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Abstract
This paper investigates the design of disturbance attenuating controller for
memristive recurrent neural networks (MRNNs) with mixed time-varying delays. By
applying the combination of differential inclusions, set-valued maps and
Lyapunov–Razumikhin, a feedback control law is obtained in the simple form of linear
matrix inequality (LMI) to ensure disturbance attenuation of memristor-based neural
networks. Finally, a numerical example is given to show the effectiveness of the
proposed criteria.
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1 Introduction
It is well known that the neural networks are so important that they have been widely
applied in various areas such as reconstructing moving images, signal processing, pat-
tern recognition, optimization problems and so on (for reference, see [1–48]). During the
recent years, more and more researchers have paid attention to a new model named state-
dependent switching recurrent neural networks whose connection weights vary due to
their states. Generally speaking, such switching neural networks have been entitled mem-
ristive neural networks or memristor-based neural networks. Therefore, let us recall the
brief development of memristive neural networks in the following. In 1971, Dr. Chua (see
[10]) firstly advised that a fourth basic circuit element should exist. Different from the
other three elements—the resistor, the inductor, and the capacitor—the fourth one was
named the memristor. According to Chua’s theory, the memristor must have important
and distinctive ability. Precisely, with the rapid development of science, a prototype of
the memristor had been built by some scientists from HP Labs until 2008 (see [11]). The
memristor, which not only shares many properties of resistors but also shares the same
unit of measurement, is a two-terminal element whose characteristic lies in its variable
resistance called memristance. Memristance, depending on how much electric charge has
been passed through the memristor in a special direction, is its distinctive ability. The abil-
ity contributes to its memorizing the passed quantity of electric charge. Therefore, since
2008, its potential applications have become more and more popular in many aspects such
as generation computer, powerful brain-like neural computer, and so on. There is no doubt
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that it has initiated the worldwide concern with the emergence of the memristor (see [11–
30]). For the neural networks, the first job is considering whether they are stable or not.
Therefore, a lot of scholars have studied the memristive neural networks’ multitudinous
stability such as asymptotical stability, global stability, and exponential stability (see [12,
13, 15, 17–20]). Moreover, as far as we know, the passivity theory plays an important role in
the analysis of the stability of dynamical systems, nonlinear control, and other areas. Thus,
some researchers have investigated passivity or dissipativity criteria on MRNNs (see [14,
16, 23–25, 27–30]).

On the other hand, neural networks with time-varying delays are unavoidable to subject
to persistent disturbance. How to solve persistent disturbance for delayed neural networks
is still an open problem. Therefore, He et al. [31] studied the problem of disturbance at-
tenuating controller design for delayed cellular neural networks (DCNNs). In this paper,
authors designed a feedback control law to guarantee disturbance attenuation for DCNNs
by employing Lyapunov–Razumikhin theorem. However, firstly, this paper just discussed
disturbance attenuation for delayed cellular neural networks, so the activation function
was assumed only to be f (x(·)) = 0.5(|x(·) + 1| – |x(·) – 1|). As is well known to us, there
are still Hopfield neural networks, except cellular neural networks. Both of them belong
to recurrent neural networks. Thus, how to design disturbance attenuating controller for
general neural networks is our first motivation. Secondly, it is noted that the results in this
paper were derived for systems only with discrete delays. Another type of time delay is dis-
tributed delay. Systems with distributed delay can be applied in the modeling of feeding
systems and combustion chambers in a liquid monopropellant rocket motor with pressure
feeding. So, how to solve the persistent disturbance for delayed neural networks with both
discrete and distributed time-varying delays remains some room to certain extent.

Motivated by the above mentioned discussion, the problem of disturbance attenuat-
ing controller design is extended for memristor-based neural networks. To the best of
our knowledge, there has not been any paper to discuss the disturbance attenuating con-
troller design for MRNNs, which motivates our study. Our objective is to give an effective
feedback control law to ensure disturbance attenuation and obtain a description of the
bounded attractor set for MRNNs with mixed time-varying delays. The main contribution
of this paper lies in the following aspects: first of all, this paper is the first one to inves-
tigate the disturbance attenuating controller for MRNNs, which is sure to strengthen the
systematic research theory for MRNNs and must further enrich the basis of application
for MRNNs. Then, comparing to the existing paper [31] about the disturbance attenuating
controller design, the studied systems not only contain the more general activation func-
tions but also include both discrete time-varying delay and distribute time-varying de-
lays;a feedback control law is designed in the simple form of linear matrix inequality (LMI)
to ensure disturbance attenuation of memristor-based neural networks by employing mul-
tiple theories such as differential inclusions, set-valued maps, and Lyapunov–Razumikhin.

2 Problem statement and preliminaries
Throughout this paper, solutions of all the systems considered in the following are in-
tended in Filippov’s sense (see [1, 36]). [·, ·] represents the interval. The superscripts ‘–1’
and ‘T ’ stand for the inverse and transpose of a matrix, respectively. P > 0 (P ≥ 0, P < 0,
P ≤ 0) means that the matrix P is symmetric positive definite (positive-semi definite, neg-
ative definite, and negative-semi definite). ‖ · ‖ refers to the Euclidean vector norm. Rn de-
notes an n-dimensional Euclidean space. C([–ρ, 0], Rn) represents a Banach space of all
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continuous functions. Rm×n is the set of m×n real matrices. ∗ denotes the symmetric block
in a symmetric matrix. For matrices M = (mij)m×n, N = (nij)m×n, M � N (M � N )
means that mij � nij (mij � nij) for i = 1, 2, . . . , m, j = 1, 2, . . . , n. And by the interval ma-
trix [M,N ], it follows that M �N . For ∀L = (lij)m×n ∈ [M,N ], it means M�L�N ,
i.e., mij ≪ij� nij for i = 1, 2, . . . , m, j = 1, 2, . . . , n. co{�1,�2} denotes the closure of the
convex hull generated by real numbers �1 and �2. Let āi = max{âi, ǎi}, ai = min{âi, ǎi},
b̄ij = max{b̂ij, ǎij}, bij = min{b̂ij, b̌ij}, c̄ij = max{ĉij, čij}, cij = min{ĉij, čij}, d̄ij = max{d̂ij, ďij},
dij = min{d̂ij, ďij}. Matrix dimensions, if not explicitly stated, are assumed to be compat-
ible with algebraic operations.

In this section, by Krichoff’s current law, a general class of memristor-based recurrent
neural networks containing both persistent disturbances and mixed time-varying delays
is introduced as follows:

ẋi(t) = –ăi
(
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(
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gilhl(t) + ui(t), t ≥ 0, i = 1, 2, . . . , n,

xi(t) = φi(t), t ∈ [–δ, 0],

(1)

where xi(t) represents the voltage of the capacitor Ci, fi(xi(t)) ∈ Rn is the nonlinear acti-
vation function, ui(t) is the input, hl(t) (l = 1, 2, . . . , m) is the bounded disturbance. τi(t) is
the discrete time-varying delay, and ρi(t) is the distributed delay. They satisfy the following
conditions: 0 ≤ τi(t) ≤ τ , 0 ≤ ρi(t) ≤ ρ (τ and ρ are constants). φi(t) is the initial condition
and is bounded and continuously differential on [–δ, 0] (δ = max{τ ,ρ}). gil describes the
weighting coefficients of the disturbance. ăi describes the rate with which each neuron will
reset its potential to the resting state in isolation when disconnected from the networks
and external inputs. b̆ij, c̆ij, and d̆ij represent the element of the connection weight matrix,
the discretely delayed connection weight matrices, and the distributed delays, respectively.
They satisfy the following conditions:
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in which switching jump Ti > 0, d̂ij, ďij, b̂ij, b̌ij, ĉij, čij, âi, ǎi, i, j = 1, 2, . . . , n, are all constant
numbers.

Remark 2.1 The clear exposition about the relation between memristances and coeffi-
cients of switching system (1) has been given in the works [12, 18]. Thus, researchers can
consult [12, 18] to get more information.

From the above description, the studied networks are state-dependent switching recur-
rent neural networks whose connection weights vary according to their states. To translate
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these state-dependent neural networks into the general ones, the next definitions are nec-
essary.

Definition 2.1 Let E ⊆ Rn, x �→ F(x) is called a set-valued map from E ↪→ Rn if, for each
point x of a set E ⊆ Rn, there corresponds a nonempty set F(x) ⊆ Rn.

Definition 2.2 A set-valued map F with nonempty values is said to be upper semi-
continuous at x0 ∈ E ⊆ Rn if, for any open set N containing F(x0), there exists a neigh-
borhood M of x0 such that F(M) ⊆ N . F(x) is said to have a closed (convex, compact)
image if, for each x ∈ E, F(x) is closed (convex, compact).

Definition 2.3 For the differential system dx
dt = f (t, x), where f (t, x) is discontinuous in x,

the set-valued map of f (t, x) is defined as follows:

F(t, x) =
⋂

ε>0

⋂

μ(N)=0

co
[
f
(
B(x, ε) \ N

)]
,

where B(x, ε) = {y : ‖y – x‖ ≤ ε} is the ball of center x and radius ε. Intersection is taken
over all sets N of measure zero and over all ε > 0; and μ(N) is the Lebesgue measure of
set N .

A Filippov solution of system (1) with initial condition x(0) = x0 is absolutely continu-
ous on any subinterval t ∈ [t1, t2] of [0, T], which satisfies x(0) = x0, and the differential
inclusion:

dx
dt

∈ F(t, x) for a.a. t ∈ [0, T].

Firstly, by employing the theories of differential inclusions and set-valued maps, from (1),
it follows that
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and dij ∈ co{d̂ij, ďij} such that
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(2)
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Clearly, co{âi, ǎi} = [ā, a], co{b̂ij, b̌ij} = [b̄ij, bij], co{ĉij, čij} = [c̄ij, cij], co{d̂ij, ďij} = [d̄ij, dij] for
i, j = 1, 2, . . . , n.

A solution x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn(in the sense of Filippov) of system (1) is
absolutely continuous on any compact interval of [0, +∞], and for i = 1, 2, . . . , n,

ẋi(t) ∈ – co{âi, ǎi}xi(t) +
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xi(t) = φi(t), t ∈ [–δ, 0].

(3)

For convenience, transform (1) into the compact form as follows:

ẋ(t) ∈ – co{Â, Ǎ}x(t) + co{B̂, B̌}f (x(t)
)

+ co{Ĉ, Č}f (x
(
t – τ (t)

))

+ co{D̂, Ď}
∫ t

t–ρ(t)
f
(
x(s)

)
ds + Gh(t) + u(t), t ≥ 0,

x(t) = φ(t), t ∈ [–δ, 0],

or equivalently, there exist A∗ ∈ co{Â, Ǎ}, B∗ ∈ co{B̂, B̌}, C∗ ∈ co{Ĉ, Č}, and D∗ ∈ co{D̂, Ď}
such that

ẋ(t) = –Ax(t) + Bf
(
x(t)
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(
x
(
t – τ (t)
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+ D
∫ t

t–ρ(t)
f
(
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(4)

where C∗ = C(x), A∗ = A(x), B∗ = B(x), D∗ = D(x), Â = (âi)n×n, B̂ = (b̂ij)n×n, Ĉ = (ĉij)n×n,
D̂ = (d̂ij)n×n, Ǎ = (ǎi)n×n, B̌ = (b̌ij)n×n, Č = (čij)n×n, Ď = (ďij)n×n, G = (gil)n×m, x(t) =
[x1(t), x2(t), . . . , xn(t)]T ∈ Rn, f (x(t)) = [f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]T ∈ Rn, f (x(t – τ (t))) =
[f1(x1(t – τ1(t))), f2(x2(t – τ2(t))), . . . , fn(xn(t – τn(t)))]T ∈ Rn, y(t) = [y1(t), y2(t), . . . , yn(t)]T ∈
Rn, u(t) = [u1(t), u2(t), . . . , un(t)]T ∈ Rn. The bounded disturbance h(t) = [h1(t), h2(t), . . . ,
hn(t)]T ∈ Rn is assumed to belong to the set H = {h|hT h ≤ 1}.

Clearly, co{D̂, Ď} = [D̄, D], co{Â, Ǎ} = [Ā, A], co{B̂, B̌} = [B̄, B], co{Ĉ, Č} = [C̄, C], where
Ā = (āi)n×n, A = (ai)n×n, B̄ = (b̄ij)n×n, B = (bij)n×n, C̄ = (c̄ij)n×n, C = (cij)n×n, D̄ = (d̄ij)n×n,
D = (dij)n×n.

Let C = C+C̄
2 , A = A+Ā

2 , B = B+B̄
2 , D = D+D̄

2 , ∀ A∗ ∈ co{Â, Ǎ}, B∗ ∈ co{B̂, B̌}, C∗ ∈ co{Ĉ, Č},
D∗ ∈ co{D̂, Ď}, A∗ = A + 	A(t), B∗ = B + 	B(t), C∗ = C + 	C(t), D∗ = D + 	D(t), (4) can be
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described as follows:

ẋ(t) = –
(
A + 	A(t)

)
x(t) +

(
B + 	B(t)

)
f
(
x(t)

)
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f
(
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)
ds + Gh(t) – Fx(t), t ≥ 0,

x(t) = φ(t), t ∈ [–δ, 0].

(5)

Moreover, if âi = ǎi, ĉij = čij, b̂ij = b̌ij, d̂ij = ďij (i, j = 1, 2, . . . , n), (5) can be expressed as
follows:

ẋ(t) = –Ax(t) + Bf
(
x(t)

)
+ Cf

(
x
(
t – τ (t)

))

+ D
∫ t

t–ρ(t)
f
(
x(s)

)
ds + Gh(t) – Fx(t), t ≥ 0,

x(t) = φ(t), t ∈ [–δ, 0].

(6)

Suppose the state feedback to be u = –Fx, then system (6) is changed into

ẋ(t) = –Ax(t) + Bf
(
x(t)

)
+ Cf

(
x
(
t – τ (t)

))

+ D
∫ t

t–ρ(t)
f
(
x(s)

)
ds + Gh(t) – Fx(t), t ≥ 0,

x(t) = φ(t), t ∈ [–δ, 0].

(7)

Moreover, throughout this paper, the neuron activation functions are assumed to satisfy
the following assumption.

Assumption 2.1 The neuron activation function f (x(t)) satisfies

0 ≤ fj(a) – fj(b)
a – b

≤ lj, j = 1, 2, . . . , n, (8)

where lj > 0 is a known real constant.

To get the main results in this paper, the definition of disturbance attenuation is intro-
duced as follows.

Definition 2.4 Given system (6), the controller u = –Fx is called disturbance attenuating
if systems (7) satisfy the following conditions:

(1) When h(t) = 0, systems (7) are globally asymptotically stable;
(2) When h(t) �= 0, there exists a bounded attractor for systems (7).

Remark 2.2 The attractor of systems (7) is the invariant set 
, which not only lies in the
fact that all the trajectories beginning from it will retain in it for any h ∈ H, but also sub-
jects to the condition that any trajectories beginning from outside the set will ultimately
go into the set for any h ∈H.

To establish the feedback controller for systems (7), the following lemmas will be used
in this paper.
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Lemma 2.1 (Lyapunov–Razumikhin theorem [35]) Consider the following functional dif-
ferential equation:

ẋ(t) = f (xt), t > 0, x(t) = φ(t), t ∈ [–τ , 0]. (9)

Assume that φ ∈ Cn,τ and the map f (φ) : Cn,τ �→ Rn is continuous and Lipschitzian in φ

and f (0) = 0. Suppose that u(s), ν(s), w(s), and p(s) ∈ R+ �→ R+ are scalar, continuous, and
nondecreasing functions, u(s), ν(s), w(s) positive for s > 0, u(0) = ν(0) = 0 and p(s) > s for
s > 0. If there are a continuous function V : Rn �→ R and a positive number ρ such that, for
all xt ∈ MV (ρ) := {φ ∈ Cn,τ : V (φ(θ )) ≤ ρ,∀θ ∈ [–τ , 0]}, the following conditions hold:

(1) u(‖x‖) ≤ V (x) ≤ ν(‖x‖);
(2) V̇ (x(t)) ≤ –w(‖x‖), if V (x(t + θ )) < p(V (x(t))).

Then the solution x(t) ≡ 0 of (9) is asymptotically stable. Moveover, the set MV (ρ) is an
invariant set inside the domain of attraction. Further, if u(s) → ∞ as s → ∞, then the
solution x(t) ≡ 0 of (9) is globally stable.

Lemma 2.2 ([27]) Let H , E, and G(t) be real matrices of appropriate dimensions with G(t)
satisfying G(t)T G(t) ≤ I . Then, for any scalar ε > 0,

HG(t)E +
(
HG(t)E

)T ≤ ε–1HHT + εET E. (10)

3 Main results
In this paper, the disturbance attenuation is investigated for memristive recurrent neural
networks with mixed time-varying delays. According to Definition 2.4, the condition is
constructed for the global asymptotic stability of systems (7) when h(t) = 0. Secondly, it
is proved that there exists a bounded attractor for systems (7) when h(t) �= 0. For conve-
nience, denote L = diag{l1, l2, . . . , ln}.

Theorem 3.1 Under Assumption 2.1, the memristive neural network (7) with h(t) = 0 un-
der a disturbance attenuating controller u(t) = –Fx(t) is asymptotically stable if there exist
matrices Q > 0, F , positive constants εi (i = 0, 1, 2), and any given positive constant ε such
that the following inequality holds:


 = –QA – AQ + ε–1
0 QBQ–1BT Q + ε0LQL + ε–1

1 QCQ–1CT Q + ε1LQL

+ ε–1
2 ρQDQ–1DT Q + ε2ρLQL – QF – FT Q + ε–1QGGT Q + εQ

< 0. (11)

Proof Consider the following Lyapunov–Razumikhin function candidate:

V (t) = x(t)T Qx(t). (12)

Taking the time-derivative of V (t) along the solution of (7) when h(t) = 0, the time-
derivative of V (t) is

V̇ (t) = 2xT (t)Q
[

–Ax(t) + Bf
(
x(t)

)
+ Cf

(
x
(
t – τ (t)

))
+ D

∫ t

t–ρ(t)
f
(
x(s)

)
ds + u(t)

]
.
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If there exist positive constants εi (i = 0, 1, 2), by employing Lemma 2.2, it is easy to obtain

2xT (t)QBf
(
x(t)

) ≤ ε–1
0 xT (t)QBQ–1BT Qx(t) + ε0f T(

x(t)
)
Qf

(
x(t)

)
,

2xT (t)QCf
(
x
(
t – τ (t)

)) ≤ ε–1
1 xT (t)QCQ–1CT Qx(t) + ε1f T (x

(
t – τ (t)

)
Qf (x

(
t – τ (t)

)
,

2xT (t)QD
∫ t

t–ρ(t)
f
(
x(s)

)
ds ≤ ε–1

2 ρ(t)xT (t)QDQ–1DT Qx(t) + ε2ρ(t)f T(
x(t)

)
Qf

(
x(t)

)

≤ ε–1
2 ρxT (t)QDQ–1DT Qx(t) + ε2ρf T(

x(t)
)
Qf

(
x(t)

)
.

Moreover, according to Assumption 2.1, it is not difficult to get

2xT (t)QBf
(
x(t)

) ≤ ε–1
0 xT (t)QBQ–1BT Qx(t) + ε0xT (t)LQLx(t),

2xT (t)QCf
(
x
(
t – τ (t)

)) ≤ ε–1
1 xT (t)QCQ–1CT Qx(t) + ε1xT(

t – τ (t)
)
LQLx

(
t – τ (t)

)
,

2xT (t)QD
∫ t

t–ρ(t)
f
(
x(s)

)
ds ≤ ε–1

2 ρxT (t)QDQ–1DT Qx(t) + ε2ρxT (t)LQLx(t).

Suppose p(s) = r · s with r > 1 in Lemma 2.1, it is easy to get that p(s) > s for s > 0. Due to the
condition V (x(θ )) ≤ p(V (x(t))), θ ∈ [t – τ (t), t], that is, xT (θ )Qx(θ ) ≤ pxT (t)Qx(t). Thus, it
is obvious that

xT(
t – τ (t)

)
LQLx

(
t – τ (t)

)
< rxT (t)LQLx(t).

In addition, choosing the controller to be u(t) = –Fx(t), it is easy to obtain

V̇ (t) ≤ xT (t)
[
–QA – AQ + ε–1

0 QBQ–1BT Q + ε0LQL + ε–1
1 QCQ–1CT Q

+ ε1rLQL + ε–1
2 ρQDQ–1DT Q + ε2ρLQL – QF – FT Q

]
x(t). (13)

Because (11) holds, r > 1 is chosen to guarantee

– QA – AQ + ε–1
0 QBQ–1BT Q + ε0LQL + ε–1

1 QCQ–1CT Q + ε1rLQL

+ ε–1
2 ρQDQ–1DT Q + ε2ρLQL – QF – FT Q + ε–1QGGT Q + εQ < 0. (14)

Thus, combining (13) with (14), it is not difficult to obtain

V̇ (t) ≤ –xT (t)
(
ε–1QGGT Q + εQ

)
x(t) < 0. (15)

It is obvious that V̇ (t) is negative definite. According to Lyapunov stability theory, systems
(7) when h(t) = 0 are asymptotically stable. This completes our first step. Next, when h(t) �=
0, it is proved that there really exists a bounded attractor for systems (7). �

Theorem 3.2 Under Assumption 2.1, the memristive neural network (7) with h(t) �= 0 has
a disturbance attenuating controller u(t) = –Fx(t) with an attractor as � = {x|xT Qx ≤ 1}
if there exist matrices Q > 0, M, F , positive constants εi (i = 0, 1, 2), and any given positive
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constant ε such that the following inequality holds:

	 =

⎡

⎢⎢
⎢
⎣


11 QG QB QC √
ρQD

∗ –εI 0 0 0
∗ ∗ –ε0Q 0 0
∗ ∗ ∗ –ε1Q 0
∗ ∗ ∗ ∗ –ε2Q

⎤

⎥⎥
⎥
⎦

< 0, (16)

where


11 = –QA – AQ + ε0LQL + ε1LQL + ε2ρLQL + εQ – M – MT , M = QF .

Proof Consider the same Lyapunov–Razumikhin function candidate:

V (t) = xT (t)Qx(t). (17)

Taking the time-derivative of V (t) along the solution of (7) when h(t) �= 0, the time-
derivative of V (t) is

V̇ (t) = 2xT (t)Q
[

–Ax(t) + Bf
(
x(t)

)
+ Cf

(
x
(
t – τ (t)

))

+ D
∫ t

t–ρ(t)
f
(
x(s)

)
ds + Gh(t) + u(t)

]
.

After the same discussion as that in Theorem 3.1, let M = QF , it is easy to obtain

V̇ (t) ≤ xT (t)
[
–QA – AQ + ε–1

0 QBQ–1BT Q + ε0LQL + ε–1
1 QCQ–1CT Q + ε1rLQL

+ ε–1
2 ρQDQ–1DT Q + ε2ρLQL – M – MT]

x(t) + 2xT (t)QGh(t). (18)

Applying Lemma 2.2 to the term 2xT (t)QGh(t), for the given positive ε, it is easy to get

2xT (t)QGh(t) ≤ ε–1xT (t)QGGT Qx(t) + εhT (t)h(t).

Because the bounded disturbances are assumed to belong to the set H = {h|hT h ≤ 1}, it is
easy to obtain

2xT (t)QGh(t) ≤ ε–1xT (t)QGGT Qx(t) + ε.

Thus, it follows that

V̇ (t) ≤ xT (t)
[
–QA – AQ + ε–1

0 QBQ–1BT Q + ε0LQL + ε–1
1 QCQ–1CT Q + ε1rLQL

+ ε–1
2 ρQDQ–1DT Q + ε2ρLQL – M – MT + ε–1QGGT Q

]
x(t) + ε. (19)

Applying the Schur complement to (16), it is equivalent to

	 = –QA – AQ + ε–1
0 QBQ–1BT Q + ε0LQL + ε–1

1 QCQ–1CT Q + ε1LQL

+ ε–1
2 ρQDQ–1DT Q + ε2ρLQL – M – MT + ε–1QGGT Q + εQ

< 0. (20)



Xiao et al. Advances in Difference Equations  (2018) 2018:189 Page 10 of 14

By choosing r > 1, it implies that

– QA – AQ + ε–1
0 QBQ–1BT Q + ε0LQL + ε–1

1 QCQ–1CT Q + ε1rLQL

+ ε–1
2 ρQDQ–1DT Q + ε2ρLQL – M – MT + ε–1QGGT Q < –εQ. (21)

Thus, it follows that

V̇ (t) ≤ –εxT (t)Qx(t) + ε. (22)

Obviously, V̇ (t) is negative outside the set �, the trajectories beginning from outside the
set � will ultimately access the set � for any h ∈H. Therefore, � is the invariant set of sys-
tems (7). So far, condition (2) of disturbance attenuation has been constructed. Meanwhile,
the disturbance attenuating controller u(t) = –Fx(t) with an attractor as � = {x|xT Qx ≤ 1}
has been designed. This completes our proof. �

Remark 3.1 In comparison to the published paper [31], our paper’s contribution lies in
three aspects: Firstly, the studied memristive neural networks are more popular at present;
secondly, the activation function is not needed to be strict to be f (x(·)) = 0.5(|x(·) + 1| –
|x(·) – 1|), but rather it is relaxed to just satisfy Lipschitz conditions; thirdly, the discussed
model not only contains discrete time-varying delay but also includes distributed time-
varying delay. Therefore, our results are more general to be well applied.

Remark 3.2 Recently, many scholars have studied different kinds of control theories about
MRNNS such as exponential synchronization control [12], finite-time synchronization
control [13], exponential lag adaptive synchronization control [18], lag synchronization
control [19], and so on. However, to the best of our knowledge, there has not been any
paper to discuss the disturbance attenuating controller design for MRNNs. This paper is
the first one to investigate the disturbance attenuating controller for MRNNs, which is
sure to strengthen the systematic research theory for MRNNs and must further enrich
the basis of application for MRNNs.

4 Numerical examples
In this section, one example is presented to demonstrate the effectiveness of our results.

Example 4.1 Consider a two-neuron memristive neural network containing both persis-
tent disturbances and mixed time-varying delays:

ẋ1(t) = –ă1
(
x1(t)

)
x1(t) + b̆11

(
x1(t)

)
f
(
x1(t)

)
+ b̆12

(
x1(t)

)
f
(
x2(t)

)

+ c̆11
(
x1(t)

)
f
(
x1

(
t – τ (t)

))
+ c̆12

(
x1(t)

)
f
(
x2

(
t – τ (t)

))

+ d̆11
(
x1(t)

)∫ t

t–ρ(t)
f
(
x1(s)

)
ds + d̆12

(
x1(t)

)∫ t

t–ρ(t)
f
(
x2(s)

)
ds

+ g11h1(t) + g12h1(t) + u1(t),
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ẋ2(t) = –ă2
(
x2(t)

)
x2(t) + b̆21

(
x2(t)

)
f
(
x1(t)

)
+ b̆22

(
x2(t)

)
f
(
x2(t)

)

+ c̆21
(
x2(t)

)
f
(
x1

(
t – τ (t)

))
+ c̆22

(
x2(t)

)
f
(
x2

(
t – τ (t)

))

+ d̆21
(
x2(t)

)∫ t

t–ρ(t)
f
(
x1(s)

)
ds + d̆22

(
x2(t)

)∫ t

t–ρ(t)
f
(
x2(s)

)
ds

+ g21h2(t) + g22h2(t) + u2(t),

where

ă1
(
x1(t)

)
=

⎧
⎨

⎩
1.01, |x1(t)| ≤ 1,

0.97, |x1(t)| > 1,
b̆11

(
x1(t)

)
=

⎧
⎨

⎩
1 + 2π

5 , |x1(t)| ≤ 1,

1 + π
5 , |x1(t)| > 1,

b̆12
(
x1(t)

)
=

⎧
⎨

⎩
20.05, |x1(t)| ≤ 1,

19.95, |x1(t)| > 1,
c̆11

(
x1(t)

)
=

⎧
⎨

⎩
–1.2

√
2 π

3 , |x1(t)| ≤ 1,

–1.4
√

2 π
3 , |x1(t)| > 1,

c̆12
(
x1(t)

)
=

⎧
⎨

⎩
0.12, |x1(t)| ≤ 1,

0.09, |x1(t)| > 1,
d̆11

(
x1(t)

)
=

⎧
⎨

⎩
–0.05, |x1(t)| ≤ 1,

0.05, |x1(t)| > 1,

d̆21
(
x1(t)

)
=

⎧
⎨

⎩
–0.05, |x1(t)| ≤ 1,

0.05, |x1(t)| > 1,
ă2

(
x2(t)

)
=

⎧
⎨

⎩
1.01, |x2(t)| ≤ 1,

0.97, |x2(t)| > 1,

b̆21
(
x1(t)

)
=

⎧
⎨

⎩
0.12, |x2(t)| ≤ 1,

0.95, |x2(t)| > 1,
b̆22

(
x2(t)

)
=

⎧
⎨

⎩
1 + 2π

5 , |x2(t)| ≤ 1,

1 + π
5 , |x2(t)| > 1,

c̆21
(
x1(t)

)
=

⎧
⎨

⎩
0.12, |x2(t)| ≤ 1,

0.09, |x2(t)| > 1,
c̆22

(
x2(t)

)
=

⎧
⎨

⎩
–1.2

√
2 π

3 , |x2(t)| ≤ 1,

–1.4
√

2 π
3 , |x2(t)| > 1,

d̆21
(
x1(t)

)
=

⎧
⎨

⎩
–0.05, |x2(t)| ≤ 1,

0.05, |x2(t)| > 1,
d̆22

(
x1(t)

)
=

⎧
⎨

⎩
–0.05, |x2(t)| ≤ 1,

0.05, |x2(t)| > 1,

g11 = g22 = 1, g12 = g21 = 0.

Meanwhile, the discrete time-varying delay is assumed to be τ (t) = 1 + 0.4 sin(5t), and
the distributed time-varying delay is supposed to be ρ(t) = 0.81| cos(t)|. In addition, the
activation functions are assumed to be fi(xi) = 0.5(|xi + 1|– |xi – 1|) (i = 1, 2). Moreover, the
disturbance h(t) = [0.03 cos t; 0.02 sin t]. Particularly, if we choose that ε0 = ε1 = ε1 = ε = 1,
by solving LMI (16), we obtain

Q =

[
0.1278 –0.1204

–0.1204 1.4341

]

, M =

[
3.6433 –0.2134

–0.2134 6.6332

]

,

F =

[
30.8042 2.9171
2.4367 4.8701

]

.

Figure 1 demonstrates the state trajectories of neural network (7) with u(t) = –Fx(t)
when h(t) = 0. From Fig. 1, it shows that the neural networks are globally asymptotically
stable under the feedback controller u(t). Figure 2 describes the disturbance attenuating
controller u(t) = –Fx(t) with an attractor as � = {x|xT Qx ≤ 1} for neural network (7).
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Figure 1 State trajectories of neural network (1) with u(t) in case of h = 0

Figure 2 The disturbance attenuating controller u(t) = –Fx(t) with an attractor as � = {x|xTQx ≤ 1}

Remark 4.1 Comparatively speaking, although the feedback controller law is established
in the form of bilinear matrix inequality (BMI), it can be easily solved by alternatively
fixing some parameters and optimizing the rest. However, the LMIs in [31] are at least
four, which is obviously difficult to be solved.

5 Conclusions
In this paper, the famous differential inclusions, set-valued maps, and Lyapunov–Razu-
mikhin are employed to design a feedback controller law for MRNNs. A feedback con-
troller law is obtained with less computation burden. In the future, other approach, such
as the delay-partitioning technique, can be employed to further reduce the conservative-
ness of the obtained result.
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