α, μ, η, γ , δ describe inter-species interactions.

Example 1 This example is for Theorems 2, 3, and 4 for Case 1. Let a = 3, b = 2, c = 1,
α = 1, γ = 1, δ = 1

2 , η = 2, μ = 3. Then u∗
1 = –9+

√
97

2 , u∗
2 = –14 + 2

√
97, u∗

3 = –5+
√

97
4 . Using

direct calculation, it is easy to see that conditions (10) and (17) all hold. Therefore the
positive equilibrium u∗ is linearly stable for ODEs (9) and reaction–diffusion system (12),
whereas unstable for cross-reaction–diffusion system (1).

Example 2 This example is for Theorems 2, 3, and 5 for Case 2. Let a = 4, b = 1, c = 1,
α = 2, γ = 1, δ = 1

2 , η = 1, μ = 2. Then u∗
1 = –6 + 2

√
11, u∗

2 = –13 + 5
√

11, u∗
3 = –2 +

√
11. By

using direct calculation, it is easy to find that conditions (10) and (18) all hold. Therefore
the positive equilibrium u∗ is linearly stable for ODEs (9) and reaction–diffusion system
(12), whereas unstable for cross-reaction–diffusion system (1).

Example 3 This example is for Theorems 2, 3, and 6 for Case 3. Let a = 2
5 , b = 1

10 , c = 1,
α = 2, γ = 1, δ = 1

2 , η = 1
10 , μ = 1

10 , m = 1
10,000 . Then u∗

1 = –31+
√

1041
10 , u∗

2 = –51+3
√

1041
200 , u∗

3 =
–11+

√
1041

20 . By virtue of direct computation, it is easy to verify that conditions (10) and (19)
all hold. Therefore the positive equilibrium u∗ is linearly stable for ODEs (9) and reaction–
diffusion system (12), whereas unstable for cross reaction–diffusion system (1).

Example 4 This example is for Theorems 2, 3, and 7 for Case 4. Let a = 3, b = 1, c = 1, α = 2,
γ = 1, δ = 1, η = 1, μ = 2, k31 = 8, m = 1. Then u∗

1 = –3+
√

11, u∗
2 = –7+3

√
11, u∗

3 = –2+
√

11.
By direct calculation, it is easy to prove that conditions (10) and (20) all hold. Therefore
the positive equilibrium u∗ is linearly stable for ODEs (9) and reaction–diffusion system
(12), whereas unstable for cross-reaction–diffusion system (1).

Example 5 This example is for Theorems 2, 3, and 8 for Case 5. Let a = 4, b = 1, c = 2,
α = 2, γ = 1, δ = 1, η = 1, μ = 3. Then u∗

1 = –5+
√

41
4 , u∗

2 = –13+5
√

41
4 , u∗

3 = –1+
√

41
2 . By use of

direct calculation, it is easy to know that conditions (10) and (21) all hold. Therefore the
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positive equilibrium u∗ is linearly stable for ODEs (9) and reaction–diffusion system (12),
whereas unstable for cross-reaction–diffusion system (1).

8 Conclusions and discussions
In this paper, we investigate a strongly coupled cross-diffusion predator–prey system with
generalist predator (1). By virtue of the comparison principle and mathematical analy-
sis, we derive sufficient conditions of persistence of system (1) without self- and cross-
diffusion. By linear stability analysis we obtain that a unique positive equilibrium is locally
asymptotically stable for ODE and PDE systems without self-and cross-diffusion under
certain conditions. Furthermore, we also get Turing instability emergence conditions for
cross-diffusion and self-diffusion (only as k22 is sufficiently large) predator–prey system.
We illustrate the roles of diffusion, self-reaction diffusion, and nonlinear cross-diffusions
in formation of stationary patterns. The above five instability theorems further show that
self-diffusion and cross-diffusion can drive the development of spatially homogeneous
density distribution and play an important role in driving Turing patterns in our predator–
prey cross-diffusion system with generalist predator. We explain the correctness of the
important results by virtue of numerical examples.

From a biological point of view, under parameter condition (2), we first prove that the
predator–prey reaction–diffusion system (1) with no self- and cross-diffusion is persis-
tent, and verify that its uniform positive steady state u∗ is asymptotically stable for ODEs
and PDEs of system (1) under condition (10). Hence, the system does not belong to the
classical Turing instability scheme. Next, by a linear stability method, the results show that
self-diffusions k11, k33 and cross-diffusion k12 cannot produce instability for the predator–
prey system with generalist and create Turing instability. Finally, we investigate the roles of
cross-diffusions and self-diffusion in the stability of positive equilibrium u∗ and find that
most of them may be helpful to create Turing instability under certain parameter condi-
tions. Actually, the corresponding uniform steady state of the system with cross-diffusions
k21, k23, k31, k13 or only self-diffusion k22 can be made unstable by increasing these cross-
diffusion coefficients or self-diffusion to sufficiently large values, namely Turing instability
can occur.

So self-diffusion and cross-diffusion can destabilize a uniform positive equilibrium
which is stable for system (9) and for weakly coupled reaction–diffusion system (12),
whereas Turing instability and the stationary patterns arise from the effect of cross-
diffusion and partial self-diffusion. Our results obtained show not only that system (1) is
capable of producing much more complex dynamics than the corresponding weakly cou-
pled system (12) or single cross-diffusion system (1) with k12 > 0, k13 = k23 = k21 = k31 = 0,
but also some interesting combining effects of intra-species competitions, cross-diffusion,
and inter-species interactions.
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