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Abstract
A fourth-order compact finite difference scheme of the two-dimensional
convection–diffusion equation is proposed to solve groundwater pollution problems.
A suitable scheme is constructed to simulate the law of movement of pollutants in
the medium, which is spatially fourth-order accurate and temporally second-order
accurate. The matrix form and solving methods for the linear system of equations are
discussed. The theoretical analysis of unconditionally stable character of the scheme
is verified by the Fourier amplification factor method. Numerical experiments are
given to demonstrate the efficiency and accuracy of the scheme proposed, and these
show excellent agreement with the exact solution.
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1 Introduction
In recent years, more and more attention has been paid to the movement of pollutants
in groundwater by mathematical modeling [1]. The prediction and evaluation of ground-
water dynamic movement and solute transport are important tasks for agricultural pol-
lution and groundwater development [2]. A large number of mathematical models and a
variety of effective numerical methods have been widely used to simulate the movement
of contaminated groundwater. Convection–diffusion equation is a class of very important
equations, it can describe many physical phenomena, such as atmospheric pollutants, dis-
tribution and diffusion of the oceans and rivers, heat conduction and so many other phys-
ical problems even including bacterial concentration. However, from the existing research
results, we could only get the analytical solutions of a few classic models. In the process of
dealing with practical problems, for many mathematical models, especially partial differ-
ential equations, their analytical solutions are not available in general. Therefore, research
for the numerical solutions of partial differential equations is very necessary [3].

During the last three decades, the numerical solution of the convection–diffusion equa-
tion has been developed by all kinds of methods, for example, the finite difference method
[4], the finite element method [5, 6], the finite volume method [7], the spectral ele-
ment method [8] and even the Monte Carlo method [9]. But the characteristics of the
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two-dimensional convection–diffusion equation and the complexity of the mathematical
model are a challenge to numerical computation, so constructing the simple and efficient
numerical scheme needs to be further studied. A finite difference method is one of the
effective and flexible methods to solve the numerical solution of partial differential equa-
tions with initial boundary value [10].

For the traditional finite difference methods, a classical spatial discretization, such as
the second-order central difference scheme, fails to approach the exact solution of most
equations; for obtaining a more accurate numerical solution one needs to add more nodes
and use smaller mesh sizes, which would require more storage space and computing time
[11]. In order to get more accurate results for constant mesh size, we have to increase
the order of accuracy of the numerical approximation, which, in turn, means enlarging
the stencil of grid points [12]. However, this results in some problems, for instance, the
difficult treatments of the boundary conditions, the approximation of the points next to
the boundaries, and the increasing of the bandwidth of the stiffness matrix. For many
application problems, it is desirable to use higher-order numerical methods to obtain an
accurate solution.

In terms of the above reasons, a compact finite difference scheme is desired to solve lots
of differential equations numerically [13–16]. One can compute more accurate solutions
using limited grid sizes through developing high-order compact finite difference schemes.
Significant work in this field has been done by Turkel and Singer [17] in 1998. In recent
years, the high accuracy compact difference method has attracted more and more atten-
tion; see [18–22]. Using a Taylor series expansion, Sari et al. [14] developed a tenth-order
finite difference scheme, proposed to solve one-dimensional advection–diffusion equa-
tion. Gurarslan et al. [16] presented a sixth-order compact difference scheme in space
and a fourth-order Runge–Kutta scheme in time to produce numerical solutions of the
one-dimensional advection–diffusion equation, it has been seen to be very accurate in
solving the contaminant transport equation for Pe ≤ 5. Based on the Grünwald–Letnikov
discretization of the Riemann–Liouville derivative, Cui obtained a fully discrete implicit
scheme after approximating the second-order derivative with respect to space by the
compact finite difference [19]. Li presented an efficient and stable compact fourth-order
method for the phase field crystal equation [21]. Kaysar et al. gave an useful and efficient
compact finite difference approximation of a fourth-order scheme for solving linear one-
dimensional convection–diffusion equation [22]. All in all, there is a renewed interest in
the development and application of compact finite difference methods for the numerical
solution of the convection–diffusion equations.

Inspired by the above literature, in this paper, we are interested in the mathematical
model of groundwater pollution with seepage only in x direction by integrating the knowl-
edge of fourth-order compact finite difference, which is also unconditional stable. We con-
sider a special class of convection–diffusion equations, which comes from the following
practical problem: The leakage of a factory’s sewage pool causes the seepage of sewage,
the concentration of pollution substance in the underground water is a function of spatial
coordinate and temporal in any point. We take a micro-body in ground water to study,
the concentration’s change of which is caused by diffusion (including molecular diffusion
and osmotic dispersion), and the mass flux caused by the average liquid motion. We sup-
pose the seepage area to be an infinite plane, assume the groundwater flow belongs to
the one-dimensional cases, the diffusion of pollutants is a two-dimensional dispersion
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in a porous medium. At every stage, contaminant is injected at any region point and at
arbitrary time in the river. Applying the mathematical software MATLAB, a numerical
simulation is carried out on the problem of water pollution–diffusion to verify the validity
and practicability of the model and algorithm. Numerical examples are given to illustrate
the accuracy and reliability of the proposed scheme, so as to provide an important basis
for water pollution accident disaster emergency disposal and decision-making for envi-
ronmental protection personnel dealing with a water pollution incident, to be used as a
reference.

The paper is organized as follows: in Sect. 2, we present a fourth-order compact dif-
ference scheme, in which the Crank–Nicolson scheme is used for temporal discretiza-
tion and a fourth-order compact finite difference scheme dealing with a one-dimensional
convection–diffusion equation is applied to the spatial discretization. In Sect. 3, the ma-
trix form for the difference scheme is given, and the solving methods for the linear system
of equations are discussed. In Sect. 4, the theoretical analysis, the Fourier method, namely
the amplification factor method (or von Neumann condition) of the proposed scheme
is presented. Finally, numerical examples are provided in Sect. 5, the numerical results
shown in tables and figures derive the accuracy and prove the convergence order of the
scheme, they are in agreement with our theoretical analysis. The paper concludes with a
summary in Sect. 6.

2 Fourth-order compact finite difference scheme
In this paper, we consider the following two-dimensional convection–diffusion equation,
which is used widely to simulate the motion process of the contaminant in groundwater
flow and the water flow with any chemical solute. Here we take the seepage area as an
infinite plane, assume the groundwater flow belongs to the one-dimensional cases, the
diffusion of pollutants is a two-dimensional dispersion in a porous medium, and the con-
taminant f (x, y, t) is injected at any region point (x, y) and at any time t in the river.

Let � ⊂ R2 with boundary �. We write

⎧
⎪⎪⎨

⎪⎪⎩

∂C
∂t = Dx

∂2C
∂x2 + Dy

∂2C
∂y2 – v ∂C

∂x + f , (x, y) ∈ �, t > 0,

C(x, y, 0) = C0(x, y), (x, y) ∈ �,

C(x, y, t) = g(x, y, t), (x, y) ∈ �, t > 0,

(1)

where � = [0, Lx]× [0, Ly] is a rectangular domain in R2, which represents different shapes
of the river where the contaminants are located. � = ∂� is the boundary of the rectangular
domain. The function C stands for the concentration of a solute dependent on time t,
here C = C(x, y, t). x and y are the horizontal coordinates, the unknown Dx and Dy are
positive constants representing the longitudinal and transversal dispersion coefficients,
respectively, and v is the mean pore velocity. The function f (x, y, t) is the source term, it
refers to all items other than constant items, convection and diffusion items. In the case
of pumping and injecting water, f = W/n, where W is the amount of contaminant per unit
volume of aquifer injected per unit time, it is a function of time and location, and n is
the porosity of the porous medium [23]. The term g(x, y, t) in the right side of the second
equation represents a boundary source on �, C0(x, y), g(x, y, t) and the source term f (x, y, t)
are given as sufficiently smooth functions.
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The analytical solution for Eqs. (1) is not available easily, the purpose of this paper is to
improve the accuracy in spatial direction, we suggest a fourth-order compact difference
scheme. In order to present our scheme, we first introduce some essential notations, which
will be used later.

Discretizing the spatial region firstly, let N and M be two positive integers, so that
the step sizes are hx = Lx

N , hy = Ly
M , under this condition, the spatial nodes can be de-

noted by (xi, yj), namely, xi = ihx, i = 0, 1, . . . , N – 1, N ; yj = jhy, j = 0, 1, . . . , M – 1, M. Let
�̄h = {(xi, yj)|0 ≤ i ≤ N , 0 ≤ j ≤ M},�h = �̄h ∩ �,�h = �̄h ∩ �. For simplicity, introduce
ω = {(i, j)|(xi, yj) ∈ �h},σ = {(i, j)|(xi, yj) ∈ �h}, then we have ω̄ = ω ∪ σ . Define Uh = {u|u =
{uij|(i, j) ∈ ω̄}}, for any u ∈ Uh, similar to Ref. [24], introducing the following notations of
difference quotients:

�xuij =
ui+1,j – ui–1,j

2hx
, δ2

x uij =
ui–1,j – 2uij + ui+1,j

h2
x

, δ2
y uij =

ui,j–1 – 2uij + ui,j+1

h2
y

.

Next, for the temporal approximation, take a positive integer K , partition the interval
[0, T] into K equal parts of width τ = T

K ; we have the following notations:

tn = nτ , �τ = {tn|0 ≤ n ≤ K}, tn+ 1
2

=
tn + tn+1

2
, n = 0, 1, . . . , K – 1,

where τ is called the temporal step size.
Set Uτ = {w|w = (w0, w1, . . . , wK )T }, for any w ∈ Uτ , introducing some notations as fol-

lows:

wn+ 1
2 =

1
2
(
wn+1 + wn), δtwn+ 1

2 =
1
τ

(
wn+1 – wn), n = 0, 1, . . . , K – 1.

Define grid functions on �̄h × �τ , Cn
ij = C(xi, yj, tn), (i, j) ∈ ω̄, 0 ≤ n ≤ K . Following Refs.

[25, 26], the two-dimensional convection–diffusion equation in Eqs. (1) can be rewritten
as the following two equations:

Dx
∂2C
∂x2 + v

∂C
∂x

= f –
(

∂C
∂t

– Dy
∂2C
∂y2

)

, (x, y) ∈ �, t > 0, (2)

–Dy
∂2C
∂y2 = f –

(
∂C
∂t

– Dx
∂2C
∂x2 + v

∂C
∂x

)

, (x, y) ∈ �, t > 0. (3)

Next, we only need to consider the compact difference scheme with Eq. (2) and Eq. (3),
respectively.

For Eq. (2), considering it at the point (xi, yj, tn+ 1
2

), we have

Dx
∂2C
∂x2 (xi, yj, tn+ 1

2
) + v

∂C
∂x

(xi, yj, tn+ 1
2

)

= f (xi, yj, tn+ 1
2

) – [
∂C
∂t

(xi, yj, tn+ 1
2

) – Dy
∂2C
∂x2 (xi, yj, tn+ 1

2
),

(i, j) ∈ ω, 0 ≤ n ≤ K – 1. (4)
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Consider the one-dimensional steady convection–diffusion equation [24]

–α
∂2u
∂x2 + β

∂u
∂x

= f̃ (x), (5)

where α is the constant conductivity, β is a constant representing the convective velocity,
f̃ is a sufficiently smooth function of x, and u may represent the concentration of a solute,
vorticity, heat, etc.

Its three point fourth-order compact scheme is as follows:

–
(

α +
β2h2

12α

)

δ2
x u(xi) + β�xu(xi) =

[

1 +
h2

12

(

δ2
x –

β

α
�x

)]

f̃ (xi), (6)

where

�xu(xi) =
u(xi+1) – u(xi–1)

2h

and

δ2
x u(xi) =

u(xi+1) – 2u(xi) + u(xi–1)
h2

are the central difference approximations for the first and second derivatives.
We think of the right term

f (xi, yj, tn+ 1
2

) – [
∂C
∂t

(xi, yj, tn+ 1
2

) – Dy
∂2C
∂x2 (xi, yj, tn+ 1

2
)

of Eq. (4) as a whole, similar to the right term f̃ of Eq. (5), using the method of Eq. (6),
taking the Taylor formula into account [27], applying the Taylor expansion for Eq. (4); it
generates

–
(

Dx +
v2h2

x
12Dx

)

δ2
x Cn+ 1

2
ij + v�xCn+ 1

2
ij

=
[

1 +
h2

x
12

(

δ2
x –

v
Dx

�x

)][

f n+ 1
2

ij –
(

∂C
∂t

– Dyδ
2
y C

)

|n+ 1
2

ij

]

+ Rn+ 1
2

1ij ,

(i, j) ∈ ω, 0 ≤ n ≤ K – 1, (7)

where the truncation error is

∣
∣Rn+ 1

2
1ij

∣
∣ = O

(
h4

x
)
, (i, j) ∈ ω, 0 ≤ n ≤ K – 1. (8)

Considering Eq. (3) at the point (xi, yj, tn+ 1
2

), we have

–Dy
∂2C
∂y2 (xi, yj, tn+ 1

2
)

= f (xi, yj, tn+ 1
2

) –
[

∂C
∂t

(xi, yj, tn+ 1
2

) – Dx
∂2C
∂x2 (xi, yj, tn+ 1

2
) + v

∂C
∂x

(xi, yj, tn+ 1
2

)
]

,
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(i, j) ∈ ω, 0 ≤ n ≤ K – 1. (9)

For the interior nodes of the spatial of Eq. (3), we use the derivative type fourth-
order compact differential formula to deal with the one-dimensional convection–diffusion
equation [22].

For convenience, we define a compact difference operator by B [12], for any u ∈ Uh,

(Bu)ij =

⎧
⎨

⎩

ui,j–1+10uij+ui,j+1
12 , 1 ≤ i ≤ N , 1 ≤ j ≤ M – 1,

uij, 1 ≤ i ≤ N , j = 0, M.
(10)

By Lemma 1.2(g) [12]: If g(x) ∈ C6[c – h, c + h], then we have

1
12

[
g ′′(c – h) + 10g ′′(c) + g ′′(c + h)

]
=

1
h2

[
g(c – h) + 10g(c) + g(c + h)

]
+

h4

240
g6(ξ6),

where ξ6 ∈ (c – h, c + h), h > 0 and c are two positive constants.
We have

B ∂2u
∂y2 (xi, yj, tn) = δ2

y un
ij +

h4
y

240
∂6u
∂y6 (xi, ξjk , tn), (11)

where 1 ≤ i ≤ N , 1 ≤ j ≤ M – 1, 1 ≤ n ≤ K , and ξjk ∈ (yj–1, yj).
Apply compact difference operator B to both sides of Eq. (9), combine with Eq. (11); we

have

–Dyδ
2
y Cn+ 1

2
ij

=
1

12

{[

f (xi, yj, tn+ 1
2

) –
(

∂C
∂t

(xi, yj, tn+ 1
2

) – Dx
∂2C
∂x2 (xi, yj, tn+ 1

2
) + v

∂C
∂x

(xi, yj, tn+ 1
2

)
)]

+ 10
[

f (xi, yj, tn+ 1
2

) –
(

∂C
∂t

(xi, yj, tn+ 1
2

) – Dx
∂2C
∂x2 (xi, yj, tn+ 1

2
) + v

∂C
∂x

(xi, yj, tn+ 1
2

)
)]

+
[

f (xi, yj, tn+ 1
2

) –
(

∂C
∂t

(xi, yj, tn+ 1
2

) – Dx
∂2C
∂x2 (xi, yj, tn+ 1

2
) + v

∂C
∂x

(xi, yj, tn+ 1
2

)
)]}

+
h4

y

240
∂6u
∂y6 (xi, ξjk , tn), (i, j) ∈ ω, 0 ≤ n ≤ K – 1. (12)

It is easy to observe that Eq. (12) is equal to the following form:

–Dyδ
2
y C(xi, yj, tn+ 1

2
)

=
[

1 +
h2

y

12
δ2

y

]{

f (xi, yj, tn+ 1
2

) –
[

∂C
∂t

(xi, yj, tn+ 1
2

)

– Dx
∂2C
∂x2 (xi, yj, tn+ 1

2
) + v

∂C
∂x

(xi, yj, tn+ 1
2

)
]}

+
h4

y

240
∂6u
∂y6 (xi, ξjk , tn),

(i, j) ∈ ω, 0 ≤ n ≤ K – 1. (13)
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Taking the Taylor formula into account again, applying the Taylor expansion for Eq. (13),
we have

–Dyδ
2
y Cn+ 1

2
ij =

[

1 +
h2

y

12
δ2

y

][

f n+ 1
2

i,j –
(

∂C
∂t

– Dxδ
2
x C + v�xC

)

|n+ 1
2

i,j

]

+ Rn+ 1
2

2ij ,

(i, j) ∈ ω, 0 ≤ n ≤ K – 1, (14)

where the truncation error is

∣
∣Rn+ 1

2
2ij

∣
∣ = O

(
h4

y
)
, (i, j) ∈ ω, 0 ≤ n ≤ K – 1. (15)

Adding Eq. (7) to Eq. (14) and using Eq. (1) yield

–
(

Dx +
v2h2

x
12Dx

)

δ2
x Cn+ 1

2
ij + v�xCn+ 1

2
ij – Dyδ

2
y Cn+ 1

2
ij

=
[

1 +
h2

x
12

(

δ2
x –

v
Dx

�x

)][

f n+ 1
2

ij –
(

∂C
∂t

– Dyδ
2
y C

)

|n+ 1
2

ij

]

+
[

1 +
h2

y

12
δ2

y

][

f n+ 1
2

i,j –
(

∂C
∂t

– Dxδ
2
x C + v�xC

)

|n+ 1
2

i,j

]

+ Rn+ 1
2

1ij + Rn+ 1
2

2ij . (16)

For the time term of Eq. (16), we make a Crank–Nicolson (C-N) time discretization, notic-
ing the former notations, we can construct

{
1
2

[

–
(

Dx +
v2h2

x
12Dx

)

δ2
x + v�x – Dyδ

2
y –

Dyh2
x + Dxh2

y

12
δ2

xδ
2
y +

(
Dyvh2

x

12Dx
+

vh2
y

12

)

δ2
y �x

]

+
1
τ

[

1 +
h2

x
12

(

δ2
x –

v
Dx

�x

)

+
h2

y

12
δ2

y

]}

Cn+1
ij

=
[

1 +
h2

x
12

(

δ2
x –

v
Dx

�x

)

+
h2

y

12
δ2

y

]

}f n+ 1
2

ij

–
{

1
2

[

–
(

Dx +
v2h2

x
12Dx

)

δ2
x + v�x – Dyδ

2
y –

Dyh2
x + Dxh2

y

12
δ2

xδ
2
y

+
(

Dyvh2
x

12Dx
+

vh2
y

12

)

δ2
y �x

]

–
1
τ

[

1 +
h2

x
12

(

δ2
x –

v
Dx

�x

)

+
h2

y

12
δ2

y

]}

Cn
ij + Rn

ij,

(i, j) ∈ ω, 0 ≤ n ≤ K – 1, (17)

where Rn
ij = O(τ 2 + h4

x + h4
y) is the truncation error.

Taking the initial and boundary conditions of Eq. (1) into account, we have

C0
ij = 0, (i, j) ∈ ω,

Cn
ij = g(xi, yj, tn), (i, j) ∈ σ , 0 ≤ n ≤ K .

(18)
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Figure 1 Node distribution graph of the compact
difference scheme

Ignoring the higher-order terms Rn+ 1
2

ij in (17), and replacing Cn
ij with its approximation

cn
ij, the compact difference scheme of Eq. (1) can be obtained,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ 1
2 [–(Dx + v2h2

x
12Dx

)δ2
x + v�x – Dyδ

2
y – Dyh2

x+Dxh2
y

12 δ2
xδ

2
y + ( Dyvh2

x
12Dx

+ vh2
y

12 )δ2
y �x]

+ 1
τ

[1 + h2
x

12 (δ2
x – v

Dx
�x) + h2

y
12 δ2

y ]}cn+1
ij

= [1 + h2
x

12 (δ2
x – v

Dx
�x) + h2

y
12 δ2

y ]f n+ 1
2

ij

– { 1
2 [–(Dx + v2h2

x
12Dx

)δ2
x + v�x – Dyδ

2
y – Dyh2

x+Dxh2
y

12 δ2
xδ

2
y + ( Dyvh2

x
12Dx

+ vh2
y

12 )δ2
y �x]

– 1
τ

[1 + h2
x

12 (δ2
x – v

Dx
�x) + h2

y
12 δ2

y ]}cn
ij,

(i, j) ∈ ω, 0 ≤ n ≤ K – 1,

c0
ij(x, y) = c0(xi, yj), (i, j) ∈ ω,

cn
ij(x, y) = g(xi, yj, tn), (i, j) ∈ ω, 0 ≤ n ≤ K .

(19)

The node graph of the scheme (19) is shown in Fig. 1, which is a two layer scheme.

Theorem 2.1 The truncation error of the compact finite difference scheme (19) is

∣
∣Rn

ij
∣
∣ = O

(
τ 2 + h4

x + h4
y
)
, (i, j) ∈ ω, 0 ≤ n ≤ K . (20)

3 Matrix form of the numerical scheme
The numerical scheme of the convection–diffusion equation plays a very important role
in computational fluid dynamics to simulate flow problems [20]. Therefore, accurate and
stable difference schemes are of vital importance. To achieve the unconditional stability,
we resort to the Crank–Nicolson method for a time discretization of Eq. (19). Notice the
notations defined in Sect. 2 for the difference scheme (19), which will result in a system
of algebraic equations that is sparse; the existence and uniqueness of the solution of the
scheme (19) are easily known by the positive definite property. We have

{
1
2

{[(

Dx +
v2h2

x
12Dx

)
2
h2

x
+

2Dy

h2
y

]

+
[

–
2(Dyh2

x + Dxh2
y)

12h2
y

2
h2

x

]}

+
1
τ

[

1 –
h2

x
12

2
h2

x
–

h2
y

12
2
h2

y

]}

cn+1
ij +

{
1
2

{[

–
(

Dx +
v2h2

x
12Dx

)
1
h2

x
+

v
2hx

]

+
[2(Dyh2

x + Dxh2
y)

12h2
y

1
h2

x

]

+
[

–
(Dyvh2

y

12Dx
+

vh2
y

12

)
1

2hx

2
h2

y

]}

+
1
τ

[
h2

x
12

2
h2

x
–

h2
x

12
v

Dx

1
2hx

]}

cn+1
i+1,j
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+
{

1
2

{[

–
(

Dx +
v2h2

x
12Dx

)
1
h2

x
–

v
2hx

]

+
[2(Dyh2

x + Dxh2
y)

12h2
y

1
h2

x

]

–
[

–
(Dyvh2

y

12Dx
+

vh2
y

12

)
1

2hx

2
h2

y

]}

+
1
τ

[
h2

x
12

2
h2

x
+

h2
x

12
v

Dx

1
2hx

]}

cn+1
i–1,j

+
{

1
2

{

–
Dy

h2
y

–
1
2

[

–
2(Dyh2

x + Dxh2
y)

12h2
y

2
h2

x

]}

+
1
τ

h2
y

12
2
h2

y

}

cn+1
i,j+1

+
{

1
2

{

–
Dy

h2
y

–
1
2

[

–
2(Dyh2

x + Dxh2
y)

12h2
y

2
h2

x

]}

+
1
τ

h2
y

12
2
h2

y

}

cn+1
i,j–1

+ {1
2

{

–
1
2

[2(Dyh2
x + Dxh2

y)
12h2

y

1
h2

x

]

+
[(Dyvh2

y

12Dx
+

vh2
y

12

)
1

2hx

1
h2

y

]}

cn+1
i+1,j+1

+ {1
2

{

–
1
2

[2(Dyh2
x + Dxh2

y)
12h2

y

1
h2

x

]

–
[(Dyvh2

y

12Dx
+

vh2
y

12

)
1

2hx

1
h2

y

]}

cn+1
i–1,j+1

+ {1
2

{

–
1
2

[2(Dyh2
x + Dxh2

y)
12h2

y

1
h2

x

]

+
[(Dyvh2

y

12Dx
+

vh2
y

12

)
1

2hx

1
h2

y

]}

cn+1
i+1,j–1

+ {1
2

{

–
1
2

[2(Dyh2
x + Dxh2

y)
12h2

y

1
h2

x

]

+
[(Dyvh2

y

12Dx
+

vh2
y

12

)
1

2hx

1
h2

y

]}

cn+1
i–1,j–1

=
{

–
1
2

{[(

Dx +
v2h2

x
12Dx

)
2
h2

x
+

2Dy

h2
y

]

+
[

–
2(Dyh2

x + Dxh2
y)

12h2
y

2
h2

x

]}

+
1
τ

[

1 –
h2

x
12

2
h2

x
–

h2
y

12
2
h2

y

]}

cn
ij

+
{

–
1
2

{[

–
(

Dx +
v2h2

x
12Dx

)
1
h2

x
+

v
2hx

]

+
[2(Dyh2

x + Dxh2
y)

12h2
y

1
h2

x

]

+
[

–
(Dyvh2

y

12Dx
+

vh2
y

12

)
1

2hx

2
h2

y

]}

+
1
τ

[
h2

x
12

2
h2

x
–

h2
x

12
v

Dx

1
2hx

]}

cn
i+1,j

+
{

–
1
2

{[

–
(

Dx +
v2h2

x
12Dx

)
1
h2

x
–

v
2hx

]

+
[2(Dyh2

x + Dxh2
y)

12h2
y

1
h2

x

]

–
[

–
(Dyvh2

y

12Dx
+

vh2
y

12

)
1

2hx

2
h2

y

]}

+
1
τ

[
h2

x
12

2
h2

x
+

h2
x

12
v

Dx

1
2hx

]}

cn
i–1,j

+
{

–
1
2

{

–
Dy

h2
y

–
1
2

[

–
2(Dyh2

x + Dxh2
y)

12h2
y

2
h2

x

]}

+
1
τ

h2
y

12
2
h2

y

}

cn
i,j+1

+
{

–
1
2

{

–
Dy

h2
y

–
1
2

[

–
2(Dyh2

x + Dxh2
y)

12h2
y

2
h2

x

]}

+
1
τ

h2
y

12
2
h2

y

}

cn
i,j–1

–
1
2

{

–
1
2

[2(Dyh2
x + Dxh2

y)
12h2

y

1
h2

x

]

+
[(Dyvh2

y

12Dx
+

vh2
y

12

)
1

2hx

1
h2

y

]}

cn
i+1,j+1

–
1
2

{

–
1
2

[2(Dyh2
x + Dxh2

y)
12h2

y

1
h2

x

]

–
[(Dyvh2

y

12Dx
+

vh2
y

12

)
1

2hx

1
h2

y

]}

cn
i–1,j+1

–
1
2

{

–
1
2

[2(Dyh2
x + Dxh2

y)
12h2

y

1
h2

x

]

+
[(Dyvh2

y

12Dx
+

vh2
y

12

)
1

2hx

1
h2

y

]}

cn
i+1,j–1
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–
1
2

{

–
1
2

[2(Dyh2
x + Dxh2

y)
12h2

y

1
h2

x

]

+
[(Dyvh2

y

12Dx
+

vh2
y

12

)
1

2hx

1
h2

y

]}

cn
i–1,j–1

+
[

1 –
h2

x
12

2
h2

x
–

h2
y

12
2
h2

y

]

f n+ 1
2

ij +
[

h2
x

12
2
h2

x
–

h2
x

12
v

Dx

1
2hx

]

f n+ 1
2

i+1,j

+
[

h2
x

12
2
h2

x
+

h2
x

12
v

Dx

1
2hx

]

f n+ 1
2

i–1,j +
h2

y

12
2
h2

y
f n+ 1

2
i,j+1 +

h2
y

12
2
h2

y
f n+ 1

2
i,j–1 . (21)

Let

a1 =
(

Dx +
v2h2

x
12Dx

)
2
h2

x
+

2Dy

h2
y

, a2 = –
(

Dx +
v2h2

x
12Dx

)
1
h2

x
+

v
2hx

,

a3 = –
(

Dx +
v2h2

x
12Dx

)
1
h2

x
–

v
2hx

, a4 = a5 = –
Dy

h2
y

,

b1 = –
2(Dyh2

x + Dxh2
y)

12h2
y

2
h2

x
, b2 = b3 =

2(Dyh2
x + Dxh2

y)
12h2

y

1
h2

x
,

b4 = b5 = –
1
2

b1, b6 = b8 = –
1
2

b2, b7 = b9 = –
1
2

b3,

c2 = –
(Dyvh2

y

12Dx
+

vh2
y

12

)
1

2hx

2
h2

y
, c6 = c8 =

(Dyvh2
y

12Dx
+

vh2
y

12

)
1

2hx

1
h2

y
,

c3 = –c2, c7 = –c6, c9 = –c8,

e1 =
1
τ

[

1 –
h2

x
12

2
h2

x
–

h2
y

12
2
h2

y

]

, e2 =
1
τ

[
h2

x
12

1
h2

x
–

h2
x

12
v

Dx

1
2hx

]

,

e3 =
1
τ

[
h2

x
12

1
h2

x
+

h2
x

12
v

Dx

1
2hx

]

, e4 = e5 =
1
τ

h2
y

12
2
h2

y
,

It is obvious that the compact finite difference scheme (21) is a system of linear equations
based on the variable cn

ij, 0 ≤ i ≤ N , 0 ≤ j ≤ M, 0 ≤ n ≤ K , then Eq. (21) can be written as

p1cn+1
ij + p2cn+1

i+1,j + p3cn+1
i–1,j + p4cn+1

i,j+1 + p5cn+1
i,j–1 + p6cn+1

i+1,j+1

+ p7cn+1
i–1,j+1 + p8cn+1

i+1,j–1 + p9cn+1
i–1,j–1

= q1cn
ij + q2cn

i+1,j + q3cn
i–1,j + q4cn

i,j+1 + q5cn
i,j–1 + q6cn

i+1,j+1

+ q7cn
i–1,j+1 + q8cn

i+1,j–1 + q9cn
i–1,j–1

+ τe1f n+ 1
2

ij + τe2f n+ 1
2

i+1,j + τe3f n+ 1
2

i–1,j + τe4f n+ 1
2

i,j+1 + τe5f n+ 1
2

i,j–1 , (22)

where

p1 =
a1 + b1

2
+ e1, p2 =

a2 + b2 + c2

2
+ e2, p3 =

a3 + b3 + c3

2
+ e3,

p4 =
a4 + b4

2
+ e4, p5 =

a5 + b5

2
+ e5, p6 =

b6 + c6

2
,
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p7 =
b7 + c7

2
, p8 =

b8 + c8

2
, p9 =

b9 + c6

9
,

q1 = –
a1 + b1

2
+ e1, q2 = –

a2 + b2 + c2

2
+ e2, q3 = –

a3 + b3 + c3

2
,

(23)

q4 = –
a4 + b4

2
+ e4, q5 = –

a5 + b5

2
+ e5, q6 = –

b6 + c6

2
,

q7 = –
b7 + c7

2
, q8 = –

b8 + c8

2
, q9 = –

b9 + c6

9
.

Let

cj =

⎛

⎜
⎜
⎜
⎜
⎝

c1j

c2j
...

cM–1,j

⎞

⎟
⎟
⎟
⎟
⎠

, 0 ≤ j ≤ M – 1.

We can give the matrix form of the scheme by

P2cn+1
j+1 + P1cn+1

j + P3cn+1
j–1

= Q2cn
j+1 + Q1cn

j + Q3cn
j–1 + τE2fn+ 1

2
j+1 + τE1fn+ 1

2
j + τE3fn+ 1

2
j–1 , 1 ≤ j ≤ M, (24)

where

P1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p1 p2

p3 p1 p2
. . . . . . . . .

p3 p1 p2

p3 p1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, P2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p4 p6

p7 p4 p6
. . . . . . . . .

p7 p4 p6

p7 p4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

P3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p5 p8

p9 p5 p8
. . . . . . . . .

p9 p5 p8

p9 p5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Q1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q1 q2

q3 q1 q2
. . . . . . . . .

q3 q1 q2

q3 q1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Q2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q4 q6

q7 q4 q6
. . . . . . . . .

q7 q4 q6

q7 q4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Q3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q5 q8

q9 q5 q8
. . . . . . . . .

q9 q5 q8

q9 q5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

E1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e1 e2

e3 e1 e2
. . . . . . . . .

e3 e1 e2

e3 e1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, E2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e4

e4
. . .

e4

e4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,



Li et al. Advances in Difference Equations  (2018) 2018:234 Page 12 of 24

E3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e5

e5
. . .

e5

e5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, fj =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[1 + h2
x

12 (δ2
x – v

Dx
�x) + h2

y
12 δ2

y ]f1j

+ p9c0,j–1 + p3c0,j + p7c0,j+1

[1 + h2
x

12 (δ2
x – v

Dx
�x) + h2

y
12 δ2

y ]f2j
...

[1 + h2
x

12 (δ2
x – v

Dx
�x) + h2

y
12 δ2

y ]fM–1,j

+ p8cM,j–1 + p2cM,j + p6cM,j+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

By simply calculating, we can see that the matrix P2 is the same as the matrix P3 abso-
lutely. So, we can further write (24) as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

P1 P2

P3 P1 P2
. . . . . . . . .

P3 P1 P2

P3 P1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cn+1
1

cn+1
2
...

cn+1
M–2

cn+1
M–1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q1 Q2

Q3 Q1 Q2
. . . . . . . . .

Q3 Q1 Q2

Q3 Q1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cn
1

cn
2
...

cn
M–2

cn
M–1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

E1 E2

E3 E1 E2
. . . . . . . . .

E3 E1 E2

E3 E1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

fn+ 1
2

1 – P2c0

fn+ 1
2

2
...

fn+ 1
2

M–2

fn+ 1
2

M–1 – P2cM

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The coefficient matrix of the above linear equations is a three diagonal block matrix, and
each row has at most nine nonzero elements, therefore we can rewrite the scheme (24) in
the following matrix form:

Pcn+1
ij = Qcn

ij + τEfn+1
ij , (25)

where

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

P1 P2

P3 P1 P2
. . . . . . . . .

P3 P1 P2

P3 P1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q1 Q2

Q3 Q1 Q2
. . . . . . . . .

Q3 Q1 Q2

Q3 Q1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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E =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

E1 E2

E3 E1 E2
. . . . . . . . .

E3 E1 E2

E3 E1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Those three matrices are all strictly diagonally dominant tridiagonal matrices, which
guarantees the existence and uniqueness of the solution.

4 Stability analysis
For the presentation of the theoretical analysis, we make f = 0 of the first equation in
Eqs. (1) for convenience [1]. Assuming that the boundary conditions are accurate, we ap-
ply the Fourier method to the relative difference equation, by calculating the amplification
factor to obtain an algebraic criterion for the stability analysis of the scheme (19). With-
out loss of generality, we choose Dx, Dy and v as constants. Following the von Neumann
condition [28] for linear stability, we assume that the numerical solution can be expressed
in the form of a Fourier series [20].

Let

cn
ij = ηne

√
–1(iξxhx+jξyhy), (26)

where ηn is the amplitude at time level n,
√

–1 is called the imaginary unit, ξx and ξy

represent the wave numbers in the x and y directions, respectively, the ξxhx and ξyhy are
named phase angles.

The amplification factor is defined by

G(ξx, ξy, τ ) =
ηn+1

ηn . (27)

Substituting the expression of cn+1
ij and cn

ij into Eq. (25), combining Eq. (26) with Eq. (27),
the amplification factor can be written as

G(ξx, ξy, τ ) =
n
m

, (28)

where

n =
[
(q1 + 2q4) + (q2 + q3)γ1 – 4q4γ3 + (q6 + q7)(γ4 + γ6)

]

+ i
[
(q2 – q3)γ2 + (q6 – q7)(γ5 + γ7)

]
,

m =
[
(p1 + 2p4) + (p2 + p3)γ1 – 4p4γ3 – (p6 + p7)(γ4 + γ6)

]

+ i
[
(p2 – p3)γ2 – (q6 – q7)(γ5 + γ7)

]
,

and

γ1 = cos ξxhx, γ2 = sin ξxhx, γ3 = sin2 ξyhy

2
, γ4 = cos(ξxhx + ξyhy),

γ5 = sin(ξxhx + ξyhy), γ6 = cos(ξxhx – ξyhy), γ7 = sin(ξxhx – ξyhy).
(29)
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For stability, it has to satisfy the following condition [28]:

∣
∣G(ξx, ξy, τ )

∣
∣ ≤ 1. (30)

Referring to the method of Ref. [29], let

∣
∣G(ξx, ξy, τ )

∣
∣2 =

p
q

. (31)

We just need to compare the relationship between p and q. It is sufficient that p – q ≤ 0,
that is to say, then Eq. (30) is proved.

Imposing that condition directly on Eq. (28), it yields

p – q = (q1 + 2q4 + p1 + 2p4)(q1 + 2q4 – p1 – 2p4)

+ (q2 + q3 + p2 + p3)(q2 + q3 – p2 – p3)γ 2
1 + 16(q4 + p4)(q4 – p4)γ 2

3

+ 2
{[

(q1 + 2q4)(q2 + q3) – (p1 + 2p4)(p2 + p3)
]
γ1

+ 4
[
(p1 + 2p4)p4 – (q1 + 2q4)q4

]
γ3

+ (q1 + 2q4 + p1 + 2p4)(q6 + q7)(γ4 + γ6) + 4
[
(p2 + p3)p4 – (q2 + q3)q4

]
γ1γ3

+ (q2 + q3 + p2 + p3)(q6 + q7)γ1(γ4 + γ6) – 4(q4 + p4)(q6 + q7)γ3(γ4 + γ6)

+ (q2 – q3 + p2 – p3)(q6 – q7)γ2(γ5 + γ7)
}

. (32)

Notice the definitions of pk , qk (1 ≤ k ≤ 9) in (23) and the definitions of γl (1 ≤ l ≤ 5)
in (29), with a detailed calculation we obtain, when v > 0, p – q ≤ 0 for any hx, hy and τ .
Besides, we also checked it with MATLAB when v > 0 for any hx, hy and τ . In other words,
it shows p ≤ q.

As a result, we have

∣
∣G(ξx, ξy, τ )

∣
∣2 =

p
q

≤ 1. (33)

Thus, the following result can be derived:

∣
∣G(ξx, ξy, τ )

∣
∣ ≤ 1, 0 < τ < τ0, 0 < Kτ < T . (34)

Hence, we derive the following result.

Theorem 4.1 When v > 0, the fourth-order compact finite difference scheme (19) is uncon-
ditionally stable.

5 Numerical experiments
In this part, to validate the applicability of the method we provided, two experiments have
been considered. To test our fourth-order compact difference scheme (19) according to
Sect. 2, those examples with their known exact solutions are chosen in order to show the
performance of the high-order compact schemes using computer programs that imple-
ment the scheme (19).
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There are no differences between square and rectangular domains for the numeri-
cal scheme we proposed. In the following numerical experiments, the domain is de-
liberately set to a square domain for simplicity, all tests are conducted on the domain
� = [0, 1] × [0, 1] with a uniform mesh size hx and hy in x and y directions, respectively.
The computations were performed in a MATLAB environment using version R2014a on
a Lenovo notebook computer, and they were executed on Inter(R) Core(TM) i7-6500U
CPU @ 2.50 GHz, RAM 8.00 GB (7.44 GB available).

The numerical results will be presented to illustrate the efficiency and accuracy of our
method, and the experimental convergence orders are shown in Table 1, Table 3 and Ta-
ble 5. At the same time, we also compare our results with the results from the previous
second-order difference method, as shown in Table 2, Table 4 and Table 6 to illustrate the
advance of the scheme (19).

Here the numerical solution and the exact solution are compared with the use of the
l2-norm of the error and the l∞-norm of the error. The definitions of these two errors are
as follows [30].

The l2-norm of the error is defined by

Errorl2 =
∥
∥cnum – Cexact∥∥

l2 =

√
√
√
√

N∑

i=1

M∑

j=1

∣
∣cK

ij – CK
ij
∣
∣2hxhy. (35)

The l∞-norm of the error is approximated by the formula for the l2-norm of the error,
which is defined by

Errorl∞ =
∥
∥cnum – Cexact∥∥

l∞ = max
1≤i≤N ,1≤j≤M

∣
∣cK

ij – CK
ij
∣
∣, (36)

where N and M are the numbers of sub-intervals, Uij is the result from the numerical
solution, and uij is from the analytic solution, K represents the last time level.

In the following tables, we take N = M, the experimental order of convergence Rate is
computed by the formula

Ratel2 =
log(ErrorN1 /ErrorN2 )

log(N2/N1)
, (37)

where ErrorN1 and ErrorN2 are the l2-norms of fields with resolutions associated with grid
sizes N1 and N2. We have

Ratel∞ =
log(Error1/Error2)

log(h1/h2)
, (38)

where Error1 and Error2 are computed with mesh size h = hx = hy with Errorl∞ , accord-
ingly. For example, the orders of convergence are obtained by data from the first line di-
vided by the second line, and the second divided by the third, i.e. we get the results for
Rate(h = 1

4 ) and Rate(h = 1
8 ), respectively.
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Table 1 The comparison of the l2-norm and the l∞-norm when τ 2 = hx = hy forO(h4x + h4y )
fourth-order compact finite difference schemes in Example 1, at different values of the step size (for
N = 4, 8, 16, 32, 64, 128) in the x and y directions

h errL2 order errL∞ order
1
4 3.1833e–004 6.3680e–004
1
8 2.0323e–005 3.9158 4.0654e–005 3.9160
1
16 1.2761e–006 3.9815 1.6045e–007 3.9815
1
32 7.9847e–008 3.9955 1.6045e–007 3.9772
1
64 4.9917e–009 3.9989 1.0031e–008 3.9989
1
128 Out of memory – Out of memory –

Example 1 In this part, we study the following two-dimensional convection–diffusion
equation, and give main results for the numerical approximation:

⎧
⎪⎪⎨

⎪⎪⎩

∂C
∂t = Dx

∂2C
∂x2 + Dy

∂2C
∂y2 – v ∂C

∂x + f , (x, y) ∈ �, t > 0,

C(x, y, t) = g(x, y, t), (x, y) ∈ �, t > 0,

C(x, y, 0) = C0(x, y), (x, y) ∈ �.

(39)

Let the right item

f (x, y, t) = e–t[(2π2 – 1
)

sinπx sinπy + vπ cosπx sinπy
]
, (40)

and the exact solution of Eqs. (39),

C(x, y, t) = e–t sinπx sinπy, (41)

and we take the temporal range t ∈ [0, T], Dx = Dy = v = 1 in the experiment. Here
C(x, y, t) = 0, for all (x, y) ∈ �, but f (x, y, t) 
= 0, for any (x, y) ∈ �.

The spatial step size chosen in the numerical experiment are different h = 1
4 , h = 1

8 , h =
1

16 , h = 1
32 , h = 1

64 , and h = 1
128 , respectively. Applying the numerical scheme in Sect. 2 to

Eqs. (39), the error and convergence order of difference approximation schemes are shown
in Table 1 (where h = hx = hy).

Table 1 demonstrates the l2-norm and the l∞-norm between numerical solution and
exact solution in the case of the temporal increment is the same as the spatial increment,
i.e. τ 2 = h. Besides, we notice that when h is ever more smaller, the accuracy of the scheme
(19) grows close to fourth order. Nevertheless, it only reaches two orders with standard
difference scheme; see Table 2 (where h = hx = hy).

From the above two tables, it is obvious that with N increasing, the accuracies of l2-
norm and the l∞-norm are decreasing, that is to say, we can adopt a small spatial step
size to solve this class of equation if we need the error filled with high accuracy. But for
our high accuracy scheme, when h = 1

128 , the space grid involves 128 × 128 points; at the
same time, the number of time layers is 128 × 128 layers, too. Due to the limitations of
computer storage performance, we cannot run the results needed, we have the MATLAB
display: Out of memory. For a standard general scheme, when h = 1

128 , the space grid and
time layers are the same, only 128 × 128, and it can be computed by a computer.
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Table 2 The comparison of the l2-norm and the l∞-norm when τ = hx = hy forO(h2x + h2y ) standard
central difference scheme, at different values of the step size (for N = 4, 8, 16, 32, 64, 128) in the x and y
directions

h errL2 order errL∞ order
1
4 9.6097e–003 2.1177e–002
1
8 2.5186e–003 1.9319 5.4063e–003 1.9585
1
16 6.2591e–004 2.0086 1.2530e–003 2.1574
1
32 1.5625e–004 2.0021 3.1349e–004 1.9984
1
64 3.9048e–005 2.0005 7.8366e–005 2.0002
1
128 9.7610e–006 2.0001 1.9591e–005 2.0001

Figure 2 L2-norm errors of the standard difference scheme and the compact difference scheme in
Example 1. (a) Approximation order of C in L2-norm. (b) L2-norm varying with spatial step

To further collaborate the applicability of the proposed method, we have clearer pictures
of the convergence of the compact difference (19), which are plotted in Fig. 2, the errors in
the semi-log scale, which indicates an exponential convergence rate O(τ 2 + h4

x + h4
y) under

the standard of the l2-norm and the l∞-norm, respectively.
It should be realized that the scheme (19) provides reasonable approximations of the

solution in terms of the standard difference scheme. In general, Figs. 2 also show the fact
that the present method is computationally stable, effective, simple to use, convergent and
giving an accuracy of the solution better than some previously existing methods.

Figures 3, 4 and 5, obtained by MATLAB software, show comparison results and the
changes of numerical solution and exact solution with our compact difference scheme
(19) under the condition of different step sizes, both spatially and temporally.

Example 2 The equation with homogeneous Dirichlet boundary condition to be solved
is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C
∂t – Dx

∂2C
∂x2 – Dy

∂2C
∂y2 + v ∂C

∂x

= e–t[–x(1 – x)y(1 – y) + 2x(1 – x)y(1 – y)

+ v(1 – 2x)y(1 – y)], (x, y) ∈ �, t > 0,

C(x, y, t) = g(x, y, t), (x, y) ∈ �, t > 0,

C(x, y, 0) = C0(x, y), (x, y) ∈ �.

(42)
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Figure 3 The effect of numerical solution and exact solution at fixed T = 1,h = 1
4 and τ = 1

16 in Example 1.
(a) N = 22. (b) N = 22

Figure 4 The effect of numerical solution and exact solution at fixed T = 1,h = 1
8 and τ = 1

64 in Example 1.
(a) N = 24. (b) N = 24

Figure 5 The effect of numerical solution and exact solution at fixed T = 1,h = 1
32 and τ = 1

1024 in Example 1.
(a) N = 25. (b) N = 25

The exact solution of Eqs. (42) is

C(x, y, t) = e–tx(1 – x)y(1 – y)).

We still take the temporal range t ∈ [0, T], and we choose the following coefficients of
equations Dx = Dy = 1, v = 0.1 in the numerical experiment.
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Table 3 The comparison of the l2-norm and the l∞-norm when τ 2 = hx = hy forO(h4x + h4y )
fourth-order compact finite difference schemes in Example 2, at different values of the step size (for
N = 4, 8, 16, 32, 64, 128) in the x and y directions

h errL2 order errL∞ order
1
4 6.1733e–006 1.1640e–005
1
8 3.8740e–007 3.9838 7.2789e–007 3.9979
1
16 2.4219e–008 3.9990 4.5494e–008 3.9999
1
32 1.5137e–009 3.9999 2.8434e–009 4.0000
1
64 9.4606e–0011 4.0000 1.7771e–0010 4.0000
1
128 Out of memory – Out of memory –

Table 4 The comparison of the l2-norm and the l∞-norm when τ = hx = hy forO(h2x + h2y ) standard
central difference scheme, at different values of the step size (for N = 4, 8, 16, 32, 64, 128) in the x and y
directions

h errL2 order errL∞ order
1
4 3.3066e–006 1.6733e–003
1
8 8.6085e–007 1.9415 2.2786e–004 3.6718
1
16 2.1334e–007 2.0126 5.3554e–005 2.1274
1
32 5.3216e–008 2.0032 1.3026e–005 2.0556
1
64 1.3297e–008 2.0008 3.2316e–006 2.0154
1
128 3.3241e–009 2.0000 8.0609e–007 2.0045

Figure 6 The effect of numerical solution and exact solution at fixed T = 1,h = 1
32 and τ = 1

1024 in Example 2.
(a) N = 24. (b) N = 24

The spatial step sizes chosen are the same as the former experiment, using the scheme
(19) to Eqs. (42), we get the error and convergence order of the difference approximation
schemes; see Table 3 (where h = hx = hy).

Next, we give the numerical results of the standard different scheme obtained by com-
puter experiment; see Table 4 (where h = hx = hy).

In Tables 3 and 4, we compare the second-order standard finite difference scheme and
the fourth-order compact finite difference scheme (19) in the sense of the l2-norm and
the l∞-norm at T = 1. We make τ 2 = h in the scheme (19) and τ = h in another; applying
MATLAB software, we get the numerical solution compared with the exact solution as
shown in Fig. 6 and Fig. 7.
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Figure 7 The effect of numerical solution and exact solution at fixed T = 1,h = 1
64 and τ = 1

4096 in Example 2.
(a) N = 26. (b) N = 26

Figure 8 Comparison figures of errors between the standard difference scheme and the compact difference
scheme in Example 2. (a) Absolute error when T = 1,N = 32 and K = N2. (b) l∞-norm varying with spatial step

Using MATLAB, we can derive Fig. 8. The left one is the picture of the absolute error by
employing a fourth-order finite difference scheme. The other one is for the error curves of
the l∞-norm varying with spatial step. It proves that the degree of the numerical solutions
is approximating the exact solutions in different grid points.

Example 3 Consider the convection–diffusion equation with non-homogeneous Dirich-
let boundary condition

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C
∂t – Dx

∂2C
∂x2 – Dy

∂2C
∂y2 + v ∂C

∂x

= (2π2 – 1)e–t sinπx cosπy + πe–t cosπx cosπy,

(x, y) ∈ �, t > 0,

C(x, y, t) = g(x, y, t), (x, y) ∈ �, t > 0,

C(x, y, 0) = C0(x, y), (x, y) ∈ �.

(43)

The exact solution of this problem (43) given by

C(x) = e–t sinπx cosπy.
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Table 5 The comparison of the l2-norm and the l∞-norm when τ 2 = hx = hy forO(h4x + h4y )
fourth-order compact finite difference schemes in Example 3, at different values of the step size (for
N = 4, 8, 16, 32, 64, 128) in the x and y directions

h errL2 order errL∞ order
1
4 1.0256e–004 2.0380e-004
1
8 6.7842e–006 3.7794 1.3093e-005 3.8913
1
16 4.2695e–007 3.9724 8.4501e-007 3.8736
1
32 2.6719e–008 3.9949 5.3542e-008 3.9456
1
64 1.6704e–009 3.9989 3.3473e-009 3.9989
1
128 Out of memory – Out of memory –

Table 6 The comparison of the l2-norm and the l∞-norm when τ = hx = hy forO(h2x + h2y ) standard
central difference scheme, at different values of the step size (for N = 4, 8, 16, 32, 64, 128) in the x and y
directions

h errL2 order errL∞ order
1
4 1.4022e–003 4.4825e–002
1
8 8.2045e–004 0.7733 3.1211e–003 14.3618
1
16 2.0868e–004 1.9751 1.5901e–003 1.9628
1
32 5.2198e–005 1.9992 1.1661e–003 1.3637
1
64 1.3050e–005 1.9999 6.8089e–004 1.7126
1
128 3.2626e–006 2.0000 3.6604e–004 1.8601

Taking the temporal range t ∈ [0, T] still, the coefficients are chosen as Dx = Dy = 1, v = 1.
We use this problem to check the accuracy for two different schemes: the scheme (19): the
fourth-order compact finite difference scheme and the standard scheme: the second-order
centered difference scheme.

Choosing the same time step sizes as the former ones, we show in Table 4 the errors in l2-
norm and the l∞-norm for scheme (19) to Eqs. (43) with different grid points, meanwhile,
we also give the error and convergence order of standard second-order difference schemes;
see Table 6.

From Table 5 and Table 6, when T = 1, in the sense of either the l2-norm or the l∞-
norm, we can see that second-order standard finite difference scheme is worse than the
proposed fourth-order compact finite difference scheme (19). Especially, when N = 22,
the convergence order of standard second-order difference schemes is obviously not in
conformity with the theoretical results. In addition, with the increase of N , although the
l2-norm gradually converges to second order, for the l∞-norm, the numerical results are
not very satisfactory, it produces a slight fluctuation with the increase of N . Compared
with this, our method is more accurate and shows good convergence; it yields the smallest
errors among the two methods.

Applying MATLAB software, we get the numerical solution compared with exact solu-
tion as shown in Figs. 9, 10 and 11, these three pictures show the corresponding compu-
tational simulation results with varying number of mesh grid N .

Figure 12 shows the absolute error of the scheme (19) for the fixed number of N , and it
describes the order between the two difference methods.

In summary, the numerical experiments performed show the efficiency of the fourth-
order compact difference scheme (19), which is reliable for solving a two-dimensional
convection–diffusion equation, and it is apparent from Figs. 3, 4, 5, 6, 7, 9, 10 and 11
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Figure 9 The effect of numerical solution and exact solution at fixed T = 1,h = 1
4 and τ = 1

16 in Example 3.
(a) N = 22. (b) N = 22

Figure 10 The effect of numerical solution and exact solution at fixed T = 1,h = 1
8 and τ = 1

64 in Example 3.
(a) N = 23. (b) N = 23

Figure 11 The effect of numerical solution and exact solution at fixed T = 1,h = 1
64 and τ = 1

4096 in
Example 3. (a) N = 26. (b) N = 26

that the exact solution and numerical solution are better fitted with step size generation
encrypting; it turns out that the compact difference scheme (19) we used can be a good
approximation to the exact solution.
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Figure 12 Comparison figures of errors between the standard difference scheme and the compact
difference scheme in Example 3. (a) Absolute error when T = 1,N = 32 and K = N2. (b) Approximation order of
C in L2-norm

6 Conclusions
Compact finite difference schemes up to order four for solving the convection–diffusion
equation in two dimensions were developed in this paper. To further collaborate the appli-
cability of the proposed method, tables of the l2-norm and the l∞-norm for O(τ 2 + h4

x + h4
y)

compact finite difference schemes and corresponding graphs have been plotted for Exam-
ples 1, 2 and 3, for the exact solution versus the numerical solutions at different values of
mesh size h. It is found that not only the error norm l2 decreases with the increase of the
number of nodes but also the l∞-norm shows the same trend; it decreases as the mesh
size h decreases, which in turn shows the convergence of the computed solution. To sum
up, the present method is computationally stable, effective, simple to use, convergent and
giving a better accuracy of the solution than some previously existing methods.
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