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Abstract
In this article, the following boundary value problem of fractional differential equation
with Riemann–Stieltjes integral boundary condition

{
Dα
0+u(t) + λf (t,u(t),u(t)) = 0, 0 < t < 1,n – 1 < α ≤ n,

u(k)(0) = 0, 0≤ k ≤ n – 2, u(1) =
∫ 1
0 u(s)dA(s)

is studied, where n – 1 < α ≤ n, λ > 0, Dα
0+ is the Riemann–Liouville fractional

derivative, A is a function of bounded variation,
∫ 1
0 u(s)dA(s) denotes the

Riemann–Stieltjes integral of u with respect to A. By the use of fixed point theorem
and the properties of mixed monotone operator theory, the existence and
uniqueness of positive solutions for the problem are acquired. Some examples are
presented to illustrate the main result.
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1 Introduction
Differential equations of fractional order occur frequently in many different research areas
and engineering, such as chemistry, optics, thermal systems, signal processing, system
identification, etc. Many researchers obtained the existence results of solution of fractional
differential equation with initial value problem or boundary value problem [1–23]. In [2],
by means of a fixed point theorem, Bai et al. obtained the existence and multiplicity of
positive solutions for the singular fractional boundary value problem

⎧⎨
⎩Dα

0+u(t) + f (t, u(t), Dν
0+u(t), Dμ

0+u(t)) = 0,

u(0) = u′(0) = u′′(0) = u′′(1) = 0,

where 3 < α ≤ 4, 0 < ν ≤ 1, 1 < μ ≤ 2, Dα
0+ is the Riemann–Liouville fractional derivative, f

is a Carathédory function, and f (t, x, y, z) is singular at the value 0 of its arguments x, y, z.
Some recent contributions of fractional differential equations can be seen in [1–8, 10–23].
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Recently, the theory of integral boundary value problems has become a new area of in-
vestigation (see [5, 8, 20]). Cabada and Wang [5] have considered the following nonlinear
fractional differential equations with integral boundary conditions for the first time:

⎧⎨
⎩

CDα
0+u(t) + f (t, u(t)) = 0, 0 < t < 1,

u(0) = u′′(0) = 0, u(1) = λ
∫ 1

0 u(s) ds,

where 2 < α < 3, 0 < λ < 2, CDα
0+u(t) is the Caputo fractional derivative, and f : [0, 1] ×

[0,∞) → [0,∞) is a continuous function. They used Guo–Krasnoselskii’s fixed point the-
orem to get the existence of positive solutions.

Zhang [20] has actually studied the boundary value problem with the boundary condi-
tion involving parameter λ

⎧⎨
⎩Dα

0+u(t) + f (t, u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0, Dβ
0+u(1) = λ

∫ 1
0 Dβ

0+u(t) dA(t),

where 2 < α ≤ 3, 0 < β ≤ 1 are real numbers and
∫ 1

0 Dβ
0+u(t) dA(t) denotes a Riemann–

Stieltjes integral. By means of the monotone iterative technique and the inequalities asso-
ciated with Green’s function, they obtained the existence of nontrivial solutions or positive
solutions.

In [8], Feng and Zhai used a new fixed point theorem [19] to consider the following
problem:

⎧⎨
⎩Dα

0+u(t) + λf (t, u(t), u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0, u(1) =
∫ 1

0 q(t)u(t) dt,

where 2 < α ≤ 3, 0 < β ≤ 1 are real numbers, f : [0, 1] × [0,∞) × [0,∞) → [0,∞) is a
continuous function, q : [0, 1] → [0,∞), q ∈ L1[0, 1], σ1 =

∫ 1
0 sα–1(1 – s)q(s) ds > 0, σ2 =∫ 1

0 sα–1q(s) ds < 1. They obtained the existence and uniqueness of positive solutions.
Motivated by the mentioned excellent works, in this paper, we consider the following

problem:

Dα
0+u(t) + λf

(
t, u(t), u(t)

)
= 0, 0 < t < 1, n – 1 < α ≤ n, (1.1)

u(k)(0) = 0, 0 ≤ k ≤ n – 2, u(1) =
∫ 1

0
u(s) dA(s), (1.2)

where Dα
0+ is the Riemann–Liouville fractional derivative, λ > 0, A is a function of bounded

variation,
∫ 1

0 u(s) dA(s) denotes the Riemann–Stieltjes integral of u with respect to A. The
problem studied in [8] is a special case of our paper for 1 < α ≤ 2 and A(s) is differentiable
such that

∫ 1
0 sα–1(1– s)q(s) ds > 0 and

∫ 1
0 sα–1q(s) ds < 1. In the current paper, A is a function

of bounded variation such that
∫ 1

0 G(t, s) dA(t) ≥ 0 and
∫ 1

0 tα–1 dA(t) < 1 for s ∈ [0, 1], where
G(t, s) will be defined in the next section.

The rest of this paper is organized as follows. In Sect. 2, we recall some definitions,
theorems, and lemmas. In Sect. 3, we investigate the existence and uniqueness of positive
solution for problem (1.1), (1.2). In Sect. 4, we present some examples to illustrate our
main results.
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2 Preliminaries and lemmas
Suppose that (E,‖ · ‖) is a real Banach space, P ⊂ E is a normal cone. For all x, y ∈ E, the
notation x ∼ y means that there exist λ,μ > 0 such that λx ≤ y ≤ μx. Clearly, ∼ is an
equivalence relation. Given h > θ (i.e., h ≥ θ , h �= θ ), we denote Ph = {x ∈ E|x ∼ h}. It is
easy to see that Ph ⊂ P is convex and λPh = Ph for all λ > 0. We refer the readers to the
references [9] and [19] for details.

Definition 2.1 ([19]) T : P × P → P is said to be a mixed monotone operator if T(x, y) is
increasing in x and decreasing in y, i.e., ui, vi (i = 1, 2) ∈ P, u1 ≤ u2, v1 ≥ v2 imply T(u1, v1) ≤
T(u2, v2). The element x ∈ P is called a fixed point of T if T(x, x) = x.

Theorem 2.1 ([9]) Suppose that P is a normal cone of E, T : P × P → P is a mixed mono-
tone operator such that the following conditions hold:

(A1) There exists h ∈ P with h �= θ such that T(h, h) ∈ Ph.
(A2) For any u, v ∈ P and t ∈ (0, 1), there exists ϕ(t) ∈ (t, 1] such that T(tu, t–1v) ≥

ϕ(t)T(u, v).
Then operator T has a unique fixed point x∗ in Ph. Moreover, for any initial x0, y0 ∈ Ph

constructing successively the sequences

xn = T(xn–1, yn–1), yn = T(yn–1, xn–1), n = 1, 2, . . . ,

there are ‖xn – x∗‖ → 0 and ‖yn – x∗‖ → 0 as n → ∞.

Lemma 2.1 ([22]) The Green’s function for the nonlocal boundary value problem (1.1),
(1.2) is given by

H(t, s) =
tα–1

1 – δ
GA(s) + G(t, s), (2.1)

where

G(t, s) =
1


(α)

⎧⎨
⎩[t(1 – s)]α–1 – (t – s)α–1, for 0 ≤ s ≤ t ≤ 1;

[t(1 – s)]α–1, for 0 ≤ t ≤ s ≤ 1,

GA(s) =
∫ 1

0
G(t, s) dA(t), δ =

∫ 1

0
tα–1 dA(t) �= 1.

Lemma 2.2 ([22]) Let δ < 1, GA(s) ≥ 0 for s ∈ [0, 1], then the Green’s function defined by
(2.1) satisfies:

(1) H(t, s) > 0 for all t, s ∈ (0, 1);
(2) The following relation holds:

ctα–1GA(s) ≤ H(t, s) ≤ dtα–1 ≤ d, t, s ∈ [0, 1], (2.2)

where the constants c = 1
1–δ

, d = ‖GA(s)‖
1–δ

+ 1

(α–1) .
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3 Main results
Let E = C[0, 1] equipped with the maximum norm ‖u‖ = max0≤t≤1 |u(t)|, then E is a Ba-
nach space. Define P = {x ∈ C[0, 1] | x(t) ≥ 0, t ∈ [0, 1]}, then P is a normal cone, and for
x, y ∈ C[0, 1],

x ≤ y ⇔ x(t) ≤ y(t), t ∈ (0, 1).

Theorem 3.1 Assume that
(H1) A is a function of bounded variation such that

∫ 1

0
G(t, s) dA(t) ≥ 0 and

∫ 1

0
tα–1 dA(t) < 1

for s ∈ [0, 1];
(H2) f ∈ C([0, 1] × [0, +∞) × [0, +∞), [0, +∞)), f (t, x, y) is nondecreasing in x for each

t ∈ [0, 1], y ∈ [0, +∞) and nonincreasing in y for each t ∈ [0, 1], x ∈ [0, +∞);
(H3) f (t, 0, 1) �= 0, t ∈ [0, 1];
(H4) for any γ ∈ (0, 1), there exists a constant ϕ(γ ) ∈ (γ , 1] such that f (t,γ x,γ –1y) ≥

ϕ(γ )f (t, x, y) for any x, y ∈ [0, +∞).
Then, for any λ > 0, boundary value problem (1.1), (1.2) has a unique positive solution
u∗

λ ∈ Ph, where h(t) = tα–1, t ∈ [0, 1]. Moreover, for any u0, v0 ∈ Ph, let
⎧⎨
⎩un+1 = λ

∫ 1
0 H(t, s)f (s, un(s), vn(s)) ds, n = 0, 1, 2, . . . ,

vn+1 = λ
∫ 1

0 H(t, s)f (s, vn(s), un(s)) ds, n = 0, 1, 2, . . . ,

there is

un(t) → u∗
λ(t), vn(t) → u∗

λ(t) (n → ∞),

where H(t, s) is given in Lemma 2.1.

Proof It is well known that u is a solution of the boundary value problem (1.1), (1.2) if and
only if

u(t) = λ

∫ 1

0
H(t, s)f

(
s, u(s), u(s)

)
ds, (3.1)

where H(t, s) is given in Lemma 2.1. For any u, v ∈ P, define

Tλ(u, v)(t) = λ

∫ 1

0
H(t, s)f

(
s, u(s), v(s)

)
ds. (3.2)

From (H1), (H2), and (2.2), for any ui, vi ∈ P, i = 1, 2, such that u1 ≥ u2, v1 ≤ v2, there is

Tλ(u1, v1)(t) = λ

∫ 1

0
H(t, s)f

(
s, u1(s), v1(s)

)
ds

≥ λ

∫ 1

0
H(t, s)f

(
s, u2(s), v2(s)

)
ds = Tλ(u2, v2)(t).

That is to say, Tλ : P × P → P is a mixed monotone operator.
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Next, we will prove that Tλ satisfies the conditions of Theorem 2.1. From (H4), for any
u, v ∈ P and γ ∈ (0, 1), we can obtain

Tλ

(
γ u,γ –1v

)
(t) = λ

∫ 1

0
H(t, s)f

(
s,γ u(s),γ –1v(s)

)
ds

≥ λ

∫ 1

0
H(t, s)ϕ(γ )f

(
s, u(s), v(s)

)
ds

= ϕ(γ )Tλ(u, v)(t), t ∈ [0, 1].

That is, Tλ(γ u,γ –1v) ≥ ϕ(γ )Tλ(u, v) for any u, v ∈ P and γ ∈ (0, 1). So condition (A2) in
Theorem 2.1 is satisfied. Then, from (H3), (H4), and Lemma 2.2, we get

Tλ(h, h)(t) = λ

∫ 1

0
H(t, s)f

(
s, h(s), h(s)

)
ds

≥ λctα–1
∫ 1

0
GA(s)f (s, 0, 1) ds.

On the other hand,

Tλ(h, h)(t) = λ

∫ 1

0
H(t, s)f

(
s, h(s), h(s)

)
ds

≤ λdtα–1
∫ 1

0
f (s, 0, 1) ds.

Let r1 = c
∫ 1

0 GA(s)f (s, 0, 1) ds, and r2 = d
∫ 1

0 f (s, 0, 1) ds, then

λr1tα–1 ≤ Tλ(h, h) ≤ λr2tα–1. (3.3)

Obviously, r1, r2 > 0, so Tλ(h, h) ∈ Ph, condition (A1) in Theorem 2.1 is satisfied. Then,
from Theorem 2.1, there exists a unique u∗

λ ∈ Ph such that Tλ(u∗
λ, u∗

λ) = u∗
λ. We can

check that u∗
λ is the unique positive solution of problem (1.1), (1.2). For any initial value

u0, v0 ∈ Ptα–1 , establish the sequence un+1 = Tλ(un, vn), vn+1 = Tλ(vn, un), n = 0, 1, 2, . . . , one
has un → u∗

λ, vn → u∗
λ (n → ∞), i.e.,

⎧⎨
⎩un+1(t) = λ

∫ 1
0 H(t, s)f (s, un(s), vn(s)) ds → u∗

λ(t), n → ∞;

vn+1(t) = λ
∫ 1

0 H(t, s)f (s, vn(s), un(s)) ds → u∗
λ(t), n → ∞.

The proof is complete. �

4 Examples
Example 4.1 Consider the following boundary value problem:

Dα
0+u(t) + λ

[
u(t)a +

(
u(t) + c

)b] = 0, 0 < t < 1; (4.1)

u(k)(0) = 0, 0 ≤ k ≤ n – 2, u(1) =
∫ 1

0
u(s) dA(s), (4.2)



Song and Bai Advances in Difference Equations  (2018) 2018:183 Page 6 of 7

where α = 2.5, a = 1
2 , b = – 1

2 , c = 1, and A(t) = 1
3 et . Obviously, δ =

∫ 1
0 tα–1 dA(t) < 1. Clearly,

f (t, x, y) = xa + (y + c)b is increasing in x for any y ≥ 0, and decreasing in y for any x ≥ 0,
f (t, 0, 1) =

√
2/2 �= 0. Moreover,

f
(
t,γ x,γ –1y

) ≥ γ axa + γ –b(y + c)b

≥ γ max{a,|b|}(xa + (y + c)b)
= ϕ(γ )

(
xa + (y + c)b)

= ϕ(γ )f (t, x, y).

So, ϕ(γ ) = √
γ > γ for γ ∈ (0, 1), the conditions of Theorem 3.1 are all satisfied. Then

problem (4.1), (4.2) has a unique solution u∗
λ ∈ Ptα–1 . For any initial value u0, v0 ∈ Ptα–1 , we

can set the following sequence:

⎧⎨
⎩un+1 = λ

∫ 1
0 H(t, s)[u(t)a + (u(t) + c)b] ds, n = 0, 1, 2, . . . ;

vn+1 = λ
∫ 1

0 H(t, s)[u(t)a + (u(t) + c)b] ds, n = 0, 1, 2, . . . ,

then we have

un(t) → u∗
λ(t), vn(t) → u∗

λ(t) (n → ∞),

where H(t, s) is given in Lemma 2.1.

Example 4.2 For problem (4.1), (4.2), let α = 2.5, a = 1
4 , b = – 1

5 , c = 1, and

A(t) =

⎧⎨
⎩sinαπ t + 1, 0 < t < 1

α
;

– cosαπ t, 1
α

≤ t < 1.

It is easy to check that δ =
∫ 1

0 tα–1 dA(t) < 1. Clearly, f (t, x, y) is increasing in x for any
t ∈ [0, 1], y ≥ 0, and decreasing in y for any t ∈ [0, 1], x ≥ 0, f (t, 0, 1) = 2– 1

5 �= 0. Moreover,

f
(
t,γ x,γ –1y

) ≥ γ
1
4 x

1
4 + γ

1
5 (y + c)– 1

5

≥ γ
1
4
(
x

1
4 + (y + c)– 1

5
)

= ϕ(γ )
(
x

1
4 + (y + c)– 1

5
)

= ϕ(γ )f (t, x, y),

where ϕ(γ ) = γ
1
4 > γ , the conditions of Theorem 3.1 all hold. So this problem has a unique

positive solution u∗
λ ∈ Ptα–1 .

5 Conclusion
The research of fractional calculus and integral boundary value conditions has become a
new area of investigation. By the use of fixed point theorem and the properties of mixed
monotone operator theory, the existence and uniqueness of positive solutions for the
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problem are acquired. Two examples are presented to illustrate the main results. The con-
clusion obtained in this paper will be very useful in the application point of view. Also, we
expect to find some applications in more nonlinear problems.
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