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Abstract
In this article, we formulate nabla fractional sums and differences of order 0 < α ≤ 1
on the time scale hZ, where 0 < h≤ 1. Then, we prove that if the nabla
h-Riemann–Liouville (RL) fractional difference operator (a∇α

h y)(t) > 0, then y(t) is
α-increasing. Conversely, if y(t) is α-increasing and y(a) > 0, then (a∇α

h y)(t) > 0. The
monotonicity results for the nabla h-Caputo fractional difference operator are also
concluded by using the relation between h-nabla RL and Caputo fractional difference
operators. It is observed that the reported monotonicity coefficient is not affected by
the step h. We formulate a nabla h-fractional difference initial value problem as well.
Finally, we furniture our results by proving a fractional difference version of the Mean
Value Theorem (MVT) on hZ.

Keywords: Nabla Riemann–Liouville h-fractional difference; Nabla h-Caputo
fractional difference; h-Discrete fractional mean value theorem

1 Introduction
Due to their successful applications in many branches of science and engineering, tech-
niques of fractional calculus have been under focus by many researchers in the past and
in the present decades [1–10]. The theory of fractional sums with delta operator and the
fractional differences with nabla operators were firstly introduced in [11]. Extensive de-
velopment of the theory can be found in [12–31]. The monotonicity properties of delta
and nabla fractional operators were studied in [32–36]. It is worth mentioning that Atıcı
et al. in [34] studied the monotonicity properties of delta fractional differences and ob-
tained a delta-fractional difference version of the mean-value theorem. In [37], interest-
ing monotonicity results were provided using the dual identities related to delta and nabla
fractional operators. In [38], the authors studied the relationship between the discrete se-
quential fractional operators and monotonicity. Recently, in [39–45], fractional operators
with Mittag–Leffler and exponential “non-singular” kernels have been studied together
with their discrete versions, and the monotonicity has been investigated. Motivated by all
the above-mentioned works, we prove interesting monotonicity results with mean value
theorem as an application in this paper for nabla fractional differences in the time scale
hZ, 0 < h ≤ 1 (called h-nabla fractional differences), which is considered as a generalized
form of the monotonicity results when h = 1. Also, working on hZ, 0 < h < 1 guarantees
more accurate approximations for the solutions of fractional dynamical systems.
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The article is organized as follows. In Sect. 2, we present the main definitions and impor-
tant information needed in this study, and in the third section we present the monotonic-
ity analysis of the fractional difference operator. In Sect. 4 we formulate an initial value
h-fractional difference problem in the sense of Riemann. Finally, we have the application
on the mean value theorem and then the conclusions are presented.

2 Definitions and preliminary results
Definition 2.1 The backward difference operator on hZ is defined by

∇hf (t) =
f (t) – f (t – h)

h
,

and the forward difference operator on hZ is defined by

�hf (t) =
f (t + h) – f (t)

h
.

Definition 2.2 The backward jump operator on the time scale hZ is defined by ρh(t) =
t – h and the forward jump operator is defined by σh(t) = t + h.

For a, b ∈ R with a < b, b–a
h ∈ N and 0 < h ≤ 1, we use the notations Na,h = {a, a + h,

a + 2h, . . .} and b,hN = {b, b – h, b – 2h, . . .}.

Definition 2.3 Let α ∈ R and 0 < h ≤ 1, the nabla h-factorial of t is defined by

tα
h = hα

�( t
h + α)

�( t
h )

such that t ∈ R – {. . . , –2h, –h, 0}, 0α
h = 0 and dividing by poles leads to zero.

Lemma 2.1 For α > 0 and h > 0, tα
h is increasing on N0,h.

Proof

∇htα
h =

tα
h – (t – h)αh

h
=

1
h
(
tα
h – (t – h)αh

)
=

1
h

(
hα

�( t
h + α)

�( t
h )

– hα
�( (t–h)

h + α)
�( t–h

h )

)

=
hα

h

(
�( t

h + α)
�( t

h )
–

�( t
h + α – 1)

�( t
h – 1)

)
= hα–1

(
�( t

h + α – 1)
�( t

h – 1)

)( t
h + α – 1

t
h – 1

– 1
)

= hα–1
(

�( t
h + α – 1)

�( t
h – 1)

)( t
h + α – 1 – t

h + 1
t
h – 1

)
= hα–1

(
�( t

h + α – 1)
�( t

h – 1)

)(
α

t
h – 1

)

= αhα–1 �( t
h + (α – 1))

�( t
h )

= αtα–1
h .

Notice that since α, h > 0, then ∇htα
h = tαh –(t–h)αh

h = αtα–1
h ≥ 0, and hence the proof is com-

pleted. �
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Definition 2.4 (Nabla h-fractional sums) For a function f : Na,h = {a, a + h, a + 2h, . . .} →
R, the nabla left h-fractional sum of order α > 0 is defined by

(
a∇–α

h f
)
(t) =

1
�(α)

∫ t

a

(
t – ρh(s)

)α–1
h f (s)∇hs

=
1

�(α)

t/h∑

k=a/h+1

(
t – ρh(kh)

)α–1
h f (kh)h, t ∈Na,h.

For a function f : b,hN = {b, b – h, b – 2h, . . .} → R, the nabla right h-fractional sum of
order α > 0 is defined by

(
h∇–α

b f
)
(t) =

1
�(α)

∫ b

t

(
s – ρh(t)

)α–1
h f (s)�hs

=
1

�(α)

b/h–1∑

k=t/h

(
kh – ρh(t)

)α–1
h f (kh)h, t ∈ b,hN.

Definition 2.5 (Nabla h-RL fractional differences)
The nabla left h-fractional difference of order 0 < α ≤ 1 (starting from a) is defined by

(
a∇α

h f
)
(t) =

(∇h a∇–(1–α)
h f

)
(t), which is

(
a∇α

h f
)
(t) =

1
�(1 – α)

∇h

t/h∑

k=a/h+1

(
t – ρh(kh)

)–α

h f (kh)h, t ∈Na+h,h.

The nabla right h-fractional difference of order 0 < α ≤ 1 (ending at b) is defined by

(
h∇α

b f
)
(t) =

(
–�h h∇–(1–α)

b f
)
(t), which is

(
h∇α

b f
)
(t) =

–1
�(1 – α)

�h

b/h–1∑

k=t/h

(
kh – ρh(t)

)–α

h f (kh)h, t ∈ b–h,hN.

Definition 2.6 (Nabla h-Caputo fractional differences) Assume that 0 < α ≤ 1, 0 < h ≤
1, a, b ∈ R, and a < b, f is defined on Na,h = {a, a + h, a + 2h, . . .} and on b,hN = {b, b – h,
b – 2h, . . .}. Then:

the left h-Caputo fractional difference of order α starting at a is defined by

(C
a ∇α

h f
)
(t) =

(
a∇–(1–α)

h ∇hf
)
(t), t ∈Na+h,h;

the right h-Caputo fractional difference of order α ending at b is defined by

(C
h ∇α

b f
)
(t) =

(
h∇–(1–α)

b (–�hf )
)
(t), t ∈ b–h,hN.

Proposition 2.2 (The relation between nabla h-RL fractional difference and h-Caputo
fractional difference)

(i)
(C

a ∇α
h f

)
(t) =

(
a∇α

h f
)
(t) –

1
�(1 – α)

(t – a)–α
h f (a);

(ii)
(C

h ∇α
b f

)
(t) =

(
h∇α

b f
)
(t) –

1
�(1 – α)

(b – t)–α
h f (b).
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Proof

(i)
(C

a ∇α
h f

)
(t)

=
(

a∇–(1–α)
h ∇hf

)
(t)

= a∇–(1–α)
h

(
f (t) – f (t – h)

h

)

= a∇–(1–α)
h

(
f (t)
h

)
– a∇–(1–α)

h

(
f (t – h)

h

)

=
1

�(1 – α)

t/h∑

k=a/h+1

(
t – ρh(kh)

)–α

h
f (kh)

h
h

–
1

�(1 – α)

(t–h)/h∑

k=(a–h)/h+1

(
t – h – ρh(kh)

)–α

h
f (kh)

h
h

=
1

h�(1 – α)

t/h∑

k=a/h+1

(
t – ρh(kh)

)–α

h f (kh)h

–
1

h�(1 – α)

t/h–1∑

k=a/h

(
(t – h) – (kh – h)

)–α

h f (kh)h

=
1

h�(1 – α)

t/h∑

k=a/h+1

(
t – ρh(kh)

)–α

h f (kh)h

–
1

h�(1 – α)

t/h–1∑

k=a/h+1

(
t – h – ρh(kh)

)–α

h f (kh)h

–
1

h�(1 – α)

(
t – h –

a
h

(h) + h
)–α

h
f
(

a
h

h
)

h

=
1

�(1 – α)

×
(∑t/h

k=a/h+1(t – ρh(kh))–α
h f (kh)h –

∑t/h–1
k=a/h+1((t – h) – ρh(kh))–α

h f (kh)h
h

)

–
1

�(1 – α)
(t – a)–α

h f (a)

=
1

�(1 – α)
∇h

t/h∑

k=a/h+1

(
t – ρh(kh)

)–α

h f (kh)h –
1

�(1 – α)
(t – a)–α

h f (a)

=
(

a∇α
h f

)
(t) –

1
�(1 – α)

(t – a)–α
h f (a).

(ii) The proof is similar to that in (i), and hence we omit it. �

The following lemma is a generalization of Lemma 3.3 in [20].

Lemma 2.3 Let α > 0, μ > –1, h > 0, and t ∈ Na,h. Then

a∇–α
h (t – a)μh =

�(μ + 1)
�(μ + 1 + α)

(t – a)α+μ

h . (1)
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Proof Using Lemma 3.3 in [20], we have

∇–α
a/h

(
t
h

–
a
h

)μ

=
�(μ + 1)

�(μ + α + 1)

(
t
h

–
a
h

)α+μ

,

1
�(α)

t/h∑

a/h+1

(
t
h

– ρ(k)
)α–1(

k –
a
h

)μ

=
�(μ + 1)

�(μ + α + 1)

(
t – a

h

)α+μ

,

1
�(α)

t/h∑

a/h+1

(
t
h

– k + 1
)α–1(

k –
a
h

)μ

=
�(μ + 1)

�(μ + α + 1)
�( t–a

h + α + μ)
�( t–a

h )
,

1
�(α)

t/h∑

a/h+1

(
t – kh + h

h

)α–1(kh – a
h

)μ

=
�(μ + 1)

�(μ + α + 1)
(t – a)α+μ

h
hα+μ

,

1
�(α)

t/h∑

a/h+1

�( t–kh+h
h + α – 1)

�( t–kh+h
h )

�( kh–a
h + μ)

�( kh–a
h )

=
�(μ + 1)

�(μ + α + 1)
(t – a)α+μ

h
hα+μ

,

1
�(α)

t/h∑

a/h+1

(t – kh + h)α–1
h

hα–1
(kh – a)μh

hμ
=

�(μ + 1)
�(μ + α + 1)

(t – a)α+μ

h
hαhμ

,

1
�(α)

t/h∑

a/h+1

(
t – ρ(kh)

)α–1
h (kh – a)μh h =

�(μ + 1)
�(μ + α + 1)

(t – a)α+μ

h ,

a∇–α
h (t – a)μh =

�(μ + 1)
�(μ + 1 + α)

(t – a)α+μ

h . �

3 The monotonicity results
The following two definitions are the hZ versions of monotonicity definitions given in [34].

Definition 3.1 Let y : Na,h → R be a function satisfying y(a) ≥ 0, and let 0 ≤ h < 1. Then
y(t) is called an α-increasing function on Na,h if y(t + h) ≥ αy(t) ∀t ∈Na,h.

Note that if y(t) is increasing onNa,h (y(t +h) ≥ y(t) ∀t ∈Na,h), then y(t) is an α-increasing
function on Na,h, and if α = 1, then the increasing and α-increasing concepts coincide.

Definition 3.2 Let y : Na,h →R be a function satisfying y(a) ≤ 0, and 0 ≤ h < 1. Then y(t)
is called an α-decreasing function on Na,h if y(t + h) ≤ αy(t) ∀t ∈Na,h.

Note that if y(t) is decreasing on Na,h (y(t + h) ≤ y(t) ∀t ∈ Na,h), then y(t) is an α-
decreasing function on Na,h, and if α = 1, then the decreasing and α-decreasing concepts
coincide.

Theorem 3.1 Let y : Na–h,h → R, and suppose that (a–h∇α
h y) (t) ≥ 0 for 0 < α ≤ 1, and

0 < h ≤ 1, t ∈Na–h,h. Then y(t) is α-increasing.
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Proof First we recall that

(
a–h∇α

h y
)
(t) =

1
�(1 – α)

∇h

t/h∑

k=(a–h)/h+1

(
t – ρh(kh)

)–α

h y(kh)h

=
1

�(1 – α)
∇h

t/h∑

k=a/h

(
t – ρh(kh)

)–α

h y(kh)h.

Let

S(t) =
t/h∑

k=a/h

(
t – ρh(kh)

)–α

h y(kh)h.

Then, from the assumption, we have ∇hS(t) ≥ 0. That is,

∇hS(t) =
S(t) – S(t – h)

h

=
∑t/h

k=a/h(t – ρh(kh))–α
h y(kh)h –

∑t/h–1
k=a/h(t – h – ρh(kh))–α

h y(kh)h
h

=
∑t/h–1

k=a/h(t – ρh(kh))–α
h y(kh)h –

∑t/h–1
k=a/h(t – h – ρh(kh))–α

h y(kh)h
h

+
(t – ρh(t))–α

h y(t)h
h

= (t – t + h)–α
h y(t) +

t/h–1∑

k=a/h

(
(t – ρh(kh))–α

h – (t – h – ρh(kh))–α
h

h

)
y(kh)h

= h–α
h y(t) +

t/h–1∑

k=a/h

y(kh)h∇h
(
t – ρh(kh)

)–α

h

= h–α
h y(t) +

t/h–1∑

k=a/h

y(kh)h
(t – ρh(kh))–α

h – (t – h – ρh(kh))–α
h

h

= h–α
h y(t) +

t/h–1∑

k=a/h

y(kh)h
(t – kh + h)–α

h – (t – h – kh + h)–α
h

h

= h–α
h y(t) +

t/h–1∑

k=a/h

y(kh)h
(

�( t–kh+h
h – α)

�( t–kh+h
h )

h–α –
�( t–kh

h – α)
�( t–kh

h )
h–α

)
1
h

= h–α
h y(t) +

t/h–1∑

k=a/h

y(kh)h
(

�( t
h – k + 1 – α)
�( t

h – k + 1)
h–α –

�( t
h – k – α)
�( t

h – k)
h–α

)
1
h

= h–α
h y(t) +

t/h–1∑

k=a/h

y(kh)h
( ( t

h – k – α)
( t

h – k)
– 1

)
�( t

h – k – α)
�( t

h – k)
h–α

h

= h–α
h y(t) +

t/h–1∑

k=a/h

y(kh)h
( t

h – k – α – t
h + k

t
h – k

)
�( t

h – k – α)
�( t

h – k)
h–α–1

= h–α
h y(t) +

t/h–1∑

k=a/h

y(kh)h
(

–α
t
h – k

)
�( t

h – k – α)
�( t

h – k)
h–α–1
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= h–α
h y(t) +

t/h–1∑

k=a/h

y(kh)h(–α)
�( t

h – k + 1 + (–α – 1))
�( t

h – k + 1)
h–α–1

= h–α
h y(t) +

t/h–1∑

k=a/h

y(kh)h(–α)
(
t – ρh(kh)

)–α–1
h

= h–α
h y(t) – α

t/h–1∑

k=a/h

(
t – ρh(kh)

)–α–1
h y(kh)h ≥ 0.

Therefore

∇hS(t) = h–α
h y(t) – α

t/h–1∑

k=a/h

(
t – ρh(kh)

)–α–1
h y(kh)h ≥ 0. (2)

When t = a, we have

∇hS(a) = h–α
h y(a) = h–α�(1 – α)y(a) ≥ 0, and hence y(a) ≥ 0.

When t = a + h, we get

∇hS(a + h) = h–α
h y(a + h) – α

(
a + h – ρh(a)

)–α–1
h y(a)h

= h–α
h y(a + h) – α(a + h – a + h)–α–1

h y(a)h

= h–α
h y(a + h) – α(2h)–α–1

h y(a)h

= h–α
�( h

h – α)
�( h

h )
y(a + h) – αh–α–1 �( 2h

h – α – 1)
�( 2h

h )
y(a)h

= h–α �(1 – α)
�(1)

y(a + h) – αh–α �(2 – α – 1)
�(2)

y(a)

= h–α�(1 – α)y(a + h) – αh–α�(1 – α)y(a) ≥ 0,

hence, y(a + h) ≥ αy(a).
Now we follow inductively to show that

y(t + h) ≥ αy(t), ∀t ∈Na,h.

Assume y(k + h) ≥ αy(k) ≥ 0, ∀k < t such that k, t ∈ Na,h. We need to show that y(t + h) ≥
αy(t). We know that

∇hS(t) = h–α
h y(t) – α

t/h–1∑

k=a/h

(
t – ρh(kh)

)–α–1
h y(kh)h ≥ 0. (3)

In (3) replace t by t + h. Then we have

h–α
h y(t + h) – α

t/h∑

k=a/h

(
t + h – ρh(kh)

)–α–1
h y(kh)h ≥ 0, which implies that
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h–α
h y(t + h) – α

((
t + h – ρh(a)

)–α–1
h y(a)h +

(
t + h – ρh(a + h)

)–α–1
h y(a + h)h

+ · · · +
(
t + h – ρh(t)

)–α–1
h y(t)h

) ≥ 0,

or

h–α
h y(t + h) ≥ α

((
t + h – ρh(a)

)–α–1
h y(a)h +

(
t + h – ρh(a + h)

)–α–1
h y(a + h)h

+ · · · +
(
t + h – ρh(t)

)–α–1
h y(t)h

)

= α
(
t + h – ρh(a)

)–α–1
h y(a)h + · · · + α

(
t + h – ρh(t)

)–α–1
h y(t)h

≥ α
(
t + h – ρh(t)

)–α–1
h y(t)h

= α(2h)–α–1
h y(t)h. (4)

Then from Definition 2.3 it follows that

h–α�(1 – α)y(t + h) ≥ αh–α�(1 – α)y(t).

Hence, y(t + h) ≥ αy(t), and the proof is completed. �

Using Proposition 2.2 and Theorem 3.1, we can state the following h-Caputo fractional
difference monotonicity result.

Corollary 3.2 Let y : Na–h,h → R, and suppose that

(C
a–h∇α

h y
)
(t) ≥ –1

�(1 – α)
(t – a + h)–α

h y(a – h), t ∈Na–h,h

for 0 < α ≤ 1, and 0 < h ≤ 1 then y(t) is α-increasing.

Theorem 3.3 Assume that the function y : Na–h,h → R satisfies y(a) ≥ 0 and assume 0 <
α ≤ 1 and 0 < h ≤ 1. If y is increasing on Na,h, then we have

(
a–h∇α

h y
)
(t) ≥ 0, ∀t ∈Na–h,h.

Proof Since we have

(
a–h∇α

h y
)
(t) =

1
�(1 – α)

∇hS(t), t ∈Na–h,h,

it is enough to show that

S(t) =
t/h∑

k=(a–h)/h+1

(
t – ρh(kh)

)–α

h y(kh)h =
t/h∑

k=a/h

(
t – ρh(kh)

)–α

h y(kh)h

is increasing on Na,h. In reference to the proof of Theorem 3.1, when t = a we have

∇hS(a) = h–α
h y(a) = h–α�(1 – α)y(a),
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and since y(a) ≥ 0, h–α > 0, and �(1 – α) > 0, then

∇hS(a) = h–α�(1 – α)y(a) ≥ 0.

Assume that ∇hS(i) ≥ 0, ∀i < t. We shall show that ∇hS(t) ≥ 0.
From the assumption that y(t) is increasing, it follows that y(t) ≥ y(t – h) ≥ y(a) ≥ 0,

∀t ∈Na,h.
From (2), we recall that

∇hS(t) = h–α
h y(t) – α

t/h–1∑

k=a/h

(
t – ρh(kh)

)–α–1
h y(kh)h ≥ 0.

Then we have

∇hS(t) = h–α
h y(t) – α

(
t – ρh(t – h)

)–α–1
h y(t – h)h – α

t/h–2∑

k=a/h

(
t – ρh(kh)

)–α–1
h y(kh)h

= h–α
h y(t) – α(t – t + h + h)–α–1

h y(t – h)h – α

t/h–2∑

k=a/h

(
t – ρh(kh)

)–α–1
h y(kh)h

= h–α
h y(t) – α(2h)–α–1

h y(t – h)h – α

t/h–2∑

k=a/h

(
t – ρh(kh)

)–α–1
h y(kh)h

– α

t/h–2∑

k=a/h

(
t – ρh(kh)

)–α–1
h y(t – h)h + α

t/h–2∑

k=a/h

(
t – ρh(kh)

)–α–1
h y(t – h)h

= h–α
h y(t) – α(2h)–α–1

h y(t – h)h + α

t/h–2∑

k=a/h

(
t – ρh(kh)

)–α–1
h

(
y(t – h) – y(kh)

)
h

– α

t/h–2∑

k=a/h

(
t – ρh(kh)

)–α–1
h y(t – h)h.

Note that since y(t) is increasing, then y(t – h) – y(kh) ≥ 0, ∀k = a
h , a

h + 1, . . . , t
h – 2, from

which it follows that

∇hS(t) ≥ h–α
h y(t) – α(2h)–α–1

h y(t – h)h – α

t/h–2∑

k=a/h

(
t – ρh(kh)

)–α–1
h y(t – h)h

= h–α
h y(t) – α

t/h–1∑

k=a/h

(
t – ρh(kh)

)–α–1
h y(t – h)h

= h–α
h y(t) – h–α

h y(t – h) + h–α
h y(t – h) – αy(t – h)h

t/h–1∑

k=a/h

(
t – ρh(kh)

)–α–1
h

= h–α
h

(
y(t) – y(t – h)

)
+ y(t – h)

(

h–α
h – αh

t/h–1∑

k=a/h

(
t – ρh(kh)

)–α–1
h

)

≥ y(t – h)

(

h–α
h – αh

t/h–1∑

k=a/h

(
t – ρh(kh)

)–α–1
h

)
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= y(t – h)
(
h–α

h – αh
[(

t – ρh(a)
)–α–1

h +
(
t – ρh(a + h)

)–α–1
h

+ · · · +
(
t – ρh(t – h)

)–α–1
h

])

= y(t – h)
(
h–α

h – αh
[
(t – a + h)–α–1

h + (t – a)–α–1
h + · · · + (2h)–α–1

h
])

= y(t – h)h–α

[
�(1 – α)

�(1)
– α

�( t–a
h – α)

�( t–a
h + 1)

) – α
�( t–a

h – α – 1)
�( t–a

h )
) – · · · – α

�(1 – α)
�(2)

]

= y(t – h)h–α

×
[

�(1 – α)
�(1)

– α
�(1 – α)

�(2)
– α

�(2 – α)
�(3)

– α
�(3 – α)

�(4)
– · · · – α

�( t–a
h – α)

�( t–a
h + 1)

]

= y(t – h)h–α

[
�(1 – α)

1�(1)
(1 – α) – α

�(2 – α)
�(3)

– α
�(3 – α)

�(4)
– · · · – α

�( t–a
h – α)

�( t–a
h + 1)

]

= y(t – h)h–α

[
2�(2 – α)

2�(2)
– α

�(2 – α)
�(3)

– α
�(3 – α)

�(4)
– · · ·α�( t–a

h – α)
�( t–a

h + 1)

]

= y(t – h)h–α

[
�(2 – α)

�(3)
(2 – α) – α

�(3 – α)
�(4)

– · · · – α
�( t–a

h – α)
�( t–a

h + 1)

]

= y(t – h)h–α

[
3�(3 – α)

3�(3)
– α

�(3 – α)
�(4)

– · · · – α
�( t–a

h – α)
�( t–a

h + 1)

]
.

If we continue in the same manner, we conclude that

∇hS(t) ≥ y(t – h)h–α

(
�( t–a

h – α)
�( t–a

h )
– α

�( t–a
h – α)

�( t–a
h + 1)

)

= y(t – h)h–α
�( t–a

h – α)
�( t–a

h )

(
1 – α

1
( t–a

h )

)

= y(t – h)h–α
( t–a

h – α)�( t–a
h – α)

( t–a
h )�( t–a

h )
= y(t – h)

(
h–α

�( t–a+h
h – α)

�( t–a+h
h )

)

= y(t – h)(t – a + h)–α
h ≥ 0, which completes the proof. �

The proof of the following theorem is similar to that in Theorem 3.3.

Theorem 3.4 Let a function y : Na–h,h → R satisfy y(a) > 0 and be strictly increasing on
Na,h, where 0 < α ≤ 1 and 0 < h ≤ 1. Then

(
a–h∇α

h y
)
(t) > 0.

Theorem 3.5 Let y : Na–h,h → R, and suppose that (a–h∇α
h y) (t) ≤ 0 for 0 < α ≤ 1, and

0 < h ≤ 1, t ∈Na–h,h. Then y(t) is α-decreasing.

Proof Let g : Na–h,h →R be a function such that g(t) = –y(t), hence

(
a–h∇α

h g
)
(t) =

(
a–h∇α

h (–y)
)
(t) = –

(
a–h∇α

h y
)
(t) ≥ 0.

Then the proof follows by applying Theorem 3.1 to g(t). �
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Theorem 3.6 Let a function y : Na–h,h → R satisfy y(a) ≤ 0 and be decreasing on Na,h.
Then, for 0 < α ≤ 1 and 0 < h ≤ 1, we have

(
a–h∇α

h y
)
(t) ≤ 0, ∀t ∈Na–h,h.

Proof The proof follows by applying Theorem 3.3 to g(t) = –y(t). �

4 Riemann-type fractional difference initial value problem
The following results are essential to proceed for the mean value theorem.

Lemma 4.1 For any 0 < α ≤ 1, 0 < h ≤ 1, and f : Na+h,h →R, the following equality holds:

a∇–α
h ∇hf (t) = ∇h a∇–α

h f (t) –
(t – a)α–1

h
�(α)

f (a).

Proof Recalling that

a∇–α
h f (t) =

1
�(α)

t/h∑

k=a/h+1

(
t – ρh(kh)

)α–1
h f (kh)h,

we have

∇h a∇–α
h f (t)

=
1
h

(
1

�(α)

t/h∑

k=a/h+1

(
t – ρh(kh)

)α–1
h f (kh)h –

1
�(α)

(t–h)/h∑

k=a/h+1

(
t – h – ρh(kh)

)α–1
h f (kh)h

)

=
h

�(α)

t/h∑

k=a/h+1

(t – ρh(kh))α–1
h

h
f (kh) –

h
�(α)

t/h∑

k=a/h+1

(t – h – ρh(kh))α–1
h

h
f (kh)

+
h

�(α)
(
t – h – ρh(t)

)α–1
h f (t)

=
h

�(α)

t/h∑

k=a/h+1

f (kh)∇h
(
t – ρh(kh)

)α–1
h .

On the other hand, we have

a∇–α
h ∇hf (t)

=
1

�(α)

t/h∑

k=a/h+1

(
t – ρh(kh)

)α–1
h ∇hf (kh)h

=
1

�(α)

t/h∑

k=a/h+1

(
t – ρh(kh)

)α–1
h

f (kh) – f (kh – h)
h

h

=
1

�(α)

t/h∑

k=a/h+1

(
t – ρh(kh)

)α–1
h f (kh) –

1
�(α)

t/h∑

k=a/h+1

(
t – ρh(kh)

)α–1
h f (kh – h)

=
1

�(α)

t/h∑

k=a/h+1

(
t – ρh(kh)

)α–1
h f (kh) –

1
�(α)

t/h–1∑

k=a/h

(
t – ρh(kh + h)

)α–1
h f (kh – h + h)
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=
1

�(α)

t/h∑

k=a/h+1

(
t – ρh(kh)

)α–1
h f (kh) –

1
�(α)

t/h∑

k=a/h+1

(
t – h – ρh(kh)

)α–1
h f (kh)

+
1

�(α)
(
t – h – ρh(t)

)α–1
h f (t) –

1
�(α)

(
t – h – ρh(a)

)α–1
h f (a)

=
h

�(α)

t/h∑

k=a/h+1

(t – ρh(kh))α–1
h – (t – h – ρh(kh))α–1

h
h

f (kh) –
1

�(α)
(t – a)α–1

h f (a)

=
h

�(α)

t/h∑

k=a/h+1

∇h
(
t – ρh(kh)

)α–1
h f (kh) –

(t – a)α–1
h

�(α)
f (a)

= ∇h a∇–α
h f (t) –

(t – a)α–1
h

�(α)
f (a). �

Lemma 4.2 For any 0 < α ≤ 1, 0 < h ≤ 1, and y : Na+h,h → R, the following equality holds:

a–h∇α
h y(t) = a∇α

h y(t) +
(t – a + h)–α–1

h
�(–α)

y(a)h.

Proof From the definition and the proof of Lemma 2.1, we have

a–h∇α
h y(t) = ∇h a–h∇–(1–α)

h y(t)

= ∇h

(
1

�(1 – α)

t/h∑

k=a/h

(
t – ρh(kh)

)–α

h y(kh)h

)

=
1

h�(1 – α)

( t/h∑

k=a/h

(
t – ρh(kh)

)–α

h y(kh)h –
t/h–1∑

k=a/h

(
t – h – ρh(kh)

)–α

h y(kh)h

)

=
1

�(1 – α)

t/h∑

k=a/h

∇h
(
t – ρh(kh)

)–α

h y(kh)h +
1

�(1 – α)
(t – h – t + h))–α

h y(t)

=
1

�(1 – α)

t/h∑

k=a/h

(–α)
(
t – ρh(kh)

)–α–1
h y(kh)h

=
–α

–α�(–α)

t/h∑

k=a/h

(
t – ρh(kh)

)–α–1
h y(kh)h

=
1

�(–α)

t/h∑

k=a/h+1

(
t – ρh(kh)

)–α–1
h y(kh)h +

1
�(–α)

(
t – ρh(a)

)–α–1
h y(a)h

= a∇α
h y(t) +

(t – a + h)–α–1
h

�(–α)
y(a)h. (5)

�

Theorem 4.3 For any 0 < α ≤ 1, 0 < h ≤ 1, and y : Na+h,h →R, the following equality holds:

a∇–α
h a–h∇α

h y(t) = y(t) –
h1–α

�(α)
(t – a + h)α–1

h y(a).
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Proof By the help of Lemma 4.2, we have

a∇–α
h

(
a–h∇α

h y(t)
)

= a∇–α
h

(

a∇α
h y(t) +

(t – a + h)–α–1
h

�(–α)
y(a)h

)

= a∇–α
h a∇α

h y(t) + a∇–α
h

(
(t – a + h)–α–1

h
�(–α)

y(a)h
)

= y(t) + a∇–α
h

(
(t – a + h)–α–1

h
�(–α)

y(a)h
)

= y(t) + a∇–α
h ∇h

(
(t – a + h)–α

h
�(1 – α)

)
y(a)h. (6)

Moreover, by the help of Lemma 4.1 and that h–α
h = h–α�(1 – α), we have

a∇–α
h ∇h

(
(t – a + h)–α

h
�(1 – α)

y(a)h
)

= ∇h a∇–α
h

(
(t – a + h)–α

h
�(1 – α)

y(a)h
)

–
(t – a)α–1

h
�(α)

y(a)h1–α . (7)

Applying the identity

a∇–α
h g(t) = a–h∇–α

h g(t) –
(t – a + h)α–1

h g(a)h
�(α)

to the function g(t) = (t–a+h)–α
h

�(1–α) y(a)h, we obtain

a∇–α
h

(
(t – a + h)–α

h
�(1 – α)

y(a)h
)

= a–h∇–α
h

(
(t – a + h)–α

h
�(1 – α)

y(a)h
)

–
(t – a + h)α–1

h
�(α)

y(a)h2–α . (8)

Hence, by substituting (8) in (7) and by making use of Lemma 2.3 with μ = –α, we obtain

a∇–α
h ∇h

(
(t – a + h)–α

h
�(1 – α)

y(a)h
)

= ∇h

{

a∇–α
h

(
(t – (a – h))–α

h
�(1 – α)

y(a)h
)}

–
(t – a)α–1

h
�(α)

y(a)h1–α

= ∇h

{

a–h∇–α
h

(
(t – (a – h))–α

h
�(1 – α)

y(a)h
)

–
(t – (a – h))α–1

h
�(α)

y(a)h2–α

}

–
(t – a)α–1

h
�(α)

y(a)h1–α

= ∇h
(
y(a)h

)
–

h1–α

�(α)
(t – a + h)α–1

h y(a) = –
h1–α

�(α)
(t – a + h)α–1

h y(a).

We have used that

∇h
(t – (a – h))α–1

h
�(α)

y(a)h2–α =
h1–α

�(α)
(t – a + h)α–1

h y(a) –
(t – a)α–1

h
�(α)

y(a)h1–α .
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Hence,

a∇–α
h a–h∇α

h y(t) = y(t) –
h1–α

�(α)
(t – a + h)α–1

h y(a). �

Consider the following initial fractional difference equation:

a–h∇α
h y(t) = f

(
t, y(t)

)
for t = a + h, a + 2h, . . . , (9)

a–h∇–(1–α)
h y(t)

∣∣
t=a = h1–αy(a) = c, (10)

where 0 < α, h < 1 and a is any real number.
By means of Theorem 4.3, we can state the following theorem.

Theorem 4.4 y is a solution of the initial value problem, (9), (10) if and only if it has the
representation

y(t) =
(t – a + h)α–1

h
�(α)

c + a∇–α
h f

(
t, y(t)

)
. (11)

5 Application: Mean Value Theorem (MVT)
First, for the sake of simplification, depending on Theorem 4.3, we shall write

a∇–α
h a–h∇α

h y(t) = y(t) – Rh(α, t, a)y(a), (12)

where Rh(α, t, a) = h1–α

�(α) (t – a + h)α–1
h .

Theorem 5.1 (The h-fractional difference MVT) Let f and g be functions defined onNa,h ∩
b,hN = {a, a + h, a + 2h, . . . , b – 2h, b – h, b}, where b = a + kh for some k ∈ N. Assume that g
is strictly increasing, g(a) > 0, and 0 < α < 1, 0 < h ≤ 1. Then there exist s1, s2 ∈ Na,h ∩ b,hN

such that

(a–h∇α
h f )(s1)

(a–h∇α
h g)(s1)

≤ f (b) – Rh(α, b, a)f (a)
g(b) – Rh(α, b, a)g(a)

≤ (R
a–h∇α

h f )(s2)
(R
a–h∇α

h g)(s2)
. (13)

Proof First we need to show that g(b) – Rh(α, b, a)g(a) > 0. Since g is strictly increasing,
then by Theorem 3.4 we have

(
a–h∇α

h g
)
(t) > 0 ∀t ∈ Na,h ∩ b,hN.

Applying the fractional sum operator on both sides of the inequality, by means of (12), we
get

a∇–α
h

(
a–h∇α

h g
)
(t) > a∇–α

h (0) ∀t ∈Na,h ∩ b,hN,

or by means of (12) we have

g(t) – Rh(α, t, a)g(a) > 0 ∀t ∈ Na,h ∩ b,hN.
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For t = b, we get

g(b) – Rh(α, b, a)g(a) > 0.

To prove the theorem, we use contradiction. Assume that (13) is not true, then either

f (b) – Rh(α, b, a)f (a)
g(b) – Rh(α, b, a)g(a)

<
(a–h∇α

h f )(t)
(a–h∇α

h g)(t)
, ∀t ∈ Na,h ∩ b,hN, (14)

or

f (b) – Rh(α, b, a)f (a)
g(b) – Rh(α, b, a)g(a)

>
(a–h∇α

h f )(t)
(R
a–h∇α

h g)(t)
, ∀t ∈ Na,h ∩ b,hN. (15)

Again, since g is strictly increasing, then by Theorem 3.4 we conclude that

(
a–h∇α

h g
)
(t) > 0 ∀t ∈ Na,h ∩ b,hN.

Hence (14) becomes

f (b) – Rh(α, b, a)f (a)
g(b) – Rh(α, b, a)g(a)

(
a–h∇α

h g
)
(t) <

(
a–h∇α

h f
)
(t), ∀t ∈Na,h ∩ b,hN.

Applying the fractional sum operator on both sides of the inequality at t = b and by making
use of (12), we see that

f (b) – Rh(α, b, a)f (a)
g(b) – Rh(α, b, a)g(a)

(
g(b) – Rh(α, b, a)g(a)

)
<

(
f (b) – Rh(α, b, a)f (a)

)
,

and hence f (b) < f (b), which is a contradiction. In a similar way, (15) will lead to contra-
diction. �

Remark 5.1 If we let h = 1 in Theorem 5.1, then we reobtain the results in [34] via using
the dual identities presented in [30, 31], or else we refer to [37].

6 Conclusions
The contributions of this paper can be concluded as follows:

1. Nabla fractional sums and differences of order 0 < α ≤ 1 on the time scale hZ have
been formulated.

2. Riemann–Liouville and Caputo discrete fractional operators on the time scale hZ
have been defined.

3. The relation between nabla h-RL and h-Caputo fractional differences has been
detected.

4. If (a∇α
h y)(t) > 0, then y(t) is α-increasing.

5. If y(t) is α-increasing and y(a) > 0, then (a∇α
h y)(t) > 0.

6. The monotonicity factor, which is α, has not been affected by the discretization
step h.

7. A Riemann-type fractional difference initial value problem has been formulated and
solved, and hence we generalize the representation obtained in [20].
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8. A monotonicity result for the nabla h-Caputo fractional difference operator has
been proved as well.

9. As an application, a fractional difference version of the Mean Value Theorem on hZ
has been proved.

10. Working on hZ, h ∈ (0, 1) rather than on Z makes it possible to guarantee the
convergence of solutions for a larger class of fractional difference initial value
problems.
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