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Abstract
It is well known that many important properties of μ-pseudo almost automorphic
(periodic) functions are based on the translation invariance. In this paper we give a
new result of the translation invariance with conditions weaker than the known one.
Then some more properties are studied, including the uniqueness of the
decomposition and the convolution of the space. Moreover, we present a result on
the equality of two spaces of this kind of functions, which extends the well-known
results to the case when the measures of the spaces are not equivalent. As an
application, we give an existence and uniqueness theorem of μ-pseudo almost
automorphic mild solution for a semilinear fractional differential equation.
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1 Introduction
Almost periodicity and almost automorphy are attractive topics in the qualitative theory of
differential equations due to their significance and applications in physics, mathematical
biology, control theory and others. Then these concepts are generalized in various ways,
say, pseudo almost periodicity (Zhang [1–3]), weighted pseudo almost periodicity (Dia-
gana [4, 5]), pseudo almost automorphy (Liang, Xiao and Zhang [6, 7]), weighted pseudo
almost automorphy (Blot et al. [8]), etc. These concepts have been widely used in the in-
vestigation of ordinary differential equations, partial differential equations, functional dif-
ferential equations and fractional differential equations. As a result, a vast of contributions
were generated (see e.g. [9–18] and the references therein).

Recently, by using the measure theory, Blot, Cieutat and Ezzinbi [19, 20] introduced the
concepts of μ-pseudo almost periodicity and μ-pseudo almost automorphy which are
generalization of weighted pseudo almost periodicity and weighted pseudo almost auto-
morphy, respectively. Some basic properties with applications are presented.

We notice that many applications of μ-pseudo almost automorphic (periodic) functions
(abbr. μ-paa (μ-pap) functions) are based on the uniqueness of their decompositions, and
this relies on the translation invariance of this kind of functions. So we give a new result
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of the translation invariance, and then some more properties are studied, including the
uniqueness of the decomposition and the convolution of the spaces.

Meanwhile, it known that two spaces of μ-paa (μ-pap) functions are the same if the
measures of the spaces are equivalent. But it is unclear that whether two spaces are the
same or not if their measures are not equivalent. In this paper, we present some sufficient
conditions for the equality of the spaces including the case when the measures are not
equivalent. Our results improve some well-known results (see Remarks 3.3, 3.8, 3.11 and
Examples 3.4, 3.12).

We note that, for the case of weighted pseudo almost automorphic (periodic) functions
(abbr. wpaa (wpap) functions), there were several important results on the topic of this
paper. The completeness of wpaa space was firstly proved in [21] without any restriction
on the weight, the translation invariance has been studied in [22–24], and a result on the
equivalent of the wpaa (wpap) spaces with nonequivalent weights was obtained in [24].
Moreover, some basic properties of wpap sequences were studied in [25]. We note also that
the completeness of μ-paa (μ-pap) space was obtained in [26] by proving some abstract
results on the characterization of the closedness of the sum of two closed vector subspaces
of a Banach space.

At last, as an application, we give an existence and uniqueness theorem of μ-paa mild
solution for a semilinear fractional differential equation. Some examples are given to il-
lustrate the abstract results.

2 Preliminaries
We first introduce some classical notations. Let (X,‖ · ‖), (Y,‖ · ‖) be two Banach spaces,
and BC(R,X) (resp. BC(R×Y,X)) be the space of bounded continuous functions u :
R →X (resp. u : R×Y →X). Endowed with the sup norm ‖u‖ = supt∈R ‖u(t)‖, BC(R,X)
is a Banach space. We note that even though the notation ‖·‖ is used for norms in different
spaces, no confusion should arise.

Definition 2.1 ([2]) A continuous function f : R →X is called almost periodic if for each
ε > 0 there exists l(ε) > 0 such that every interval of length l(ε) contains a number τ with
the property that ‖f (t + τ ) – f (t)‖ < ε for each t ∈ R. Denote by AP(X) the set of all such
functions.

Definition 2.2 ([27]) A continuous function f : R → X is called almost automorphic if
for every sequence of real numbers {s′

n}, there exists a subsequence {sn} such that g(t) =
limn→+∞ f (t + sn) is well defined for t ∈ R, and limn→+∞ g(t – sn) = f (t) for t ∈ R. Denote
by AA(X) the set of all such functions.

Let U be the set of all functions ρ : R → (0, +∞) which are locally integrable over R. For
T > 0 and ρ ∈ U , set

m(T ,ρ) =
∫ T

–T
ρ(t) dt.

Define

U∞ =
{
ρ ∈ U : lim

T→+∞ m(T ,ρ) = +∞
}

.
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For ρ ∈ U∞, T > 0 and f ∈ BC(R,X), denote

W(T , f ,ρ) =
1

m(T ,ρ)

∫ T

–T

∥∥f (t)
∥∥ρ(t) dt.

Then the weighted ergodic space M0(X,ρ) is defined by

M0(X,ρ) :=
{

f ∈ BC(R,X) : lim
T→+∞W(T , f ,ρ) = 0

}
,

the space WPAP(X,ρ) of weighted pseudo almost periodic functions (abbr. ρ-pap func-
tions) were introduced in [4, 5]:

WPAP(X,ρ) =
{

f = g + φ ∈ BC(R,X) : g ∈ AP(X),φ ∈ M0(X,ρ)
}

,

and the space WPAA(X,ρ) of weighted pseudo almost automorphic functions (abbr. ρ-paa
functions) were introduced in [8]:

WPAA(X,ρ) =
{

f = g + φ ∈ BC(R,X) : g ∈ AA(X),φ ∈ M0(X,ρ)
}

.

If ρ = 1, a ρ-pap (ρ-paa) function is a classic pseudo almost periodic (pseudo almost
automorphic) function (see [2, 3]).

Throughout this work, we denote by B the Lebesgue σ -field of R and by M the set of all
positive measures μ on B satisfying μ(R) = +∞ and μ([a, b]) < +∞ for all a, b ∈ R (a < b).

Definition 2.3 ([19, 20]) Let μ ∈M. A bounded continuous function f : R →X is said to
be μ-ergodic if

lim
T→+∞

1
μ([–T , T])

∫
[–T ,T]

∥∥f (t)
∥∥dμ = 0.

We denote the space of all such functions by ε(X,μ). The spaces PAP(X,μ) of μ-pseudo
almost periodic functions (abbr. μ-pap functions) is given by

PAP(X,μ) =
{

f = g + φ ∈ BC(R,X) : g ∈ AP(X),φ ∈ ε(X,μ)
}

,

and the spaces PAA(X,μ) of μ-pseudo almost automorphic functions (abbr. μ-paa func-
tions) is given by

PAA(X,μ) =
{

f = g + φ ∈ BC(R,X) : g ∈ AA(X),φ ∈ ε(X,μ)
}

.

Remark 2.4 From [19, 20], we have the following facts:
(i) Let ρ be a nonnegative B-measurable function, and μ the positive measure defined

by

μ(A) =
∫

A
ρ(t) dt for A ∈ B, (2.1)

where the integral is under the Lebesgue measure on R. The function ρ in (2.1) is
called the Radon–Nikodym derivative of μ with respect to the Lebesgue measure
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on R, and this is denoted by dμ

dt = ρ(t). In this case μ ∈M if and only if its
Radon–Nikodym derivative ρ is locally Lebesgue-integrable on R with

∫ +∞

–∞
ρ(t) dt = +∞.

(ii) One can observe that a ρ-paa (ρ-pap) function is μ-paa (μ-pap) with ρ(t) the
Radon–Nikodym derivative of μ: dμ

dt = ρ(t). Especially, a pseudo almost
automorphic (pseudo almost periodic) function is a μ-paa (μ-pap) function with μ

the Lebesgue measure.

3 Main results
3.1 Translation invariance of PAA(X,μ) (PAP(X,μ))
Let τ ∈R and f ∈ BC(R,X). We denote by fτ the translation function of f defined by fτ (s) =
f (τ + s) for s ∈ R. A subset F of BC(R,X) is said to be translation invariant if for all f ∈F
we have fτ ∈ F , τ ∈ R. For μ ∈ M and τ ∈R, we denote μτ the positive measure on B

defined by

μτ (A) = μ
({a + τ : a ∈ A}) for A ∈B.

For a set A ⊂R and τ ∈ R, we denote Aτ = {x +τ : x ∈ A} and Aτ
T = {x +τ : x ∈ [–T , T]∩A}.

For μ ∈M, the following assumption will be needed later:
(H1) For each τ ∈R, there exist a constant β > 0 and a measurable set � ⊂R such that

μτ (A) ≤ βμ(A) for A ∈B, A ∩ � = ∅

and

lim
T→+∞

μ(�τ
T )

μ([–T , T])
= 0. (3.1)

Lemma 3.1 Let μ ∈M satisfying (H1). Then, for τ ∈ R,

lim sup
T→+∞

μ([–T – τ , T + τ ])
μ([–T , T])

< +∞.

Proof Let τ ∈ R. By (H1), there exist constants β1,β2 > 0 and measurable sets �,	 ⊂ R

such that

μτ (A) ≤ β1μ(A) for A ∈B, A ∩ � = ∅,

μ–τ (A) ≤ β2μ(A) for A ∈B, A ∩ 	 = ∅.

Then

μτ

(
[–T , T]

)
= μτ

(
[–T , T] \ �

)
+ μτ

(
[–T , T] ∩ �

)

≤ β1μ
(
[–T , T] \ �

)
+ μτ

(
[–T , T] ∩ �

)

≤ β1μ
(
[–T , T]

)
+ μ

(
�τ

T
)
.
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Similarly, we can get

μ–τ

(
[–T , T]

) ≤ β2μ
(
[–T , T]

)
+ μ

(
	–τ

T
)
.

Let T > |τ |, then we have

μ
(
[–T – τ , T + τ ]

) ≤ μ
(
[–T – τ , T – τ ]

)
+ μ

(
[–T + τ , T + τ ]

)

= μ–τ

(
[–T , T]

)
+ μτ

(
[–T , T]

)

≤ (β1 + β2)μ
(
[–T , T]

)
+ μ

(
�τ

T
)

+ μ
(
	–τ

T
)
.

This together with (H1) yields

lim sup
T→+∞

μ([–T – τ , T + τ ])
μ([–T , T])

≤ β1 + β2 < +∞. �

Theorem 3.2 Let μ ∈ M satisfying (H1). Then ε(X,μ) is translation invariant. Conse-
quently, PAA(X,μ) and PAP(X,μ) are translation invariant.

Proof Let f ∈ ε(X,μ) and τ ∈ R. By the definition of μ, there exists T0 > 0 such that
μ([–T – |τ |, T + |τ |]) > 0 for T > T0. Let β and � be the ones given in (H1) for –τ . Then
for T > T0

∫
[–T ,T]

∥∥fτ (t)
∥∥dμ =

∫
[–T ,T]

∥∥f (t + τ )
∥∥dμ

=
∫

[–T ,T]\�–τ

∥∥f (t + τ )
∥∥dμ +

∫
[–T ,T]∩�–τ

∥∥f (t + τ )
∥∥dμ

≤
∫

[–T+τ ,T+τ ]\�

∥∥f (t)
∥∥dμ–τ + ‖f ‖μ(

[–T , T] ∩ �–τ
)

≤ β

∫
[–T+τ ,T+τ ]\�

∥∥f (t)
∥∥dμ + ‖f ‖μ(

�–τ
T+|τ |

)

≤ β

∫
[–T–|τ |,T+|τ |]

∥∥f (t)
∥∥dμ + ‖f ‖μ(

�–τ
T+|τ |

)
.

Now by (H1), Lemma 3.1 and the fact that f ∈ ε(X,μ),

1
μ([–T , T])

∫
[–T ,T]

∥∥fτ (t)
∥∥dμ

=
μ([–T – |τ |, T + |τ |])

μ([–T , T])
· 1
μ([–T – |τ |, T + |τ |])

∫
[–T ,T]

∥∥f (t + τ )
∥∥dμ

≤ μ([–T – |τ |, T + |τ |])
μ([–T , T])

· β
∫

[–T–|τ |,T+|τ |] ‖f (t)‖dμ + ‖f ‖μ(�–τ
T+|τ |)

μ([–T – |τ |, T + |τ |])
→ 0 as T → +∞.

That is, fτ ∈ ε(X,μ), and then ε(X,μ) is translation invariant. Consequently PAA(X,μ)
and PAP(X,μ) are translation invariant since AP(X) and AA(X) are. This completes the
proof. �
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Remark 3.3
(i) In [19, 20], the following assumption was used:

(H) For all τ ∈R, there exist β > 0 and a bounded interval I such that

μ
({a + τ : a ∈ A}) ≤ βμ(A), when A ∈B satisfies A ∩ I = ∅.

Notice that (H) is named (H2) in [20]. If � is a bounded interval, (3.1) holds
automatically. Then (H1) is weaker than (H). As a result, Theorem 3.2 improves [19,
Theorem 3.5] and [20, Theorem 3.3].

(ii) For the case of μ(A) =
∫

A ρ(t) dt, that is, of weighted pseudo almost automorphic
(periodic) functions, the same conclusion of Theorem 3.2 was obtained in [24,
Theorem 4.2, Remark 4.3] with a condition slight different from (H1), and similar
result was also given in [22, Theorem 3.7 (ii)] with different conditions.

The following example shows that some measure μ satisfies (H1), but does not sat-
isfy (H).

Example 3.4 Let the Radon–Nikodym derivative ρ of the measure μ be given as

ρ(t) =

⎧⎨
⎩

e–t , t ∈ (2n – 1, 2n], n ∈N+,

1, otherwise.

Then, for τ = 1, it is easy to get

μ1
(
(2n – 1, 2n]

)
= 1 =

e2n

e – 1
μ

(
(2n – 1, 2n]

)
.

Notice that the interval I in (H) is bounded and e2n

e–1 → +∞ as n → +∞. So μ does not
satisfy (H). However, it is easy to verify that μ satisfies (H1) for β = 1 and � = (1, +∞).

3.2 Related properties with respect to translation invariance
Let us start with the construction of μ-paa (μ-pap) functions through convolution. Let
L(X) be the space of bounded linear maps from the Banach space X into itself, and
L1(R,L(X)) the Lebesgue space with respect to the Lebesgue measure on R. For f ∈
BC(R,X) and G ∈ L1(R,L(X)), f ∗ G is defined by

(f ∗ G)(t) =
∫ +∞

–∞
G(s)f (t – s) ds for t ∈R.

Clearly, f ∗ G ∈ BC(R,X).

Theorem 3.5 Let μ ∈ M satisfying (H1), and G ∈ L1(R,L(X)). Assume that f ∈ ε(X,μ),
then f ∗ G ∈ ε(X,μ). Consequently, f ∗ G ∈ PAA(X,μ) (PAP(X,μ)) if f ∈ PAA(X,μ)
(PAP(X,μ)).
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Proof Let f ∈ ε(X,μ). Notice that there exists T0 ≥ 0 such that, for all T ≥ T0,
μ([–T , T]) > 0. Then, by Fubini’s theorem, for T ≥ T0,

1
μ([–T , T])

∫
[–T ,T]

∥∥(f ∗ G)(t)
∥∥dμ

≤ 1
μ([–T , T])

∫
[–T ,T]

∫ +∞

–∞

∥∥G(s)
∥∥∥∥f (t – s)

∥∥ds dμ

=
∫ +∞

–∞
‖G(s)‖

μ([–T , T])

∫
[–T ,T]

∥∥f (t – s)
∥∥dμds.

By Theorem 3.2, we have f (· – s) ∈ ε(X,μ) for s ∈R. That is

lim
T→+∞

1
μ([–T , T])

∫
[–T ,T]

∥∥f (t – s)
∥∥dμ = 0 for s ∈R.

Meanwhile,

‖G(s)‖
μ([–T , T])

∫
[–T ,T]

∥∥f (t – s)
∥∥dμ ≤ ∥∥G(s)

∥∥‖f ‖ for s ∈R.

Then it follows from the Lebesgue dominated convergence theorem that

lim
T→+∞

1
μ([–T , T])

∫
[–T ,T]

∥∥(f ∗ G)(t)
∥∥dμ

≤ lim
T→+∞

∫ +∞

–∞
‖G(s)‖

μ([–T , T])

∫
[–T ,T]

∥∥f (t – s)
∥∥dμds = 0.

That is f ∗ G ∈ ε(X,μ).
By the same arguments of the proofs in [19, Theorem 3.9] and [20, Theorem 3.8], we

see that f ∗ G ∈ AA(X) (AP(X)) if f ∈ AA(X) (AP(X)), and we omit the details here. As a
result, we get the conclusion. �

Furthermore, by Theorem 3.2 and similar arguments of the proofs of the corresponding
results in [19, 20], we can obtain the following properties of μ-paa (μ-pap) functions. Here
we omit the details of the proofs.

Theorem 3.6 Let μ ∈ M satisfying (H1) and f ∈ PAA(X,μ) (PAP(X,μ)) be such that f =
g + φ, where g ∈ AA(X) (AP(X)) and φ ∈ ε(X,μ). Then {g(t) : t ∈ R} ⊂ {f (t) : t ∈R} (the
closure of the range of f ).

Theorem 3.7 Let μ ∈M satisfying (H1). The decomposition of a μ-paa (μ-pap) function
in the form f = g + φ, where g ∈ AA(X) (AP(X)) and φ ∈ ε(X,μ), is unique.

Remark 3.8 Theorems 3.5–3.7 improve the corresponding results in [19, 20] because (H)
implies (H1) (see Remark 3.3).
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3.3 Equality of two spaces of μ-paa (μ-pap) functions
Let μ1,μ2 ∈ M. μ1 is said to be equivalent to μ2 if there exist constants α and β > 0 and
a bounded interval I such that

αμ1(A) ≤ μ2(A) ≤ βμ1(A) for A ∈B satisfying A ∩ I = ∅.

From [19, 20], it is well known that the equivalence of μ1 and μ2 implies that ε(X,μ1) =
ε(X,μ2), and consequently

PAA(X,μ1) = PAA(X,μ2) and PAP(X,μ1) = PAP(X,μ2). (3.2)

However, it remains unclear whether we can get ε(X,μ1) = ε(X,μ2) and (3.2) or not if
μ1 and μ2 are not equivalent. The main purpose of this subsection is to deal with this
problem.

Lemma 3.9 Let μ1,μ2 ∈M. Assume that

lim sup
T→+∞

μ1([–T , T])
μ2([–T , T])

< +∞, (3.3)

and there exist a measurable set � ⊂R and α > 0 such that

μ2(A) ≤ αμ1(A) for A ∈B satisfying A ∩ � = ∅ (3.4)

and

lim
T→+∞

μ2([–T , T] ∩ �)
μ2([–T , T])

= 0. (3.5)

Then ε(X,μ1) ⊂ ε(X,μ2), and thus

PAA(X,μ1) ⊂ PAA(X,μ2) and PAP(X,μ1) ⊂ PAP(X,μ2).

Proof Let f ∈ ε(X,μ1). Then, by (3.4),

1
μ2([–T , T])

∫
[–T ,T]

∥∥f (t)
∥∥dμ2

=
1

μ2([–T , T])

∫
[–T ,T]\�

∥∥f (t)
∥∥dμ2 +

1
μ2([–T , T])

∫
[–T ,T]∩�

∥∥f (t)
∥∥dμ2

≤ α · μ1([–T , T])
μ2([–T , T])

· 1
μ1([–T , T])

∫
[–T ,T]\�

∥∥f (t)
∥∥dμ1 +

μ2([–T , T] ∩ �)
μ2([–T , T])

· ‖f ‖

≤ α · μ1([–T , T])
μ2([–T , T])

· 1
μ1([–T , T])

∫
[–T ,T]

∥∥f (t)
∥∥dμ1 +

μ2([–T , T] ∩ �)
μ2([–T , T])

· ‖f ‖.

This together with (3.3), (3.5) and the fact that f ∈ ε(X,μ1) implies

lim
T→+∞

1
μ2([–T , T])

∫
[–T ,T]

∥∥f (t)
∥∥dμ2 = 0.

That is f ∈ ε(X,μ2), and then ε(X,μ1) ⊂ ε(X,μ2). The proof is complete. �
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Theorem 3.10 Let μ1,μ2 ∈ M. Assume that there exist constants α > 0 and β > 0 and a
measurable set � ⊂R such that

αμ2(A) ≤ μ1(A) ≤ βμ2(A) for A ∈B satisfying A ∩ � = ∅ (3.6)

and

lim
T→+∞

μi([–T , T] ∩ �)
μi([–T , T])

= 0, i = 1, 2. (3.7)

Then ε(X,μ1) = ε(X,μ2), and thus

PAA(X,μ1) = PAA(X,μ2) and PAP(X,μ1) = PAP(X,μ2).

Proof By (3.6), (3.7) and Lemma 3.9, we need only to prove that (3.3) is true and

lim sup
T→+∞

μ2([–T , T])
μ1([–T , T])

< +∞. (3.8)

In fact, by (3.7), for i = 1, 2,

lim
T→+∞

μi([–T , T] \ �)
μi([–T , T])

= lim
T→+∞

μi([–T , T]) – μi([–T , T] ∩ �)
μi([–T , T])

= 1.

Meanwhile, we have

μ1([–T , T])
μ2([–T , T])

=
μ2([–T , T] \ �)

μ2([–T , T])
· μ1([–T , T])
μ1([–T , T] \ �)

· μ1([–T , T] \ �)
μ2([–T , T] \ �)

.

Then by (3.6)

lim sup
T→+∞

μ1([–T , T])
μ2([–T , T])

= lim sup
T→+∞

μ1([–T , T] \ �)
μ2([–T , T] \ �)

≤ lim sup
T→+∞

βμ2([–T , T] \ �)
μ2([–T , T] \ �)

= β .

That is (3.3) holds. Similarly, we can get (3.8). The proof is complete. �

Remark 3.11
(i) We note that Theorem 3.10 improves [19, Theorem 2.20] and [20, Theorem 2.21].

Indeed, if the measurable set � is a bounded interval, i.e. μ1 and μ2 are equivalent,
(3.7) holds automatically. Then Theorem 3.10 is the combination of [19,
Theorem 2.20] and [20, Theorem 2.21].

(ii) We note that, for the case of μ(A) =
∫

A ρ(t) dt, that is, of weighted pseudo almost
automorphic (periodic) functions, Theorem 3.10 is the same as [24, Theorem 2.1].

The following example shows the equality of the two spaces PAA(X,μ1) and PAA(X,μ2)
(PAP(X,μ1) and PAP(X,μ2)) when μ1 and μ2 are not equivalent.
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Example 3.12 Let the Radon–Nikodym derivative ρ1, ρ2 of the measure μ1, μ2 be given
as

ρ1(t) =

⎧⎨
⎩

t–1, t ∈ (1, +∞),

1, t ∈ (–∞, 1],

and

ρ2(t) =

⎧⎨
⎩

e–t , t ∈ (0, +∞),

1, t ∈ (–∞, 0].

Then

μ1((n, n + 1])
μ2((n, n + 1])

=

∫
(n,n+1] ρ1(t) dt∫
(n,n+1] ρ2(t) dt

=
ln(1 + 1

n )
e–n – e–(n+1) → +∞ (n → +∞),

and μ1 and μ2 are not equivalent. Thus [19, Theorem 2.20] and [20, Theorem 2.21] are
not applicable. However, let � = (0, +∞). It is easy to verify that all the assumptions of
Theorem 3.10 hold. Then ε(X,μ1) = ε(X,μ2), and thus (3.2) holds.

4 μ-paa mild solutions
As an application of the results obtained in the last section, we study the existence and
uniqueness of μ-paa mild solutions of the following fractional differential equation:

CDα
t u(t) = Au(t) + CDα–1

t f
(
t, u(t)

)
, t ∈R, 1 < α < 2, (4.1)

where A : D(A) ⊂X →X is a linear densely defined operator of sectorial type on a complex
Banach space X and f : R×X→ X is a μ-paa function in t for each x ∈X. The fractional
derivative CDα

t is to be understood in the Caputo sense.

Definition 4.1 ([28]) A closed linear operator A with a dense domain D(A) in a Banach
space X is said to be sectorial of type ω with angle θ if there are constants ω ∈R, θ ∈ (0, π

2 ),
M > 0 such that its resolvent exists outside the sector

ω + �θ :=
{
λ + ω : λ ∈ C,

∣∣ arg(–λ)
∣∣ < θ

}
, (4.2)

and

∥∥(λ – A)–1∥∥ ≤ M
|λ – ω| , λ /∈ ω + �θ . (4.3)

Definition 4.2 ([29, 30]) Let 1 < α < 2, and A be a closed linear operator with a domain
D(A) in a Banach spaceX. We say that A is the generator of a solution operator if there exist
ω ∈R and a strongly continuous function Sα : R+ →L(X) such that {λα : Reλ > ω} ⊂ ρ(A)
and

λα–1(λαI – A
)–1x =

∫ +∞

0
e–λtSα(t)x dt, Reλ > ω, x ∈X.

In this case, Sα(t) is called the solution operator generated by A.
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From [28], if A is sectional of type ω ∈ R with 0 ≤ θ < π (1 – α
2 ), then A is a generator of a

solution operator given by

Sα(t) =
1

2π i

∫
G

eλtλα–1(λα – A
)–1 dλ, t ≥ 0,

with G a suitable path lying outside the sector ω + �θ . Furthermore, the following lemma
holds.

Lemma 4.3 ([28]) Let A : D(A) ⊂ X → X be a sectorial operator in a complex Banach
space X, satisfying hypotheses (4.2) and (4.3), for some M > 0, ω < 0 and 0 ≤ θ < π (1 – α

2 ).
Then there exists C(θ ,α) > 0 depending solely on θ and α, such that

∥∥Sα(t)
∥∥
L(X) ≤ C(θ ,α)M

1 + |ω|tα
, t ≥ 0. (4.4)

Definition 4.4 ([31]) A continuous function x : R → X is called a mild solution of
Eq. (4.1), if s → Sα(t – s)f (s, x(s)) is integrable on (–∞, t) for each t ∈R and

x(t) =
∫ t

–∞
Sα(t – s)f

(
s, x(s)

)
ds, t ∈R.

Definition 4.5 ([32]) A continuous function f : R×X →Y is said to be almost automor-
phic in t uniformly with respect to x in X if the following two conditions hold:

(i) for all x ∈X, f (·, x) ∈ AA(X),
(ii) f is uniformly continuous on each compact set K in X with respect to the second

variable x, namely, for ε > 0 and each compact set K in X, there exists δ > 0 such
that, for all x1, x2 ∈K, one has

∥∥x1 – x2
∥∥ ≤ δ ⇒ sup

t∈R

∥∥f (t, x1) – f (t, x2))
∥∥ ≤ ε.

Denote by AAU(R×X,Y) the set of all such functions.

Definition 4.6 ([19, 20]) Let μ ∈ M. A continuous function f : R×X → Y is said to be
μ-ergodic in t uniformly with respect to x in X if the following two conditions are true:

(i) for all x ∈X, f (·, x) ∈ ε(Y,μ),
(ii) f is uniformly continuous on each compact set K in X with respect to the second

variable x.
Denote by εU(R×X,Y,μ) the set of all such functions.

Definition 4.7 ([19, 20]) Let μ ∈M. A continuous function f : R×X →Y is said to be μ-
pseudo almost automorphic in t uniformly with respect to x in X if f is written in the form
f = g + φ, where g ∈ AAU(R×X,Y), φ ∈ εU(R×X,Y,μ). Denote by PAAU(R×X,Y,μ)
the set of all such functions.

Lemma 4.8 ([32]) Let μ ∈ M, f ∈ PAAU(R×X,Y,μ) and x ∈ PAA(X,μ). Assume that
the following hypothesis holds:

(C) For all bounded subset B of X, f (R×B) is bounded.
Then f (·, x(·)) ∈ PAA(Y,μ).
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Lemma 4.9 Let μ ∈ M satisfying (H1) and f ∈ PAA(X,μ). Assume that the integrable
solution operator Sα(t) satisfies (4.4). Then the function F defined by

F(t) :=
∫ t

–∞
Sα(t – s)f (s) ds, t ∈R (4.5)

is in PAA(X,μ).

Proof Let G(t) = Sα(t) if t ≥ 0 and G(t) = 0 if t < 0. Then the conclusion follows from
Theorem 3.5. �

Theorem 4.10 Let μ ∈M satisfying (H1), f ∈ PAAU(R×X,X,μ) and let A : D(A) ⊂X →
X be a sectorial operator in a complex Banach spaceX, satisfying hypotheses (4.2) and (4.3),
for some M > 0, ω < 0 and 0 ≤ θ < π (1 – α

2 ). Assume that there exists k > 0 such that

∥∥f (t, x1) – f (t, x2)
∥∥ ≤ k‖x1 – x2‖ for t ∈R, x1, x2 ∈ X, (4.6)

and

kC(θ ,α)M
|ω|– 1

α π

α sin( π
α

)
< 1, (4.7)

where C(θ ,α) is the constant given in (4.4). Then Eq. (4.1) has a unique mild solution in
PAA(X,μ).

Proof By (4.6), for t ∈ R, x ∈X,

∥∥f (t, x)
∥∥ ≤ ∥∥f (t, x) – f (t, 0)

∥∥ +
∥∥f (t, 0)

∥∥ ≤ k‖x‖ +
∥∥f (·, 0)

∥∥.

Noticing that ‖f (·, 0)‖ < +∞ since f (·, 0) ∈ PAA(X,μ), then this means that, for a bounded
set B ⊂ X, f (R×B) is bounded. Let x ∈ PAA(X,μ). Then f (·, x(·)) ∈ PAA(X,μ) by
Lemma 4.8, and

∫ t
–∞ Sα(t – σ )f (σ , x(σ )) dσ is μ-paa by Lemma 4.9. Moreover, PAA(X,μ)

is a Banach space by [26, Theorem 4.11]. Now define an operator � : PAA(X,μ) →
PAA(X,μ) by

�(x)(t) :=
∫ t

–∞
Sα(t – σ )f

(
σ , x(σ )

)
dσ , t ∈R.

Let x1 and x2 ∈ PAA(X,μ), by Lemma 4.3 and (4.6),

∥∥�(x1)(t) – �(x2)(t)
∥∥ ≤

∫ t

–∞

∥∥Sα(t – σ )
∥∥∥∥f

(
σ , x1(σ )

)
– f

(
σ , x2(σ )

)∥∥dσ

≤
∫ t

–∞
C(θ ,α)M

1 + |ω|(t – σ )α
k
∥∥x1(σ ) – x2(σ )

∥∥dσ

≤ k‖x1 – x2‖
∫ +∞

0

C(θ ,α)M
1 + |ω|σα

dσ

for t ∈R. Notice also that

∫ +∞

0

1
1 + |ω|tα

dt =
|ω|– 1

α π

α sin( π
α

)
for α ∈ (1, 2).
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Then

∥∥�(x1) – �(x2)
∥∥ ≤ kC(θ ,α)M

|ω|– 1
α π

α sin( π
α

)
‖x1 – x2‖.

This means that � is a contraction map by (4.7). It follows from the Banach contraction
fixed point theorem, � has a unique fixed point x ∈ PAA(X,μ), and x is a μ-paa mild
solution of (4.1). �

Example 4.11 To illustrate Theorem 4.10, we consider the following fractional relaxation–
oscillation equation:

CDα
t u(t, x) =

∂2

∂x2 u(t, x) – au(t, x) + CDα–1
t f

(
t, u(t, x)

)
, t ∈ R, x ∈ [0,π ], (4.8)

with boundary conditions u(t, 0) = u(t,π ) = 0, t ∈R, where 1 < α < 2, a > 0 and

f
(
t, u(t, x)

)
= sin

1
2 + cos t + cosπ t

sin
(
u(t, x)

)
, t ∈R.

Let the Radon–Nikodym derivative ρ of the measure μ be defined by

ρ(t) =

⎧⎨
⎩

e–t , t ∈ (2n – 1, 2n], n ∈N+,

1, otherwise.

Set (X,‖ · ‖X) = (L2([0,π ]),‖ · ‖2). We assert that (4.8) has a unique solution in PAA(X,μ)
if

a >
(

C(θ ,α)Mπ

α sin( π
α

)

)α

, (4.9)

where C(θ ,α), M is as those in (4.4).
In fact, μ satisfies (H1) by Example 3.4, and it is easy to see that f ∈ PAAU(R×X,X,μ).

Define an operator A on X by

Aϕ = ϕ′′ – aϕ, ∀ϕ ∈ D(A),

where D(A) := {ϕ ∈ X : ϕ′′ ∈ X,ϕ(0) = ϕ(π ) = 0}. It is well known that �u = u′′ is the
infinitesimal generator of an analytic semigroup on X. Thus A is a sectorial of type
ω = –a < 0. Now (4.8) can be formulated by (4.1), where u(t) = u(t, ·). Meanwhile, we have

∥∥f (t, u(t, ·) – f
(
t, v(t, ·))∥∥2

≤
∣∣∣∣ sin

1
2 + cos t + cosπ t

∣∣∣∣
∥∥ sin

(
u(t, ·)) – sin

(
v(t, ·))∥∥2

≤ ∥∥ sin
(
u(t, ·)) – sin

(
v(t, ·))∥∥2

≤ ∥∥u(t, ·) – v(t, ·)∥∥2
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for all u(t, ·), v(t, ·) ∈ L2([0,π ]), t ∈ R. This means that f satisfies (4.6) with k = 1. Notice
that (4.9) implies (4.7). Therefore all the assumptions of Theorem 4.10 are satisfied, and
then (4.8) has a unique solution in PAA(X,μ).
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