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1 Introduction
Let q ≥ 3 be an integer. For any positive integer k ≥ 2, the kth Gauss sums G(m, k; q) are
defined as

G(m, k; q) =
q–1∑

a=0

e
(

mak

q

)
,

where, as usual, e(y) = e2π iy.
Recently, some scholars have studied the properties of G(m, 4; p) and obtained many

interesting results, where p is an odd prime with p ≡ 1 mod 4. For example, Shimeng Shen
and Wenpeng Zhang [1] proved a recurrence formula related to G(m, 4; p). The author and
Jiayuan Hu [2] studied the computational problem of the hybrid power mean
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2

. (1)

We proved the identity
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2

=

{
3p3 – 3p2 – 3p + p(τ 2(χ4) + τ 2(χ4)), if p ≡ 5 mod 8;
3p3 – 3p2 – 3p – pτ 2(χ4) – pτ 2(χ4) + 2τ 5(χ4) + 2τ 5(χ4), if p ≡ 1 mod 8,
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where χ4 denotes any fourth-order character modp, τ (χ ) =
∑p–1

a=1 χ (a)e( a
p ) denotes the

classical Gauss sums, and c denotes the multiplicative inverse of c mod p.
At the same time, the author and Jiayuan Hu [2] also pointed out how to compute the

exact value of τ 2(χ4) + τ 2(χ4) and τ 5(χ4) + τ 5(χ4), these are two meaningful problems.
Zhuoyu Chen and Wenpeng Zhang [3] studied the properties of the Gauss sums

G(k, p) = τ k(ψ) + τ k(ψ).

By using the analytic method and the properties of classical Gauss sums, they obtained an
exact computational formula for G(k, p), which completely solved the problem proposed
by the author and Jiayuan Hu in [2]. Some related works can also be found in references
[4–11].

Inspired by reference [3], we will consider the following hybrid power mean:

Mk(p) =
p–1∑

m=1

( p–1∑

a=0

e
(

ma4

p

))k

·
∣∣∣∣∣
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ma4 + a
p
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2

.

For convenience, hereinafter, we always assume that p is a prime with p ≡ 1 mod 4, ( ∗
p ) =

χ2 denotes the Legendre symbol modp, and

α = α(p) =

p–1
2∑

a=1

(
a + a

p

)
,

a denotes the solution of the equation ax ≡ 1 mod p. The number α is closely related to
prime p. In fact, we have a very important formula

p =

( p–1
2∑

a=1

(
a + a

p

))2

+

( p–1
2∑

a=1

(
ra + a

p

))2

≡ α2 + β2,

where r is any integer with ( r
p ) = –1 (see Theorems 4–11 in [12]).

In this paper, by using the analytic method, the properties of the classical Gauss sums,
and trigonometric sums, we will study the computational problem of Mk(p), and give an
interesting fourth-order linear recurrence formula for it. That is, we will prove the follow-
ing two results.

Theorem 1 If p is a prime with p ≡ 5 mod 8, then for any integer k ≥ 4, we have the linear
recurrence formula

Mk(p) = –2pMk–2(p) + 8pαMk–3(p) – p
(
9p – 4α2)Mk–4(p),

where the first four items in the sequence {Mk(p)} are: M0(p) = p(p – 3); M1(p) = 2pα;
M2(p) = –p(p2 – 3p – 4α2), and M3(p) = 2p2α(3p – 14).

Theorem 2 If p is a prime with p ≡ 1 mod 8, then for any integer k ≥ 4, we have the linear
recurrence formula

Mk(p) = 6pMk–2(p) + 8pαMk–3(p) – p
(
p – 4α2)Mk–4(p),
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where the first four items in the sequence {Mk(p)} are: M0(p) = p(p – 3); M1(p) = –6pα;
M2(p) = p(3p2 – 17p – 4α2), and M3(p) = 6p2α(p – 8).

For some special integers k = 2 or k = 4, from our theorems we may immediately deduce
the following three corollaries.

Corollary 1 If p is an odd prime with p ≡ 5 mod 8, then we have
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= p
(
3p2 – 9p – 4α2).

Corollary 2 If p is an odd prime with p ≡ 1 mod 8, then we have the identity
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Corollary 3 If p is an odd prime with p ≡ 1 mod 8, then we have
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= p2(17p2 + 4pα2 – 99p – 84α2).

Notes If p = 4k + 3, then ( –1
p ) = –1. Then, in this case, for any integer m with (m, p) = 1,

we have
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where i2 = –1. Therefore, the hybrid power mean Mk(p) can be easily obtained.

2 Several lemmas
To prove our main results, we need several simple lemmas. Here, we will use many prop-
erties of the classical Gauss sums, all of them can be found in reference [13], so they will
not be repeated here. First we have the following lemma.

Lemma 1 If p is a prime with p ≡ 1 mod 4, then for any fourth-order character ψ mod p,
we have the identity

p–1∑

m=1

ψ(m)

∣∣∣∣∣
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(

ma4 + a
p
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2

= –
(
1 + ψ(–1)

)√
pτ (ψ).

Proof First, from the trigonometric identity

q∑

m=1

e
(

nm
q

)
=

{
q if q | n,
0 if q � n,

(2)
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the properties of character ψ mod p and noting that ψ4 = χ0, the principal character
modp, we have

p–1∑

m=1

ψ(m)
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p

))
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Similarly, we also have
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p
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Since p ≡ 1 mod 4, so from the properties of the fourth-order character ψ mod p, we
have
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, (5)

where ψ2 = χ2 = ( ∗
p ) denotes the Legendre symbol modp.

From the properties of the classical Gauss sums, we have
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Note that τ (χ2) = √p, from (5), (6), and (7) we have
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Combining (3), (4), and (8) and noting the orthogonality properties of characters modp,
we have the identity
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This proves Lemma 1. �

Lemma 2 Let p be an odd prime with p ≡ 1 mod 4. Then, for the Legendre symbol
χ2 mod p, we have the identity
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Proof First, from (2) and the method of proving Lemma 1, we have
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= 2
√

p –
√
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√
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Combining (9) and (10), we can deduce the identity
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This proves Lemma 2. �

Lemma 3 Let p be an odd prime with p ≡ 1 mod 4, ψ be any fourth-order character mod p.
Then we have the identity

τ 2(ψ) + τ 2(ψ) =
√

p ·
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p

)
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√
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Proof See Lemma 2.2 in [3]. �

Lemma 4 Let p be an odd prime with p ≡ 1 mod 4. Then we have the identity
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Proof Since the congruence equation x4 ≡ 1 mod p has four different solutions in a re-
duced residue system modp, so from (2) we have
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This proves Lemma 4. �
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3 Proofs of the theorems
Now we complete the proofs of our theorems. First we prove Theorem 1. For convenience,
we let

B(m) =
p–1∑

a=0

e
(

ma4

p

)
.

Then, for any integer m with (m, p) = 1, from (2) and the properties of the fourth-order
character ψ mod p, we have

B(m) = 1 +
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p
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√

p + ψ(m)τ (ψ) + ψ(m)τ (ψ). (11)

If p = 8r + 5, then ψ(–1) = –1. In this case, from Lemma 1 we have the identity
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It is clear that from Lemma 4 we have
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p
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2

= p(p – 3). (13)

From (12), Lemma 2, and Lemma 3, we have

M1(p) =
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m=1

B(m)

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

=
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m=1

(
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√
p + ψ(m)τ (ψ) + ψ(m)τ (ψ)

)
∣∣∣∣∣

p–1∑

a=0

e
(
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p

)∣∣∣∣∣

2

=
√

p
(
τ 2(ψ) + τ 2(ψ)

)
= 2pα. (14)

Similarly, noting that τ (ψ)τ (ψ) = –p, from (12) and Lemma 4 we also have

M2(p) =
p–1∑

m=1

B2(m)

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

=
p–1∑

m=1

(
χ2(m)

√
p + ψ(m)τ (ψ) + ψ(m)τ (ψ)

)2

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2
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= p2(p – 3) +
(
τ 2(ψ) + τ 2(ψ)

) p–1∑

m=1

χ2(m)

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

+ 2τ (ψ)τ (ψ)
p–1∑

m=1

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

= p2(p – 3) +
(
τ 2(ψ) + τ 2(ψ)

)2 – 2p2(p – 3)

= –p
(
p2 – 3p – 4α2); (15)

M3(p) =
p–1∑

m=1

B3(m)

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

=
p–1∑

m=1

(
χ2(m)

√
p + ψ(m)τ (ψ) + ψ(m)τ (ψ)

)3

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

= p
3
2

p–1∑

m=1

χ2(m)

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

– 6p
3
2

p–1∑

m=1

χ2(m)

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

+ 3
√

p
(
τ 2(ψ) + τ 2(ψ)

) p–1∑

m=1

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

= 2p2α(3p – 14). (16)

From [1] (see Lemma 3) we have

B4(m) = –2pB2(m) + 8pαB(m) – 9p2 + 4pα2. (17)

So, if k ≥ 4, then we have

Mk(p) =
p–1∑

m=1

Bk(m)

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

=
p–1∑

m=1

Bk–4(m)B4(m)

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

=
p–1∑

m=1

Bk–4(m)
(
–2pB2(m) + 8pαB(m) – 9p2 + 4pα2)

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

= –2pMk–2(p) + 8pαMk–3(p) – p
(
9p – 4α2)Mk–4(p). (18)

Combining (13)–(16) and (18), we immediately complete the proof of Theorem 1.
Now we prove Theorem 2. If p = 8k + 1, then note that ψ(–1) = 1, from Lemma 4 we

have

M0(p) =
p–1∑

m=1

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

= p(p – 3). (19)
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From (11), Lemma 1, Lemma 2, and Lemma 3, we have

M1(p) =
p–1∑

m=1

B(m)

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

=
p–1∑

m=1

(
χ2(m)

√
p + ψ(m)τ (ψ) + ψ(m)τ (ψ)

)
∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

= –3
√

p
(
τ 2(ψ) + τ 2(ψ)

)
= –6pα. (20)

Applying Lemma 1, Lemma 2, and Lemma 3, we also have

M2(p) =
p–1∑

m=1

B2(m)

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

=
p–1∑

m=1

(
χ2(m)

√
p + ψ(m)τ (ψ) + ψ(m)τ (ψ)

)2

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

= p2(p – 3) –
(
τ 2(ψ) + τ 2(ψ)

)2 – 8p2 + 2p2(p – 3)

= p
(
3p2 – 17p – 4α2); (21)

M3(p) =
p–1∑

m=1

B3(m)

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

=
p–1∑

m=1

(
χ2(m)

√
p + ψ(m)τ (ψ) + ψ(m)τ (ψ)

)3

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

= –p
3
2
(
τ 2(ψ) + τ 2(ψ)

)
– 2p

3
2
(
τ 2(ψ) + τ 2(ψ)

)
– 6p

3
2
(
τ 2(ψ) + τ 2(ψ)

)

+ 3p
3
2
(
τ 2(ψ) + τ 2(ψ)

)
(p – 3) – 6p

3
2
(
τ 2(ψ) + τ 2(ψ)

)

= 6p2α(p – 8). (22)

From [1] (see Lemma 3) we have

B4(m) = 6pB2(m) + 8pαB(m) – p2 + 4pα2. (23)

So if k ≥ 4, then we have the fourth-order linear recurrence formula

Mk(p) =
p–1∑

m=1

Bk(m)

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

=
p–1∑

m=1

Bk–4(m)B4(m)

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

=
p–1∑

m=1

Bk–4(m)
(
6pB2(m) + 8pαB(m) – p2 + 4pα2)

∣∣∣∣∣

p–1∑

a=0

e
(

ma4 + a
p

)∣∣∣∣∣

2

= 6pMk–2(p) + 8pαMk–3(p) – p
(
p – 4α2)Mk–4(p). (24)

Now Theorem 2 follows from (19)–(22) and (24).
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If p ≡ 5 mod 8, then note that τ (ψ) = –τ (ψ), from (11) we have

B(m) = χ2(m)
√

p – ψ(m)τ (ψ) – ψ(m)τ (ψ). (25)

Thus, from (25) and τ (ψ)τ (ψ) = –p, we have

∣∣B(m)
∣∣2 = p –

(
ψ(m)τ (ψ) + ψ(m)τ (ψ)

)2 = 3p – χ2(m)
(
τ 2(ψ) + τ 2(ψ)

)
. (26)

Applying (26) and Lemma 2, we may immediately deduce Corollary 1.
If p ≡ 1 mod 8, then note that B(m) is a real number. So Corollary 2 and Corollary 3

follow from Theorem 2.
This completes the proofs of all our results.
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