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1 Introduction
Third-order equations play a significant role in various aspects of applied mathematics
and physics. Take draining or coating fluid-flow problems for example, surface tension
forces are important in these problems and third-order ordinary differential equations
serve well to describe them. Besides, third-order equations also work out well in the de-
flection of a curved beam having a constant or varying cross-section, a three-layer beam,
electromagnetic waves, or gravity driven flows, etc. To learn more about the applications
of the third-order boundary value problems, readers can refer to [1] and related themes.

Recently, many authors have widely studied the existence of multiple solutions to some
boundary value problems; to see the details, we refer the readers to [1–5] and the refer-
ences therein.

Since science and technology are developing at an unprecedented speed, a lot of bound-
ary value problems with integral boundary conditions are applied in different industries
and fields, for instance, thermal conduction, chemical engineering, semiconductor, under-
ground water flow, hydrodynamic, thermo-elasticity, etc.; these can be found in [6–8] and
related topics. The point is that boundary value problems with integral boundary condi-
tions are made up of a very interesting and significant class of problems, since they include
two, three, multi-point, and nonlocal boundary value problems as special cases.

Although the existence of multiple solutions to some boundary value problems with in-
tegral boundary conditions has been studied widely by many authors nowadays, we find
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that most authors study the second-order and fourth-order differential equations involv-
ing integral boundary conditions; to give example, the readers can see [9–13] and the ref-
erences therein. As far as we are concerned, there are few papers dealing with third-order
differential equations with Stieltjes integral boundary conditions in the existing literature.

We noted that Graef and Webb in [14] dealt with the existence of multiple positive so-
lutions to the boundary value problem

⎧
⎨

⎩

u′′′(t) = g(t)f (t, u(t)), 0 < t < 1,

u(0) = 0, u′(p) = 0, u′′(1) = λ[u′′],
(1.1)

where p > 1
2 , and λ[v] =

∫ 1
0 v(t) d�(t) is a typical linear function on C[0, 1] along with

a Riemann–Stieltjes integral and � is a function of bounded variation which suits well.
Given that λ can cover sums and integrals as well, it is a more ordinary setup.

We also noted that in [15] Jankowski proved the existence of at least three non-negative
solutions to the following nonlocal boundary value problem by using a fixed point theo-
rem:

⎧
⎨

⎩

x′′′(t) + g(t)f (t, x(α(t))) = 0, 0 < t < 1,

x(0) = x′′(0) = 0, x(1) = βx(η) + λ[x], β > 0, 0 < η < 1,
(1.2)

where λ is a linear function under the circumstance that λ[x] =
∫ 1

0 x(t) d�(t), which bears
Stieltjes integral with a befitting function � of bounded variation.

We cannot help pointing out that only x(1) is related to a Stieltjes integral in the above
boundary condition in (1.2), and this is the specific source where our thoughts came from.
That is, whether there will be some interesting findings when x(0) is also related to a Stielt-
jes integral.

Under the motivation of the above works we talked about, we finally decided to research
the successive iteration and positive solutions to the following third-order boundary value
problem with advanced arguments and Stieltjes integral boundary conditions in this pa-
per:

⎧
⎨

⎩

u′′′(t) + q(t)f (t, u(α(t))) = 0, 0 < t < 1,

u(0) = βu(η) + λ[u], u′′(0) = 0, u(1) = γ u(η) + λ[u],
(1.3)

where 0 < η < 1, 0 ≤ γ 2 ≤ β < γ < 1, α(t) ∈ C([0, 1] → [0, 1]), and α(t) ≥ t for t ∈ [0, 1], � is
an appropriate bounded variation function and λ[u] =

∫ 1
0 u(t) d�(t) bearing a Riemann–

Stieltjes integral function. It is worthy to mention that λ[u] is not always positive for all
positive u here.

When it comes to our work here, we will show that not only can we prove the existence
of positive solutions to problem (1.3), but also a few of successive iterative schemes with
either a known constant function starting point or a simple linear function one will be set
up to approach the solutions. Last but not least, a perfect example is shown at the end of
our paper to represent the applicability of the above mentioned methods and results. We
must point out that acquiring the knowledge of how to find the solutions is perhaps the
most significant skill when we turn to numerical analysis and application.
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2 Preliminaries
At the beginning, we will show some important and necessary definitions here by using
the theories of cones in Banach spaces.

Definition 2.1 Let E be a real Banach space. A nonempty closed set P ⊂ E is said to be a
cone provided the following hypotheses are satisfied:

(i) au + bv ∈ P for all u, v ∈ P and all a ≥ 0, b ≥ 0, and
(ii) u, –u ∈ P implies u = 0.

Definition 2.2 The map α is identified as being concave on [0, 1] if

α
(
tu + (1 – t)v

) ≥ tα(u) + (1 – t)α(v)

for all u, v ∈ [0, 1] and t ∈ [0, 1].

Definition 2.3 An operator is called completely continuous if it is continuous and maps
bounded sets into precompact sets.

We are concerned with the Banach space E = C[0, 1] facilitated with the norm ‖u‖ =
max0≤t≤1 |u(t)|. And we denote the cone P ⊂ E by

P =
{

u ∈∣
∣ u(t) ≥ 0, u is concave on [0, 1], and min

η≤t≤1
u(t) ≥ δ‖u‖,λ[u] ≥ 0

}
,

where

δ = min

{
γ (1 – η)
1 – γ η

,
γ η

1 – β(1 – η)

}

.

Lemma 2.1 For y ∈ L[0, 1], then the boundary value problem

⎧
⎨

⎩

u′′′(t) = –y(t), 0 < t < 1,

u(0) = βu(η) + λ[u], u′′(0) = 0, u(1) = γ u(η) + λ[u]
(2.1)

has a unique solution

u(t) =
1 – (γ – β)η + (γ – β)t

1 – β – (γ – β)η
λ[u] +

β + (γ – β)t
1 – β – (γ – β)η

∫ 1

0
F(η, s)y(s) ds

+
∫ 1

0
F(t, s)y(s) ds,

where

F(t, s) =

⎧
⎨

⎩

1
2 t(1 – s)2, 0 ≤ t ≤ s ≤ 1,
1
2 (1 – t)(t – s2), 0 ≤ s ≤ t ≤ 1.

(2.2)

Proof Facilitated by (2.1), we have

u(t) = u(0) + u′(0)t –
1
2

∫ t

0
(t – s)2y(s) ds, 0 ≤ t ≤ 1.
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And then we can obtain

u′(0) = u(1) – u(0) +
1
2

∫ 1

0
(1 – s)2y(s) ds.

Under the boundary condition in (2.1), we can get that

u(t) =
(
β + (γ – β)t

)
u(η) + λ[u] +

∫ 1

0
F(t, s)y(s) ds, 0 ≤ t ≤ 1.

Thus

u(η) =
1

1 – β – (γ – β)η
λ[u] +

1
1 – β – (γ – β)η

∫ 1

0
F(η, s)y(s) ds, 0 ≤ t ≤ 1.

Therefore, we get the solution to the problem as follows:

u(t) =
1 – (γ – β)η + (γ – β)t

1 – β – (γ – β)η
λ[u] +

β + (γ – β)t
1 – β – (γ – β)η

∫ 1

0
F(η, s)y(s) ds

+
∫ 1

0
F(t, s)y(s) ds.

So, the proof is completed. �

Now we define an operator T : P → E by

(Tu)(t) = u(t)

=
1 – (γ – β)η + (γ – β)t

1 – β – (γ – β)η
λ[u] +

β + (γ – β)t
1 – β – (γ – β)η

∫ 1

0
F(η, s)q(s)f

(
s, u

(
α(s)

))
ds

+
∫ 1

0
F(t, s)q(s)f

(
s, u

(
α(s)

))
ds. (2.3)

According to Lemma 2.1, boundary value problem (1.3) has a solution u = u(t) if and only
if u is a fixed point of T .

During the following proof, we will assume that (H1)–(H4) are satisfied.
(H1): f (t, x) ∈ C([0, 1] × [0, +∞) → [0, +∞)).
(H2): q(t) is a nonnegative continuous function on [0, 1], q(t) 
≡ 0 on any subinterval of

(0, 1).
(H3):

∫ 1
0 d�(t) ≥ 0,

∫ 1
0 t d�(t) ≥ 0,

∫ 1
0 F(t, s) d�(t) ≥ 0, 0 < s < 1.

(H4): 1 – β – (γ – β)η > 0.

Lemma 2.2 Since (H1)–(H4) hold, then T : P → P defined by (2.3) is completely continu-
ous.

Proof Through (2.3), we have

(Tu)′′(t) = –
∫ t

0
q(s)f

(
s, u

(
α(s)

))
ds ≤ 0.

It is easy to notice that (Tu)(t) is concave on [0, 1].
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Besides, by (2.3)

(Tu)(0) =
1 – (γ – β)η

1 – β – (γ – β)η
λ[u] +

β

1 – β – (γ – β)η

∫ 1

0
F(η, s)q(s)f

(
s, u

(
α(s)

))
ds ≥ 0,

and

(Tu)(1) =
1 – (γ – β)η + (γ – β)

1 – β – (γ – β)η
λ[u]

+
γ

1 – β – (γ – β)η

∫ 1

0
F(η, s)q(s)f

(
s, u

(
α(s)

))
ds ≥ 0.

Then it follows that Tu is nonnegative on [0, 1].
Then, according to (H3), we can get

�[Tu] =
∫ 1

0

(
1 – (γ – β)η + (γ – β)t

1 – β – (γ – β)η
λ[u]

+
β + (γ – β)t

1 – β – (γ – β)η

∫ 1

0
F(η, s)q(s)f

(
s, u

(
α(s)

))
ds

+
∫ 1

0
F(t, s)q(s)f

(
s, u

(
α(s)

))
ds

)

d�(t) ≥ 0.

On the other hand, we must show that minη≤t≤1(Tu)(t) ≥ δ‖Tu‖.
Because of the concavity of Tu, we can obtain that there exists σ ∈ [0, 1] such that ‖Tu‖ =

(Tu)(σ ).
When η ≥ σ , we have minη≤t≤1(Tu)(t) = (Tu)(1) and

(Tu)(σ ) – (Tu)(1)
1 – σ

≤ (Tu)(η) – (Tu)(1)
1 – η

,

then

‖Tu‖ ≤ 1
1 – η

(Tu)(η) –
η

1 – η
(Tu)(1).

Uniting the boundary condition in (1.3), we can have that

min
η≤t≤1

(Tu)(t) ≥ γ (1 – η)
1 – γ η

‖Tu‖. (2.4)

When η < σ , we have minη≤t≤1(Tu)(t) = min{(Tu)(η), (Tu)(1)} and

(Tu)(σ ) – (Tu)(0)
σ

≤ (Tu)(η) – (Tu)(0)
η

,

then

‖Tu‖ ≤ 1
η

(Tu)(η) –
1 – η

η
(Tu)(0).
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Combining the boundary condition in (1.3), we can obtain that

(Tu)(η) ≥ η

1 – β(1 – η)
‖Tu‖,

and

(Tu)(1) ≥ γ η

1 – β(1 – η)
‖Tu‖.

Hence, we get

min
η≤t≤1

(Tu)(t) ≥ γ η

1 – β(1 – η)
‖Tu‖. (2.5)

Given (2.4) and (2.5), we can get that minη≤t≤1(Tu)(t) ≥ δ‖Tu‖.
It is easy to see that T is continuous. Then, let 
 ⊂ P be a bounded set, the proof that

T
 is bounded and equicontinuous is easy and obvious. Then the Arzela–Ascoli theorem
makes sure that T
 is relatively compact, which means T is compact. Then we obtain that
T is completely continuous.

So, based on what has been discussed above, we can arrive at the conclusion that T :
P → P is completely continuous. �

3 Main results
For the convenience of next work, we denote

A =
γ

1–β–(γ –β)η
∫ 1

0 F(η, s)q(s) ds +
∫ 1

0
1
8 (1 + s)2(1 – s)2q(s) ds

1 – 1+(γ –β)(1–η)
1–β–(γ –β)η

∫ 1
0 d�(t)

,

B =
γ

1 – β – (γ – β)η

∫ 1

η

F(η, s)q(s) ds.

Theorem 3.1 Assume that (H1)–(H4) hold and there exists 0 < b < a such that
(H5): f (t, x1) ≤ f (t, x2) for any 0 ≤ t ≤ 1, 0 ≤ x1 ≤ x2 ≤ a;
(H6): sup0≤t≤1 f (t, a) ≤ a

A , infη≤t≤1 f (t, δb) ≥ b
B ;

(H7): f (t, 0) 
≡ 0 for 0 ≤ t ≤ 1.
Thus we can say that the boundary value problem (1.3) has at least two positive concave
solutions w∗ and v∗ such that

b ≤ ∥
∥w∗∥∥ ≤ a, min

η≤t≤1
w∗(t) ≥ δ

∥
∥w∗∥∥, and

w∗ = lim
n→∞ wn = lim

n→∞ Tnw0, where w0(t) = a, 0 ≤ t ≤ 1,

b ≤ ∥
∥v∗∥∥ ≤ a, min

η≤t≤1
v∗(t) ≥ δ

∥
∥v∗∥∥, and

v∗ = lim
n→∞ vn = lim

n→∞ Tnv0, where v0(t) =
b
γ

(
β + (γ – β)t

)
, 0 ≤ t ≤ 1,

where (Tu)(t) is defined by (2.3).
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The successive iterative schemes in the theorem are w0(t) = a, wn+1 = Twn = Tnw0, n =
0, 1, 2, . . . , which starts off with the constant function, and v0(t) = b

γ
(β + (γ – β)t), vn+1 =

Tvn = Tnv0, n = 0, 1, 2, . . . , which starts off with a known simple linear function.

Proof We denote P[b, a] = {u ∈ P | b ≤ ‖u‖ ≤ a}.
In the following content of proof, we will firstly prove that T : P[b, a] → P[b, a].
If u ∈ P[b, a], then

0 ≤ u(t) ≤ max
0≤t≤1

u(t) = ‖u‖ ≤ a, and min
η≤t≤1

u(t) ≥ δ‖u‖ ≥ δb.

Therefore, under assumptions (H5) and (H6), we get

0 ≤ f
(
t, u(t)

) ≤ f (t, a) ≤ sup
0≤t≤1

f (t, a) ≤ a
A

for 0 ≤ t ≤ 1,

f
(
t, u(t)

) ≥ f (t, δb) ≥ inf
η≤t≤1

f (t, δb) ≥ b
B

for η ≤ t ≤ 1.

For any u ∈ P[b, a], by Lemma 2.2, we know that Tu ∈ P and

∥
∥(Tu)(t)

∥
∥ = max

0≤t≤1
(Tu)(t)

≤ 1 – (γ – β)η + (γ – β)
1 – β – (γ – β)η

λ[u]

+
β + (γ – β)

1 – β – (γ – β)η

∫ 1

0
F(η, s)q(s)f

(
s, u

(
α(s)

))
ds

+
∫ 1

0

1
8

(1 + s)2(1 – s)2q(s)f
(
s, u

(
α(s)

))
ds

≤ a
1 + (γ – β)(1 – η)
1 – β – (γ – β)η

∫ 1

0
d�(t) +

a
A

γ

1 – β – (γ – β)η

∫ 1

0
F(η, s)q(s) ds

+
a
A

∫ 1

0

1
8

(1 + s)2(1 – s)2q(s) ds

≤ a
(

1 + (γ – β)(1 – η)
1 – β – (γ – β)η

∫ 1

0
d�(t) +

1
A

γ

1 – β – (γ – β)η

∫ 1

0
F(η, s)q(s) ds

+
1
A

∫ 1

0

1
8

(1 + s)2(1 – s)2q(s) ds
)

= a,

and

∥
∥(Tu)(t)

∥
∥ = max

0≤t≤1
(Tu)(t)

≥ 1
1 – β – (γ – β)η

λ[u] +
β + (γ – β)η

1 – β – (γ – β)η

∫ 1

0
F(η, s)q(s)f

(
s, u

(
α(s)

))
ds

+
∫ 1

0
F(η, s)q(s)f

(
s, u

(
α(s)

))
ds

≥ 1
1 – β – (γ – β)η

∫ 1

η

F(η, s)q(s)f
(
s, u

(
α(s)

))
ds
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≥ b
B

1
1 – β – (γ – β)η

∫ 1

η

F(η, s)q(s) ds

≥ b.

Thus, we get b ≤ ‖Tu‖ ≤ a. So, we get that T : P[b, a] → P[b, a].
Let w0(t) = a, 0 ≤ t ≤ 1, then w0(t) ∈ P[b, a]. Let w1 = Tw0, then w1 ∈ P[b, a]. We denote

wn+1 = Twn, n = 0, 1, 2, . . . . Then we have wn ⊆ P[b, a], n = 1, 2, . . . . Since T is completely
continuous, we assert that {wn}∞n=1 is a sequentially compact set.

Then we will search the convergence property of the iterative scheme since

w1(t) = Tw0(t) ≤ a = w0(t),

w2(t) = Tw1(t) ≤ Tw0(t) = w1(t).

After calculation, the iterative scheme is clear, then

wn+1 ≤ wn, 0 ≤ t ≤ 1, n = 0, 1, 2, . . . .

Thus, we can get that there exists w∗ ∈ P[b, a] such that wn → w∗. Combining with the
continuity of T and wn+1 = Twn, we obtain that Tw∗ = w∗.

On the other hand, another way to approach this is to start off with a linear function.
Let v0(t) = b

γ
(β + (γ – β)t), 0 ≤ t ≤ 1, then v0(t) ∈ P[b, a]. Let v1 = Tv0, then v1 ∈ P[b, a].

We denote vn+1 = Tvn, n = 0, 1, 2, . . . . Then we have vn ⊆ P[b, a], n = 1, 2, . . . . Since T is
completely continuous, we assert that {vn}∞n=1 is a sequentially compact set.

In a similar way, since v1 = Tv0 ∈ P[b, a] and

v1 = Tv0(t)

=
1 – (γ – β)η + (γ – β)t

1 – β – (γ – β)η
λ[u] +

β + (γ – β)t
1 – β – (γ – β)η

∫ 1

0
F(η, s)q(s)f

(
s, v0

(
α(s)

))
ds

+
∫ 1

0
F(t, s)q(s)f

(
s, v0

(
α(s)

))
ds

≥ β + (γ – β)t
1 – β – (γ – β)η

∫ 1

η

F(η, s)q(s)f
(
s, v0

(
α(s)

))
ds

≥ 1
γ

b
(
β + (γ – β)t

)

= v0(t).

Through a similar calculation argument, we can easily get that

vn+1 ≥ vn, 0 ≤ t ≤ 1, n = 0, 1, 2, . . . .

Hence there exists v∗ ∈ P[b, a] such that vn → v∗. Combining with the continuity of T and
vn+1 = Tvn, we get Tv∗ = v∗.

Assumption (H7) indicates that f (t, 0) 
≡ 0, 0 ≤ t ≤ 1, then the zero function is not the
solution of (1.3). Thus we have v∗ > 0 for 0 < t < 1.

It is well known that each fixed point of T in P is a solution of (1.3). Hence, we assert that
the boundary value problem (1.3) has at least two positive concave solutions w∗ and v∗.



Sun Advances in Difference Equations  (2018) 2018:218 Page 9 of 11

The proof is completed. �

Remark 3.1 If limn→∞ wn 
= limn→∞ vn, then w∗ and v∗ are two positive concave solutions
of problem (1.3). And if limn→∞ wn = limn→∞ vn, then w∗ = v∗ is a positive concave solution
of problem (1.3).

The following corollary can be obtained easily.

Corollary 3.1 Assume that (H1)–(H5) and (H7) hold, and there exists a > 0 such that
(H8): liml→0 infη≤t≤1

f (t,l)
l > 1

δB , liml→+∞ sup0≤t≤1
f (t,l)

l < 1
A

(particularly, liml→0 infη≤t≤1
f (t,l)

l = +∞, liml→+∞ sup0≤t≤1
f (t,l)

l = 0.)
Then the boundary value problem (1.3) has at least two positive symmetric concave solu-
tions w∗ and v∗ such that the conclusion of Theorem 3.1 holds.

4 Example
In the following part, we will discuss an example and simulations. Then we will get a per-
fect result by using the method above.

Example 4.1 Let η = 1
2 and q(t) = 1, we consider the following boundary value problem:

⎧
⎨

⎩

u′′′(t) + f (t, u(α(t))) = 0, 0 < t < 1,

u(0) = 1
4 u( 1

2 ) + λ[u], u′′(0) = 0, u(1) = 1
2 u( 1

2 ) + λ[u],
(4.1)

where

λ[u] =
∫ 1

0
(2t – 1)u(t) dt,

f
(
t, u

(
α(t)

))
= t + 130

(
u(

√
t)

) 1
16 .

From calculation we can get that

δ =
2
7

, A =
7

60
, B =

1
120

.

The verification of conditions (H1)–(H5), (H7) is very easy to complete, then we set b = 1,
a = 21, then it also satisfies

sup
0≤t≤1

f (t, a) ≤ a
A

, inf
1
2 ≤t≤1

f
(

t,
2
7

b
)

≥ b
B

.

So all the hypotheses of Theorem 3.1 are fulfilled, and we can obtain that the boundary
value problem (4.1) has at least two positive concave solutions w∗ and v∗ such that

1 ≤ ∥
∥w∗∥∥ ≤ 21, min

1
2 ≤t≤1

w∗(t) ≥ 2
7
∥
∥w∗∥∥, and

w∗ = lim
n→∞ wn = lim

n→∞ Tnw0, where w0(t) = 21, 0 ≤ t ≤ 1,

1 ≤ ∥
∥v∗∥∥ ≤ 21, min

1
2 ≤t≤1

v∗(t) ≥ 2
7
∥
∥v∗∥∥, and
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v∗ = lim
n→∞ vn = lim

n→∞ Tnv0, where v0(t) =
1
2

+
1
2

t, 0 ≤ t ≤ 1,

where (Tu)(t) is defined by (2.3).
For n = 0, 1, 2, . . . , the two iterative schemes are as follows:

w0(t) = 21,

w1(t) = –
1

24
t4 –

65 × 7
1

16

3
15
16

t3 +
(

47
960

+
299 × 7

1
16

4 × 3
15
16

)

t +
7

960
+

13 × 21
1

16

4
,

. . . ,

wn+1(t) = (Twn)(t)

=
1
5

(7 + 2t)
∫ 1

0
(2t – 1)wn(t) dt +

2
5

(1 + t)
∫ 1

0
F
(

1
2

, s
)

(
s + 130

(
wn(

√
s)

) 1
16

)
ds

+
∫ 1

0
F(t, s)

(
s + 130

(
wn(

√
s)

) 1
16

)
ds,

which starts off with a constant function, and

v0(t) =
1
2

+
1
2

t,

v1(t) = –
1

24
t4 –

32,768 × 2
15
16 (1 +

√
t)

1
16

3201
t3 –

95,977,472 × 2
15
16 (1 +

√
t)

1
16

71,993,691
t

5
2

+
2,078,769,152 × 2

15
16 (1 +

√
t)

1
16

3201
t2 –

16,640 × 2
15
16

561
t2

+
113,410,048 × 2

15
16 (1 +

√
t)

1
16

71,993,691
t

3
2 –

2,037,383,168 × 2
15
16 (1 +

√
t)

1
16

71,993,691
t

+
22,847,488 × 2 7

8 (2 +
√

2)
1

16

51,424,065
t –

376,832 × 2 3
8 (2 +

√
2)

1
16

7,346,295
t

+
2,885,841,536 × 2

15
16

71,993,691
t +

70,488,247
41,065,920

t –
41,943,040 × 2

15
16 (1 +

√
t)

1
16

71,993,691
√

t

+
671,088,640 × 2

15
16 (1 +

√
t)

1
16

71,993,691
+

22,847,488 × 2 7
8 (2 +

√
2)

1
16

51,424,065

–
376,832 × 2 3

8 (2 +
√

2)
1

16

7,346,295
–

197,254,528 × 2
15
16

23,997,897
+

48,825,821
123,197,760

,

. . . ,

vn+1(t) = (Tvn)(t)

=
1
5

(7 + 2t)
∫ 1

0
(2t – 1)vn(t) dt +

2
5

(1 + t)
∫ 1

0
F
(

1
2

, s
)

(
s + 130

(
vn(

√
s)

) 1
16

)
ds

+
∫ 1

0
F(t, s)

(
s + 130

(
vn(

√
s)

) 1
16

)
ds,

which starts off with a known simple linear function.
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