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Abstract
The objective of this paper is to study the dynamics of the stochastic ratio-dependent
predator–prey model with Holling III type functional response and nonlinear
harvesting. For the autonomous system, sufficient conditions for globally positive
solution and stochastic permanence are established. Then, applying comparison
theorem for stochastic differential equation, sufficient conditions for extinction and
persistence in the mean are obtained. In addition, we prove that there exists a unique
stationary distribution and it has ergodicity under certain parametric restrictions. For
the periodic system, we obtain conditions for the existence of a nontrivial positive
periodic solution. Finally, numerical simulations are carried out to substantiate the
analytical results.
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1 Introduction
Renewable resources (such as fisheries and forestry resources) are considered to be inex-
haustible at all times, but excessive exploitation will actually exhaust them. The optimal
management of renewable resources, which has a direct relationship to sustainable de-
velopment, has been studied extensively by many authors (see [1, 2] and the references
cited therein). Xiao [1] pointed out that the aim is to determine how much we can har-
vest without dangerously altering the harvested population. According to Clark in [2], the
management of renewable resources has been based on the maximum sustainable yield,
with the property that any larger harvest rate will lead to the depletion of the population.
Thus, it is important to investigate the reasonable exploitation of renewable resources and
their effective utilization to obtain the maximum revenue.

In recent years, the harvesting effects on the dynamics of predator–prey systems have
attracted lots of attention and considerable work has been done (see [3–8] and the ref-
erences cited therein). In their papers, an adequate amount of thorough investigation is
carried out to study the existence of periodic solutions for biological models with harvest-
ing terms. For example, Hou [4] discussed a ratio-dependent predator–prey system with
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multiple harvesting terms. By means of using coincidence degree theory, they established
the existence of at least four positive periodic solutions for the system. Wei [5] discussed
a three-species periodic predator–prey system with Holling III type functional response
and harvesting terms. By means of using coincidence degree theory, they established the
existence of at least eight positive periodic solutions for the system. In addition, Gupta
et al. [9] presented three types of harvesting functions (constant harvesting, proportional
harvesting, nonlinear harvesting), and showed that nonlinear harvesting is more realis-
tic than constant harvesting and proportional harvesting. Motivated by [1–11], in this
paper, we propose the following ratio-dependent predator–prey system with Holling III
type functional response and nonlinear harvesting terms, which therefore is described as:

{ dx(t)
dt = x(t)(r1 – a1x(t) – b1x(t)y(t)

x2(t)+my2(t) – f1
1+w1x(t) ),

dy(t)
dt = y(t)(r2 – b2y(t)

k2+x(t) – f2
1+w2y(t) ),

(1.1)

where x(t) and y(t) represent the population densities at time t, respectively. All param-
eters involved in the model are positive. The parameters have the following biological
meanings: r1 and r2 are intrinsic growth rates of the prey and predator species, respec-
tively. a1 denotes the density-dependent coefficient of the prey. The associated ratio-
dependent form of the Holling type III functional response is b1x2(t)y(t)

x2(t)+my2(t) , where b1 stands
for the conversion rates, m for half capturing saturation [11]. The meaning of b2 is similar
to b1, k2 measures the extent to which environment provides protection for predator y.

f1x
1+w1x(t) , f2y

1+w2y(t) are both nonlinear harvesting terms where fi (i = 1, 2) is the catchability
coefficient, wi (i = 1, 2) is the suitable positive constant [9].

In fact, population dynamics is inevitably affected by environmental fluctuations, which
is an important component in an ecosystem. May [12] pointed out that the birth rates,
carrying capacity, competition coefficients, and other parameters involved in the system
can be affected by random fluctuation. Stochastic models could be a more appropriate way
of modeling in comparison with their deterministic counterparts, since they can provide
some additional degree of realism. Particularly, Tom [13] suggests that stochastic epidemic
models can provide some additional degree of realism in comparison with their determin-
istic models. For example: What is the probability of the disease outbreak? Furthermore,
for models describing an endemic situation: How long is the disease likely to persist (with
or without intervention)? Later stochastic models have also shown to be advantageous
when the contact structure in the community contains small complete graphs; households
and other local social networks are common examples. Indeed, by introducing stochastic
environmental noise, some scholars have proposed some stochastic epidemic models [14–
19], stochastic population models [20–28]. Liu [21, 22] established sufficient and necessary
criteria for the existence of optimal harvesting policy and obtained optimal harvesting ef-
fort and the maximum value of the cost function in a random environment. In [23], Jiang
et al. introduced environmental noise into the parameters of the intrinsic growth rates
to describe the dynamics of the predator–prey system with nonlinear predator harvest-
ing and showed that this model possessed nonnegative solutions, the solutions oscillated
around the equilibria, and the intensity was relevant to the intensity of the white noise.
Moreover, they proved that there exists at least one nontrivial positive periodic solution.
In the present paper, we consider that the catchability coefficient is affected by other cir-
cumstances such as weather conditions, temperature, seasonal variation, and other noises
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arose nearby. Hence, the constant catchability coefficient fi (i = 1, 2) is replaced by a ran-
dom variable fi + σi dBi(t) (i = 1, 2), where B1(t), B2(t) are mutually independent Brownian
motions, σ 2

1 , σ 2
2 represent the intensities of the white noise. Then, corresponding to the

deterministic model (1.1), the stochastic system takes the following form:

{
dx(t) = x(t)(r1 – a1x(t) – b1x(t)y(t)

x2(t)+my2(t) – f1
1+w1x(t) ) dt – σ1x(t)

1+w1x(t) dB1(t),
dy(t) = y(t)(r2 – b2y(t)

k2+x(t) – f2
1+w2y(t) ) dt – σ2y(t)

1+w2y(t) dB2(t).
(1.2)

In the article, we focus on the effects of environmental noise and harvests on the dynam-
ics of the system (1.2). On the other hand, periodic behavior arises naturally in many real
world problems such as in biological, environmental, and economic systems. To better un-
derstand the dynamic behavior of the population, numerous authors consider the effects
of periodic variation and stochasticity (see [23, 29] and the references cited therein). In
this paper, we will consider the periodic behavior in the following stochastic model:

{
dx(t) = x(t)(r1(t) – a1(t)x(t) – b1(t)x(t)y(t)

x2(t)+m(t)y2(t) – f1(t)
1+w1(t)x(t) ) dt – σ1(t)x(t)

1+w1(t)x(t) dB1(t),
dy(t) = y(t)(r2(t) – b2(t)y(t)

k2(t)+x(t) – f2(t)
1+w2(t)y(t) ) dt – σ2(t)y(t)

1+w2(t)y(t) dB2(t),
(1.3)

where r1(t), a1(t), b1(t), m(t), f1(t), w1(t), σ1(t), r2(t), b2(t), k2(t), f2(t), w2(t), σ2(t) are all
positive T-periodic continuous functions. We will obtain the existence of the periodic
Markov process of system (1.3) by the method of Khasminskii [30].

The rest of the paper is organized as follows. In Sect. 2, we give the existence and unique-
ness of global positive solution and the solution is stochastically ultimately bounded.
Moreover, we obtain that stochastic system (1.2) is stochastically permanent in Sect. 3.
In Sect. 4, sufficient conditions for extinction, stochastic persistence in the mean of the
population are established. In Sect. 5, we show the existence of a unique stationary distri-
bution and ergodicity. The existence of a positive periodic solution for non-autonomous
periodic solution is also obtained in Sect. 6. Finally, the conclusions are given and our main
results are illustrated through numerical simulations.

2 Existence and uniqueness of globally positive solution
Throughout this paper, unless otherwise specified, we let (�,F , {Ft}t≥0, P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right
continuous and F0 contains all P-null sets). For convenience we introduce the notations

Rn
+ =

{
X(t) = (x1, x2, . . . , xn) ∈ Rn|xi > 0 for all 1 ≤ i ≤ n

}
,

∣∣X(t)
∣∣ =

√√√√ n∑
i=1

x2
i .

If f (t) is integrable, we define 〈f (t)〉T = 1
T

∫ T
0 f (t) dt, T > 0. And if f (t) is bounded, we

define f u = supt∈[0,+∞) f (t), f l = inft∈[0,+∞) f (t).
As we know, for a stochastic differential equation in order to have a unique global (i.e.,

no explosion in a finite time) solution for any given initial value, the functions involved in
the stochastic system are generally required to satisfy the linear growth condition and the
local Lipschitz condition [31]. However, the functions of system (1.2) do not satisfy the
linear growth condition. So the solution of system (1.2) may explode at a finite time. In
this section, we first show that there exists a unique positive local solution of system (1.2)
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and then, by constructing some suitable Lyapunov function, we prove that this solution is
global. Explanation for ‘explosion time’ used in the following lemma can be found in [31].

Lemma 2.1 For (x(0), y(0)) ∈ R2
+, there is a unique positive local solution (x(t), y(t)) of sys-

tem (1.2) for t ∈ [0, τe) a.s., where τe is the explosion time.

Proof Let u(t) = ln x(t) and v(t) = ln y(t), by use of Itô’s formula, we get that

⎧⎨
⎩

du(t) = [r1 – a1eu – b1eu+v

e2u+me2v – f1
1+w1eu – σ 2

1
2(1+w1eu)2 ] dt – σ1

1+w1eu dB1(t),

dv(t) = [r2 – b2ev

k2+eu – f2
1+w2ev – σ 2

2
2(1+w2ev)2 ] dt – σ2

1+w2ev dB2(t),
(2.1)

subjected to the initial condition u(0) = log x(0), v(0) = log y(0). The functions involved in a
drift part of the stochastic differential system above satisfy the linear growth condition and
are locally Lipschitz. Hence there exists a unique local solution (u(t), v(t)) for t ∈ [0, τe),
where τe is any finite positive real number. Clearly, x(t) = eu(t), y(t) = ev(t) is the unique
positive local solution of stochastic differential system (1.2) starting from an interior point
of the first quadrant. �

Now we are in a position to show that this unique solution is not only a local solution
but a global solution. To prove this, we need to show that τe = ∞ a.s.

Theorem 2.1 For any given initial value (x(0), y(0)) ∈ R2
+, there is a unique solution

(x(t), y(t)) to system (1.2), and the solution will remain in R2
+ with probability 1, that is,

(x(t), y(t)) ∈ R2
+ for all t ≥ 0 almost surely.

Proof Let k0 > 0 be sufficiently large for (x(0), y(0)) lying within the interval [ 1
k0

, k0] ×
[ 1

k0
, k0]. For each integer k ≥ k0, define the stopping time

τk = inf

{
t ∈ [0, τe) : x(t) /∈

(
1
k

, k
)

; y(t) /∈
(

1
k

, k
)}

.

Throughout this paper we set inf∅ = ∞ (as usual, ∅ denotes the empty set). Clearly, τk is
increasing as k → ∞. Set τ∞ = limk→∞ τk , hence τ∞ ≤ τe a.s. If we can show that τ∞ = ∞
a.s., then τe = ∞ a.s. and (x(t), y(t)) ∈ R2

+ a.s. for all t ≥ 0. In other words, to complete the
proof, all we need to show is that τ∞ = ∞ a.s. For if this statement is false, then there is a
pair of constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε, (2.2)

hence, there is an integer k1 ≥ k0 such that P{τk ≤ T} ≥ ε for all k ≥ k1.
Define a C2-function V : R2

+ → R+ as follows:

V (x, y) = x – ln x + y – ln y + (k2 + x)y = V1 + V2 + V3,
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where V1 = x – ln x, V2 = y – ln y, V3 = (k2 + x)y. By Itô’s formula we have

LV 1 = x
(

r1 – a1x –
b1xy

x2 + my2 –
f1

1 + w1x

)

–
(

r1 – a1x –
b1xy

x2 + my2 –
f1

1 + w1x
–

σ 2
1

2(1 + w1x)2

)

≤ –a1x2 + (r1 + a1)x +
b1

2
√

m
+ f +

σ 2
1

2
– r1.

Analogously, we have

LV 2 = y
(

r2 –
b2y

k2 + x
–

f2

1 + w2y

)
–

(
r2 –

b2y
k2 + x

–
f2

1 + w2y
–

σ 2
2

2(1 + w2y)2

)

≤
(

r2 +
b2

k2

)
y + f2 +

σ 2
2

2
– r2.

Moreover, we also have

LV 3 = (k2 + x)y
(

r2 –
b2y

k2 + x
–

f2

1 + w2y

)
+ xy

(
r1 – a1x –

b1xy
x2 + my2 –

f1

1 + w1x

)

≤ –b2y2 – a1x2y + r2(k2 + x)y + r1xy.

Hence, we obtain

LV ≤ –a1x2 – b2y2 – a1x2y + (r1 + a1)x +
(

r2 +
b2

k2

)
y

+ r2(k2 + x)y + r1xy +
b1

2
√

m
+ f +

σ 2
1

2
– r1 + f2 +

σ 2
2

2
– r2

≤ C2. (2.3)

In fact, one can see that

–a1x2 – b2y2 – a1x2y + r1xy = –a1x2 – b2y2 +
(
–a1x2 + r1x

)
y

≤ –a1x2 – b2y2 +
r2

1
4a1

y

≤ r4
1

64a2
1b2

:= C1.

Similarly, we derive that LV also has an upper bound C2 (LV ≤ C2). Hence

dV = LV dt +
(

1 –
1
x

)
σ1x

1 + w1x
dB1 +

(
1 –

1
y

)
σ2y

1 + w2y
dB2

+ (k2 + x)
σ2y

1 + w2y
dB2 + y

σ1x
1 + w1x

dB1. (2.4)
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Integrating both sides of (2.3) from 0 to τk ∧ T yields

V
[
x(τk ∧ T), y(τk ∧ T)

] ≤ V
[
x(0), y(0)

]
+

∫ τk∧T

0
C2 ds + M1 + M2, (2.5)

where

M1 =
∫ τk∧T

0

(
1 –

1
x

+ y
)

σ1x
1 + w1x

dB1, M2 =
∫ τk∧T

0

(
1 –

1
y

+ k2 + x
)

σ2y
1 + w2y

dB2.

Taking expectations of both sides of (2.5) yields

E
[
V

(
x(τk ∧ T), y(τk ∧ T)

)] ≤V
[
x(0), y(0)

]
+ C2(τk ∧ T). (2.6)

Set �k = {τk ≤ T} for k ≥ k1 and by (2.2) P(�k) ≥ ε. Note that for every ω ∈ �k such
that x(τk ,ω) or y(τk ,ω) equals either k or 1

k , and hence V is no less than either k – ln k or
1
k + ln k. Consequently,

V
(
x(τk ,ω), y(τk ,ω)

) ≥ (k – ln k) ∧
(

1
k

+ ln k
)

.

It then follows from (2.6) that

V
(
x(0), y(0)

)
+ C2T ≥ E

[
1�k (ω)V

(
X(τk ,ω)

)]
≥ ε(k – ln k) ∧

(
1
k

+ ln k
)

,

where 1�k is the indicator function of �k . Letting k → ∞ leads to the contradiction

∞ > V
(
x(0), y(0)

)
+ C2T = ∞.

So we must have τ∞ = ∞. The conclusion is confirmed. �

Theorem 2.1 shows that the solutions to system (1.2) will remain in R2
+. The property

makes us continue to discuss how the solution varies in R2
+ in more detail. We first present

the definition of stochastic ultimate boundedness which is one of the important topics in
population dynamics.

Definition 2.1 ([32]) The solution X(t) = (x(t), y(t)) of Eq. (1.2) is said to be stochastically
ultimately bounded if for any ε ∈ (0, 1) there is a positive constant δ = δ(ε) such that, for
any initial value X(0) ∈ R2

+, the solution X(t) to (1.2) has the property that

lim sup
t→∞

P
{

X(t) > δ
}

< ε.

Theorem 2.2 The solutions of system (1.2) are stochastically ultimately bounded for any
initial value X(0) = (x(0), y(0)) ∈ R2

+.
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Proof From Theorem 2.1, the solution X(t) will remain in R2
+ for all t ≥ 0 with probabil-

ity 1. Let us define a C2-function V : R2
+ → R+ as follows:

V = x2 + y2 + (k2 + x)y2.

Applying Itô’s formula, we obtain

LV = 2x2
(

r1 – a1x –
b1xy

x2 + my2 –
f1

1 + w1x

)
+

σ 2
1 x2

(1 + w1x)2

+ 2y2
(

r2 –
b2y

k2 + x
–

f2

1 + w2y

)
+

σ 2
2 y2

(1 + w2y)2

+ (k2 + x)2y2
(

r2 –
b2y

k2 + x
–

f2

1 + w2y

)
+ (k2 + x)

σ 2
2 y2

(1 + w2y)2

+ xy2
(

r1 – a1x –
b1xy

x2 + my2 –
f1

1 + w1x

)

≤ –2a1x3 + 2r1x2 + σ 2
1 + 2r2y2 + σ 2

2 – 2b2y3 – a1x2y2

+ 2r2(k2 + x)y2 + (k2 + x)σ 2
2 + r1xy2.

Define the function

W = etV .

Applying Itô’s formula, we have

LW = et(V + LV )

≤ et(x2 + y2 + (k2 + x)y2 – 2a1x3 + 2r1x2 + σ 2
1 + 2r2y2 + σ 2

2

– 2b2y3 – a1x2y2 + 2r2(k2 + x)y2 + (k2 + x)σ 2
2 + r1xy2).

Similar to the proof of Eq. (2.3), there exists a constant C3 such that LW ≤ C3et . Therefore

dW ≤ C3et dt – et(2x + y2) σ1x
1 + w1x

dB1 – 2et(1 + k2 + x)y
σ2y

1 + w2y
dB2. (2.7)

Integrating and taking expectations of both sides of (2.7) from 0 to t, yields

E
(
et(x2 + y2 + (k2 + x)y2)) ≤ W (0) + C3

(
et – 1

)
,

i.e.,

E
(
x2 + y2 + (k2 + x)y2) ≤ W (0)e–t + C3

(
1 – e–t).

It is straightforward to see that

E2(|X|) < E
(
X2) = E

(
x2 + y2) ≤ E

(
x2 + y2 + (k2 + x)y2) ≤ W (0)e–t + C3

(
1 – e–t),

i.e., E(|X|) has an upper bound. To proceed, applying the Chebyshev inequality yields the
required assertion. �
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3 Stochastic permanence
Generally speaking, the non-explosion property, the existence, and the uniqueness of the
solution are not enough, but the property of permanence is more desirable since it means
the long time survival in population dynamics. Now, the definition of stochastic perma-
nence will be given below [32].

Definition 3.1 ([32]) The solution X(t) = (x(t), y(t)) of Eq. (1.2) is said to be stochastically
permanent if for any ε ∈ (0, 1) there exists a pair of positive constants δ = δ(ε) and γ = γ (ε)
such that, for any initial value X(0) = (x(0), y(0)) ∈ R2

+, the solution X(t) to (1.2) has the
properties that

lim
t→∞ inf P

{∣∣X(t)
∣∣ ≥ δ

} ≥ 1 – ε, lim
t→∞ inf P

{∣∣X(t)
∣∣ ≤ γ

} ≥ 1 – ε.

Theorem 3.1 If system (1.2) satisfies min{r1, r2}–max{b1 + f2, f1}– (θ+1) max{σ 2
1 ,σ 2

2 }
2 > 0, where

0 < θ < 2, for any initial value X(0) = (x(0), y(0)) ∈ R2
+ and the solution X(t) = (x(t), y(t)) has

the property

lim sup
t→∞

E
(

1
|X(t)|θ

)
< +∞.

Proof Define V (t) = x + y, then V (t) is continuous and positive on t ≥ 0. By Itô’s formula,
we get

dV =
[

x
(

r1 – a1x –
b1xy

x2 + my2 –
f1

1 + w1x

)
+ y

(
r2 –

b2y
k2 + x

–
f2

1 + w2y

)]
dt

–
σ1x

1 + w1x
dB1 –

σ2y
1 + w2y

dB2

and define U(t) = 1
V (t) . Then, using Itô’s formula, we obtain

dU =
(

–U2
[

x
(

r1 – a1x –
b1xy

x2 + my2 –
f1

1 + w1x

)
+ y

(
r2 –

b2y
k2 + x

–
f2

1 + w2y

)]

+ U3
(

σ 2
1 x2

(1 + w1x)2 +
σ 2

2 y2

(1 + w2y)2

))
dt + U2

(
σ1x dB1

1 + w1x
+

σ2y dB2

1 + w2y

)
.

Let W = (1 + U)θ . In view of Itô’s formula, we have

dW = LW dt + θ (1 + U)θ–1U2
(

σ1x dB1

1 + w1x
+

σ2y dB2

1 + w2y

)
,

where

LW = θ (1 + U)θ–1
(

–U2
[

x
(

r1 – a1x –
b1xy

x2 + my2 –
f1

1 + w1x

)

+ y
(

r2 –
b2y

k2 + x
–

f2

1 + w2y

)]

+ U3
(

σ 2
1 x2

(1 + w1x)2 +
σ 2

2 y2

(1 + w2y)2

))
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+
θ (θ – 1)

2
(1 + U)θ–2U4

(
σ 2

1 x2

(1 + w1x)2 +
σ 2

2 y2

(1 + w2y)2

)

= (1 + U)θ–2
(

θ (1 + U)
{

–U2
[

x
(

r1 – a1x –
b1xy

x2 + my2 –
f1

1 + w1x

)

+ y
(

r2 –
b2y

k2 + x
–

f2

1 + w2y

)]

+ U3
(

σ 2
1 x2

(1 + w1x)2 +
σ 2

2 y2

(1 + w2y)2

)}
+

θ (θ – 1)U4

2

(
σ 2

1 x2

(1 + w1x)2 +
σ 2

2 y2

(1 + w2y)2

))

≤ (1 + U)θ–2
(

θ (1 + U)
{

–U2
[

(r1x + r2y) + a1θx2U2 +
b1θx2yU2

x2 + my2 +
f1θxU2

1 + w1x

+
b2θy2U2

k2 + x
+

f2θyU2

1 + w2y

]}

+ max
{
σ 2

1 ,σ 2
2
}(

θU +
θ (θ + 1)

2
U2

))

≤ (1 + U)θ–2
(

–θ (U + 1)
(
min{r1, r2} – max{b1 + f2, f1}

)
U + θ

(
a1 +

b2

k2

)
(U + 1)

+
θ (θ + 1) max{σ 2

1 ,σ 2
2 }U2

2
+ max

{
σ 2

1 ,σ 2
2
}
θU

)
.

Then, applying Itô’s formula to ektW , where 0 < k < θ (min{r1, r2} – max{b1 + f2, f1} –
(θ+1) max{σ 2

1 ,σ 2
2 }

2 ), we have

L
(
ektW

)
= ektLW + kektW

≤ ekt(1 + U)θ–2
(

k(1 + U)2 – θ (U + 1)
(
min{r1, r2} – max{b1 + f2, f1}

)
U

+ θ

(
a1 +

b2

k2

)
(U + 1) +

θ (θ + 1) max{σ 2
1 ,σ 2

2 }U2

2
+ max

{
σ 2

1 ,σ 2
2
}
θU

)

= ekt(1 + U)θ–2
{[

–θ

(
min{r1, r2} – max{b1 + f2, f1}

–
(θ + 1) max{σ 2

1 ,σ 2
2 }

2

)
+ k

]
U2

+
[

2k – θ

(
min{r1, r2} – max{b1 + f2, f1} + max

{
σ 2

1 ,σ 2
2
}

+ a1 +
b2

k2

)]
U

+ k + θ

(
a1 +

b2

k2

)}
.

By 0 < k < θ (min{r1, r2} – max{b1 + f2, f1} – (θ+1) max{σ 2
1 ,σ 2

2 }
2 ) and 0 < θ < 2, it is straightfor-

ward to see that there exists a constant C4 such that L(ektW ) ≤ C4ekt . Then

E
[
ekt(1 + U)θ

] ≤ (
1 + U(0)

)θ +
C4

k
ekt ,

i.e.,

lim sup
t→∞

E
(
Uθ

) ≤ lim sup
t→∞

E(1 + U)θ ≤ C4

k
.
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Note that (x + y)θ ≤ 2θ (x2 + y2) θ
2 = 2θ |X|θ , where X = (x, y) ∈ R2

+. Consequently,

lim sup
t→∞

E
(

1
|X|θ

)
≤ 2θ C4

k
.

The proof is completed. �

Theorem 3.2 If system (1.2) satisfies min{r1, r2}–max{b1 + f2, f1}– (θ+1) max{σ 2
1 ,σ 2

2 }
2 > 0, where

0 < θ < 2, then Eq. (1.2) is stochastically permanent.

The proof is the application of the well-known Chebyshev inequality, Theorems 2.2
and 3.1. Here it is omitted.

4 Stochastic persistence in the mean and extinction
Let us continue to discuss the long time behavior of stochastic model (1.2). From the point
of view of the optimal management of renewable resources, how much can we harvest
without dangerously altering the harvested population? On the other hand, how much
will larger harvest rate lead to the depletion of the population? In this section, we will
show that stochastic system (1.2) may preserve some important dynamics of the origi-
nal deterministic system without harvesting terms when the intensities of noises and the
catchability coefficient are small. On the contrary, if the catchability coefficient is suffi-
ciently large, the populations will become extinct with probability one. Now, we present
the definition of persistence in the mean and extinction.

Definition 4.1 ([33]) System (1.2) is said to be persistent in the mean if

lim inf
t→∞

1
t

∫ t

0
x(s) ds > 0 a.s., lim inf

t→∞
1
t

∫ t

0
y(s) ds > 0 a.s.

Definition 4.2 ([33]) The population x(t) is said to go to extinction if

lim
t→∞ x(t) = 0 a.s.

Lemma 4.1 Assume that (x(t), y(t)) is the positive solution of Eq. (1.2) with the initial value
(x(0), y(0)). If r1 > b1

2
√

m + f1 + σ 2
1
2 , then we have

lim
t→∞

ln x(t)
t

≥ 0 a.s.

Proof Applying Itô’s formula to Eq. (1.2), we can see

1
x(t)

=
1

x(0)
e

–r1t+
∫ t

0
b1xy

x2+my2 + f1
1+w1x

σ2
1

2(1+w1x)2
ds+

∫ t
0

σ1
1+w1x dB1

+ a1e
–r1t+

∫ t
0

b1xy
x2+my2 + f1

1+w1x
σ2

1
2(1+w1x)2

ds+
∫ t

0
σ1

1+w1x dB1

×
∫ t

0
e

r1s–
∫ s

0
b1xy

x2+my2 + f1
1+w1x

σ2
1

2(1+w1x)2
dτ–

∫ s
0

σ1
1+w1x dB1 ds

:= I1 + I2.
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By computation, we get

I1 =
1

x(0)
e

–r1t+
∫ t

0
b1xy

x2+my2 + f1
1+w1x

σ2
1

2(1+w1x)2
ds+

∫ t
0

σ1
1+w1x dB1

≤ 1
x(0)

e–(r1– b1
2
√

m –f1–
σ2

1
2 )t+2σ1 max0<s<t |B1(s)|,

and

I2 = a1e
–r1t+

∫ t
0

b1xy
x2+my2 + f1

1+w1x
σ2

1
2(1+w1x)2

ds+
∫ t

0
σ1

1+w1x dB1

×
∫ t

0
e

r1s–
∫ s

0
b1xy

x2+my2 + f1
1+w1x

σ2
1

2(1+w1x)2
dτ–

∫ s
0

σ1
1+w1x dB1 ds

≤
∫ t

0
a1e–r1(t–s)+( b1

2
√

m +f1+
σ2

1
2 )(t–s)+2σ1 max0<s<t |B1(s)| ds

≤ a1e2σ1 max0<s<t |B1(s)|

r1 – b1
2
√

m – f1 – σ 2
1
2

.

Similar to the proof of [33] (Theorem 3.1), we obtain

lim
t→∞

ln x(t)
t

≥ 0 a.s.

The proof is completed. �

Next, we consider the following stochastic model:

{
d
(t) = 
(t)(r1 – a1
(t)) dt – σ1
(t)

1+w1
(t) dB1(t),
d�(t) = �(t)(r2 – b2�(t)

k2+
(t) ) dt – σ2�(t)
1+w2�(t) dB2(t).

(4.1)

Lemma 4.2 Assume that (
,�) is the solution of system (4.1) with any initial value 
(0) =
x(0) > 0, �(0) = y(0) > 0. Then we have

lim sup
t→∞

ln�(t)
t

≤ 0 a.s., lim
t→∞

ln
(t)
t

= 0 a.s.

Moreover, if r1 > σ 2
1
2 is satisfied, then 
(t) is persistent in the mean a.s.

Proof By the first equation of (4.1), we represent the solution. And there exists a constant
T such that 1 – e–r1t ≥ 1

2 for t ≥ T . Then


(t) =
e

r1t–
∫ t

0
σ2

1
2(1+w1
)2

ds–
∫ t

0
σ1

1+w1

dB1

1
x(0) + a1

∫ t
0 e

r1s–
∫ s

0
σ2

1
2(1+w1
)2

ds–
∫ s

0
σ1

1+w1

dB1 ds

≤ e
r1t–

∫ t
0

σ2
1

2(1+w1
)2
ds–

∫ t
0

σ1
1+w1


dB1

a1
∫ t

0 e
r1s–

∫ s
0

σ2
1

2(1+w1
)2
dτ–

∫ s
0

σ1
1+w1


dB1 ds
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≤ 1

a1
∫ t

0 e
–r1(t–s)+

∫ t
s

σ2
1

2(1+w1
)2
dτ+

∫ t
s

σ1
1+w1


dB1 ds

≤ 1
a1

∫ t
0 e–r1(t–s)–2σ1 max0<s<t |B1(s)| ds

≤2r1e2σ1 max0<s<t |B1|

a1
.

Similar to the proof of [33], we obtain

lim sup
t→∞

ln�(t)
t

≤ 0 a.s.

On the other hand,

1

(t)

= e
–r1t+

∫ t
0

σ2
1

2(1+w1
)2
ds+

∫ t
0

σ1
1+w1


dB1
(

1
x(0)

+ a1

∫ t

0
e

r1s–
∫ s

0
σ2

1
2(1+w1
)2

dτ–
∫ s

0
σ1

1+w1

dB1 ds

)

=
1

x(0)
e

–r1t+
∫ t

0
σ2

1
2(1+w1
)2

ds+
∫ t

0
σ1

1+w1

dB1 + a1

∫ t

0
e

–r1(t–s)+
∫ t

s
σ2

1
2(1+w1
)2

dτ+
∫ t

s
σ1

1+w1

dB1 ds

≤ e2σ1 max0<s<t |B1(s)|
(

1
x(0)

e
–r1t+

∫ t
0

σ2
1

2(1+w1
)2
ds

+ a1

∫ t

0
e

–r1(t–s)+
∫ t

s
σ2

1
2(1+w1
)2

dτ
)

.

Similarly, we obtain

1

(t)

≥ e–2σ1 max0<s<t |B1(s)|
(

1
x(0)

e
–r1t+

∫ t
0

σ2
1

2(1+w1
)2
ds

+ a1

∫ t

0
e

–r1(t–s)+
∫ t

s
σ2

1
2(1+w1
)2

dτ
)

.

Similar to the proof of [33], we obtain

lim
t→∞

ln
(t)
t

= 0 a.s.,

lim
t→∞

1
t

∫ t

0

(s) ds ≥ r1 –

σ 2
1

2
a.s.

The proof is completed. �

Theorem 4.1 Suppose f1 < r1 – b1
2
√

m – σ 2
1
2 , f2 < r2 – σ 2

2
2 are satisfied, and x(t), y(t) is the

positive solution to Eq. (1.2) with initial value x(0) > 0, y(0) > 0, then the system is persistent
in the mean.

Proof By comparison theorem for stochastic differential equation, Lemma 4.1 and
Lemma 4.2, one can see that

x(t) ≤ 
(t), y(t) ≤ �(t), lim
t→∞

ln x(t)
t

= 0 a.s., lim
t→∞

ln y(t)
t

= 0 a.s.
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Applying Itô’s formula to Eq. (1.2), we have

d ln x =
(

r1 – a1x –
b1xy

x2 + my2 –
f1

1 + w1x
–

σ 2
1

2(1 + w1x)2

)
dt –

σ1

1 + w1x
dB1

≥
(

r1 –
b1

2
√

m
– f1 –

σ 2
1

2
– a1x

)
dt –

σ1

1 + w1x
dB1.

Integrating both sides from 0 to t, one can see that

ln
x(t)
x(0)

≥
(

r1 –
b1

2
√

m
– f1 –

σ 2
1

2

)
t –

∫ t

0
a1x(s) ds – M3(t),

where M3(t) =
∫ t

0
σ1

1+w1x dB1(s). Note that M3(t) is a local martingale, whose quadratic vari-

ation is 〈M3(t), M3(t)〉 =
∫ t

0
σ 2

1
(1+w1x)2 ds ≤ σ 2

1 t. Applying the strong law of large numbers to

local martingales leads to limt→∞ M3(t)
t = 0 a.s. By f1 < r1 – b1

2
√

m – σ 2
1
2 , one can get that

lim
t→∞

∫ t
0 x(s) ds

t
≥

r1 – b1
2
√

m – f1 – σ 2
1
2

a1
> 0 a.s.

Analogously, we have

lim
t→∞

∫ t
0

y(s)
k2

ds
t

≥ lim
t→∞

∫ t
0

y(s)
k2+x(s) ds

t
=

r2 – f2 – σ 2
2
2

b2
> 0 a.s.

The proof is completed. �

Theorem 4.2 Suppose x(t), y(t) is the positive solution to Eq. (1.2) with initial value x(0) >
0, y(0) > 0, then:

(i) If r1 < 2
√

a1f1
w1

– a1
w1

, r2 > f2 + σ 2
2
2 , then x is extinct and y is persistent in the mean a.s.

(ii) If r1 < 2
√

a1f1
w1

– a1
w1

, r2 < 2
√

b2f2
k2w2

– b2
k2w2

, then both the populations x and y are extinct
a.s.

Proof (i) Define Lyapunov functions ln x, by Itô’s formula, one can see that

ln x(t) – ln x(0) =
∫ t

0

(
r1 – a1x –

b1xy
x2 + my2 –

f1

1 + w1x
–

σ 2
1

2(1 + w1x)2

)
ds

–
∫ t

0

σ1

1 + w1x
dB1

≤
∫ t

0

(
r1 –

a1(1 + w1x – 1)
w1

–
f1

1 + w1x

)
ds –

∫ t

0

σ1

1 + w1x
dB1

=
∫ t

0

(
r1 –

a1

w1
(1 + w1x) –

f1

1 + w1x
+

a1

w1

)
ds –

∫ t

0

σ1

1 + w1x
dB1.

Integrating both sides from 0 to t and dividing by t, one can see that

lim
t→∞

ln x(t)
t

≤ r1 – 2

√
a1f1

w1
+

a1

w1
< 0 a.s., that is, lim

t→∞ x(t) = 0 a.s.
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Hence, for arbitrary small ε > 0, there exist t0 and a set �ε such that P(�ε) ≥ 1 – ε and
x(t)

k2+x(t) ≤ ε for t ≥ t0 and ω ∈ �ε . Thus, for the equation

dy = y
(

r2 –
b2y

k2 + x
–

f2

1 + w2y

)
dt –

σ2y
1 + w2y

dB2(t)

= y
(

r2 –
b2y
k2

+
b2xy

(k2 + x)k2
–

f2

1 + w2y

)
dt –

σ2y
1 + w2y

dB2(t),

one can see that

y
(

r2 –
b2y
k2

–
f2

1 + w2y

)
dt –

σ2y
1 + w2y

dB2(t)

≤ dy ≤ y
(

r2 –
b2y
k2

+
εb2y

k2
–

f2

1 + w2y

)
dt –

σ2y
1 + w2y

dB2(t).

For the arbitrary of ε > 0, we have

dy = y
(

r2 –
b2y
k2

–
f2

1 + w2y

)
dt –

σ2y
1 + w2y

dB2(t). (4.2)

According to Theorem 4.1, it is easy to see that

lim
t→∞

ln y(t)
t

≥ k2(r2 – f2 – σ 2
2
2 )

b2
> 0 a.s.

(ii) Applying Itô’s formula to Eq. (4.2), one can get that

d ln y =
(

r2 –
b2y
k2

–
f2

1 + w2y
–

σ 2
2

2(1 + w2y)2

)
dt –

σ2

1 + w2y
dB2.

Similarly, this yields

lim
t→∞

ln y(t)
t

≤ r2 – 2

√
b2f2

k2w2
+

b2

k2w2
< 0 a.s.

The proof is completed. �

5 A sufficient condition for stationary distribution
In this section, we prove the existence of stationary distribution of the prey and predator
populations. The stationary solution means that it is a stationary Markov process which
shows that the prey and predator can be persistent and will not die out in the population.
For this purpose, we find the stationary distribution for solutions of system (1.2), which
in turn imply the stability in stochastic sense. Before proving the main theorem related
to the stationary distribution, we state a useful lemma from [30] which will be useful to
prove the theorem.

Let X(t) be a homogeneous Markov process defined in the l dimensional Euclidean
space, denoted by El and described by the following system of stochastic differential equa-
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tions:

dX(t) = b(X) dt +
k∑

s=1

gs(X) dBs(t). (5.1)

Definition 5.1 ([15, 34]) Denote by Pγ the corresponding probability distribution of an
initial distribution γ , which describes the initial state of model (5.1) at t = 0. Suppose that
the distribution of X(t) with initial distribution γ converges in some sense to a distribution
π = πγ (a priori π may depend on the initial distribution γ ), i.e.,

lim
t→∞ Pγ

{
X(t) ∈ F

}
= π (F)

for all measurable F , then we say that model (5.1) has a stationary distribution π (·).

The diffusion matrix is defined by [30],

A(x) =
(
aij(x)

)
, aij(x) =

k∑
s=1

gi
s(x)gj

s(x).

We assume that there exists a bounded domain U ⊂ El with regular boundary 
, bearing
the following properties:

(P1) In the domain U and some neighborhood thereof, the smallest eigenvalue of the
diffusion matrix A(x) is bounded away from zero.

(P2) If x ∈ El \ U , the mean time τ at which a path emerging from x reaches the set U is
finite, and supx∈K Exτ < ∞ for every compact subset K ⊂ El .

Lemma 5.1 If assumptions (P1) and (P2) above hold, then the Markov process X(t) has a
stationary distribution μ(·). Let f (·) be a function integrable with respect to the measure
μ(·). Then

Px

{
lim

T→∞
1
T

∫ T

0
f
(
X(t)

)
dt =

∫
El

f (x)μ(dx)
}

= 1 for all x ∈ El.

To validate (P1), it is sufficient to prove that L is uniformly elliptical in U , where LV =
b(X)VX + trA(X)VXX

2 , i.e., there is a positive number G such that

l∑
i,j=1

aij(x)ξiξj ≥ G|ξ |2 for all x ∈ U , ξ ∈ Rl.

To validate (P2), it is enough to show that there exist some neighborhood U and a non-
negative C2-function V such that, for any x ∈ El \ U , LV (x) is negative.

Theorem 5.1 Assume f1 < r1 – σ 2
1 – b1

2
√

m , f2 < r2 – σ 2
2 . Then, for any initial value (x0, y0) ∈

R2
+, there exists a unique stationary distribution μ(·) for system (1.2), and it has ergodic

property.
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Proof We have known that for any initial value (x(0), y(0)) ∈ R2
+, there is a unique solution

(x(t), y(t)) ∈ R2
+. Define a C2-function V : R2

+ → R+ as

V =
1
x

+
1
y

+ ln x + ln y + x + (k2 + x)y.

By Itô’s formula one may calculate the operator LV

LV = –
1
x

(
r1 – a1x –

b1xy
x2 + my2 –

f1

1 + w1x
–

σ 2
1

(1 + w1x)2

)

–
1
y

(
r2 –

b2y
k2 + x

–
f2

1 + w2y
–

σ 2
2

(1 + w2y)2

)

+
(

r1 – a1x –
b1xy

x2 + my2 –
f1

1 + w1x
–

σ 2
1

2(1 + w1x)2

)

+
(

r2 –
b2y

k2 + x
–

f2

1 + w2y
–

σ 2
2

2(1 + w2y)2

)

+ x
(

r1 – a1x –
b1xy

x2 + my2 –
f1

1 + w1x

)
+ (k2 + x)y

(
r2 –

b2y
k2 + x

–
f2

1 + w2y

)

+ xy
(

r1 – a1x –
b1xy

x2 + my2 –
f1

1 + w1x

)

≤ –
r1 – f1 – σ 2

1 – b1
2
√

m

x
+ a1 –

r2 – f2 – σ 2
2

y
+

b2

k2

+ r1 + r2 – a1x2 + r1x – b2y2 – a1x2y + (r1 + r2)xy + r2k2y

≤ –
r1 – f1 – σ 2

1 – b1
2
√

m

x
–

r2 – f2 – σ 2
2

y
–

a1x2

2
–

b2y2

2
+ C5.

In fact, according to the proof of Eq. (2.3), there exists C5 > 0 such that

–
a1x2

2
+ r1x –

b2y2

2
– a1x2y + a1 +

b2

k2
+ r1 + r2 + (r1 + r2)xy + r2k2y ≤ C5.

To confirm the condition (P2) of Lemma 5.1, we consider the bounded open subset
Uε1,2 = {(x, y) ∈ R2

+|ε1 < x < 1
ε1

, ε2 < y < 1
ε2

}, where 0 < εi < 1 (i = 1, 2) is a sufficiently small
number. In the set UC

ε1,2 = R2
+ \ Uε1,2 , let us choose sufficiently small εi (i = 1, 2) such that

ε1 < min

{ r1 – f1 – σ 2
1 – b1

2
√

m

1 + C5
,
√

a1

2(1 + C5)

}
, ε2 < min

{
r2 – f2 – σ 2

2
C5 + 1

,

√
b2

2(C5 + 1)

}
.

For convenience, we divide UC
ε1,2 into four domains

U1 =
{

(x, y) ∈ R2
+|0 < x ≤ ε1

}
, U2 =

{
(x, y) ∈ R2

+|0 < y ≤ ε2
}

,

U3 =
{

(x, y) ∈ R2
+

∣∣∣x ≥ 1
ε1

}
, U4 =

{
(x, y) ∈ R2

+

∣∣∣ε1 ≤ x ≤ 1
ε1

, y ≥ 1
ε2

}
.

Clearly, UC
ε1,2 = U1 ∪ U2 ∪ U3 ∪ U4. Next, we will prove LV ≤ –1 for any (x, y) ∈ UC

ε1,2 .
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Case 1. On domain U1, we get

LV ≤ –
r1 – f1 – σ 2

1 – b1
2
√

m

x
–

r2 – f2 – σ 2
2

y
–

a1x2

2
–

b2y2

2
+ C5

≤ –
r1 – f1 – σ 2

1 – b1
2
√

m

ε1
+ C5

≤ –1.

Case 2. On domain U2, one can see that

LV ≤ –
r1 – f1 – σ 2

1 – b1
2
√

m

x
–

r2 – f2 – σ 2
2

y
–

a1x2

2
–

b2y2

2
+ C5

≤ –
r2 – f2 – σ 2

2
ε2

+ C5

≤ –1.

Case 3. On domain U3 it yields

LV ≤ –
r1 – f1 – σ 2

1 – b1
2
√

m

x
–

r2 – f2 – σ 2
2

y
–

a1x2

2
–

b2y2

2
+ C5

≤ –
a1ε

–2
1

2
+ C5

≤ –1.

Case 4. On domain U4, one can get that

LV ≤ –
r1 – f1 – σ 2

1 – b1
2
√

m

x
–

r2 – f2 – σ 2
2

y
–

a1x2

2
–

b2y2

2
+ C5

≤ –
b2ε

–2
2

2
+ C5

≤ –1.

Consequently,

LV (x, y) ≤ –1 for ∀(x, y) ∈ UC
ε1,2 ,

that is, the condition (P2) holds.
On the other hand, we take U1 to be a neighborhood of Uε1,2 with U1 ⊆ R2

+. There is

M′ = min
(x,y)∈U1

{
σ 2

1 x2

(1 + w1x)2 ,
σ 2

2 y2

(1 + w2y)2

}
> 0

such that

2∑
i,j=1

aij(x, y)ξiξj =
σ 2

1 x2

(1 + w1x)2 ξ 2
1 +

σ 2
2 y2

(1 + w2y)2 ξ 2
2 ≥ M′‖ξ‖
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for all (x, y) ∈ U1, ξ = (ξ1, ξ2) ∈ R2
+, which means that the condition (P1) of Lemma 5.1 is

satisfied. Therefore, according to Lemma 5.1, we know that the system is ergodic and pos-
itive recurrent. And system (1.2) has a unique stationary distribution μ(·). The conclusion
is confirmed. �

6 The existence of periodic solution of non-autonomous system
In what follows, we first recall a basic definition and introduce a lemma which gives criteria
for the existence of a periodic Markov process (see Khasminskii [30]).

Definition 6.1 ([30]) A stochastic process ξ (t) = ξ (t,ω) (–∞ < t < +∞) is said to be T-
periodic if for every finite sequence of numbers t1, t2, . . . , tn, the joint distribution of ran-
dom variables ξ (t1 +h), ξ (t2 +h), . . . , ξ (tn +h) is independent of h, where h = kT (k = 1, 2, . . .).

Consider the integral equation

X(t) = X(t0) +
∫ t

t0

b
(
s, X(s)

)
ds +

k∑
r=1

∫ t

t0

σr
(
s, X(s)

)
dξr(s), (6.1)

where b(s, x), σi(s, x) (i = 1, 2, . . . , k) (s ∈ [t0, T], x ∈ Rl) are continuous functions of (s, x)
and for some constant B, the following conditions hold:

∣∣b(s, x) – b(s, y)
∣∣ +

k∑
r=1

∣∣σr(s, x),σr(s, y)
∣∣ ≤ B|x – y|,

∣∣b(s, x)
∣∣ +

k∑
r=1

∣∣σr(s, x)
∣∣ ≤ B

(
1 + |x|).

(6.2)

Lemma 6.1 ([30]) Suppose that the coefficients of (6.1) are T-periodic in t and satisfy con-
ditions (6.2) in every cylinder I × U , and assume further there exists a function V (t, x) ∈ C2

which is T-periodic in t and satisfies:
(Q1) inf|x|>R V (t, x) → ∞,
(Q2) LV (t, x) ≤ –1 outside some compact set.

Then system (6.1) has at least a T-periodic Markov process.

Theorem 6.1 If 〈r1(t) – f1(t) – σ 2
1 (t) – b1(t)

2
√

m(t) 〉T > 0, 〈r2(t) – f2(t) – σ 2
2 (t)〉T > 0, then system

(1.3) has one positive T-periodic solution.

Proof By the same way as in Theorem 2.1 one can see that, for any initial (x, y) ∈ R2
+, system

(1.3) has a unique global positive solution (x, y) ∈ R2
+, we only need to verify the conditions

(Q1), (Q2) of Lemma 6.1.
Define a C2,1-function V (x, y, t) : R2

+ × R+ → R+ as follows:

V (x, y, t) =
eθ1(t)

x1
+

eθ2(t)

x2
+ ln x + ln y + x +

(
k2(t) + x

)
y,
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where

θ ′
1(t) = r1(t) – f1(t) – σ 2

1 (t) –
b1(t)

2
√

m(t)
–

〈
r1(t) – f1(t) – σ 2

1 (t) –
b1(t)

2
√

m(t)

〉
T

,

θ ′
2(t) = r2(t) – f2(t) – σ 2

2 (t) –
〈
r2(t) – f2(t) – σ 2

2 (t)
〉
T .

It is easy to show that θ1(t), θ2(t) are both T-periodic functions. Moreover,

lim inf
k→∞,(x,y)∈R2

+\Dk
V (x, y, t) → +∞,

where Dk = ( 1
k , k) × ( 1

k , k), which shows that (Q1) in Lemma 6.1 holds. Applying Itô’s for-
mula, we calculate

LV =
eθ1(t)θ ′

1(t)
x

–
eθ1(t)

x

(
r1(t) – a1(t)x –

b1(t)xy
x2 + m(t)y2 –

f1(t)
1 + w1(t)x

–
σ 2

1 (t)
(1 + w1(t)x)2

)

+
eθ2(t)θ ′

2(t)
y

–
eθ2(t)

y

(
r2(t) –

b2(t)y
k2(t) + x

–
f2(t)

1 + w2(t)y
–

σ 2
2 (t)

(1 + w2(t)y)2

)

+
(

r1(t) – a1(t)x –
b1(t)xy

x2 + m(t)y2 –
f1(t)

1 + w1(t)x
–

σ 2
1 (t)

2(1 + w1(t)x)2

)

+
(

r2(t) –
b2(t)y

k2(t) + x
–

f2(t)
1 + w2(t)y

–
σ2(t)2

2(1 + w2(2)y)2

)

+ x
(

r1(t) – a1(t)x –
b1(t)xy

x2 + m(t)y2 –
f1(t)

1 + w1(t)x

)

+
(
k2(t) + x

)
y
(

r2(t) –
b2(t)y

k2(t) + x
–

f2(t)
1 + w2(t)y

)

+ xy
(

r1(t) – a1(t)x –
b1(t)xy

x2 + m(t)y2 –
f1(t)

1 + w1(t)x

)

≤ –
eθ1(t)

x

(
r1(t) – f1(t) – σ 2

1 (t) –
b1(t)

2
√

m(t)
– θ ′

1(t)
)

+ a1eθ1(t) –
eθ2(t)

y
(
r2(t) – f2(t) – σ 2

2 (t) – θ ′
2(t)

)

+
b2

k2
eθ (t) + r1(t) + r2(t) – a1(t)x2 + r1(t)x – b2(t)y2

+
(
r1(t) + r2(t)

)
xy + r2(t)k2(t)y – a1(t)x2y

≤ –
eθ1(t)〈r1(t) – f1(t) – b1(t)

2
√

m(t) – σ 2
1 (t)〉T

x
–

eθ2(t)〈r2(t) – f2(t) – σ 2
2 (t)〉T

y

–
a1(t)x2

2
–

b2(t)y2

2
+ C6.

According to the proof of Eq. (2.3), there exists C6 > 0 such that

a1eθ1(t) +
b2

k2
eθ (t) + r1(t) + r2(t) –

a1(t)x2

2
+ r1(t)x –

b2(t)y2

2

+
(
r1(t) + r2(t)

)
xy + r2(t)k2(t)y – a1(t)x2y ≤ C6.
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Consider the bounded open subset

Dε1,2 =
{

(x, y)
∣∣∣ε1 < x <

1
ε1

, ε2 < y <
1
ε2

}
,

where 0 < εi < 1 is a sufficiently small number. In the set DC
ε1,2 = R2

+ \ Dε1,2 , let us choose
sufficiently small εi such that

ε1 ≤ min

{(eθ1(t)〈r1(t) – f1(t) – b1(t)
2
√

m(t) – σ 2
1 (t)〉T

C6 + 1

)l

,
(√

a1

2(C6 + 1)

)l}
,

ε2 ≤ min

{(
eθ2(t)〈r2(t) – f2(t) – σ 2

2 (t)〉T

C6 + 1

)l

,
(√

b2

2(C6 + 1)

)l}
.

For convenience, we divide DC
ε1,2 into four domains:

D1 =
{

(x, y) ∈ R2
+|0 < x ≤ ε1

}
, D2 =

{
(x, y) ∈ R2

+|0 < y ≤ ε2
}

,

D3 =
{

(x, y) ∈ R2
+

∣∣∣x ≥ 1
ε1

}
, D4 =

{
(x, y) ∈ R2

+

∣∣∣ε1 ≤ x ≤ 1
ε1

, y ≥ 1
ε2

}
.

Clearly, DC
ε1,2 = D1 ∪ D2 ∪ D3 ∪ D4. Similar to the proof of Theorem 5.1, we obtain that

LV (x, y, t) ≤ –1 for any (x, y, t) ∈ DC
ε1,2 × R+. By Lemma 6.1, periodic system (1.3) has a

periodic solution. The result is confirmed. �

7 Numerical simulations and conclusion
In this paper, we have considered the basic features of a ratio-dependent predator–prey
model with Holling III type functional response and nonlinear harvesting in presence
of white noise terms to understand the dynamics in presence of environmental driv-
ing forces. Although we are considering a predator–prey model, the survival of preda-
tor species in absence of the prey population is justified as we have assumed that the
predators have alternative food source and their growth follows the logistic growth law.
For the autonomous system, we have established the existence of positive global solu-
tion of the stochastic model. Moreover, we show that the positive solutions are stochas-
tically bounded. The sufficient conditions for stochastic permanence, stochastic persis-
tence in the mean, and extinction are established. Then, by constructing some suitable
Lyapunov function, the existence of stationary distribution for both populations is es-
tablished under certain parametric restrictions. These parametric restrictions reflect the
idea that large amplitude environmental noise can destabilize the system, and in that sit-
uation one cannot find any stationary distribution. The result shows that stationary dis-
tribution does not rely on the existence and the stability of the positive equilibrium in
the deterministic system. There is a periodic phenomenon in a non-autonomous peri-
odic system: when 〈r1(t) – f1(t) – σ 2

1 (t) – b1(t)
2
√

m(t) 〉T > 0, 〈r2(t) – f2(t) – σ 2
2 (t)〉T > 0 hold,

it follows from Theorem 6.1 that there exists at least one T-periodic solution, which
means that the two species of prey and predator will coexist and exhibit periodicity in
the long run. Obtained analytical results are verified with supportive numerical simula-
tions.
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Figure 1 The left is density function diagrams of system (1.2); the right is the solutions of stochastic system
(1.2) and its corresponding deterministic system (1.1) with initial value (x(0), y(0)) = (4.5, 9). The parameters are
taken as Eq. (7.1) and σ1 = 0.02, σ2 = 0.02, f1 = 0.06, f2 = 0.06

For numerical simulations of the stochastic model (1.2), we choose the parameters as

r1 = 0.5, a1 = 0.1, b1 = 0.1, m = 4, w1 =
1
6

, r2 = 0.5,

b2 = 0.5, k2 = 5, and w2 =
1
6

.
(7.1)

Then we take account of the white noise and the catchability coefficient which have
effects on the prey and predator populations. The numerical scheme obtained through
Milstein’s method applied to the stochastic model under consideration is given by

⎧⎨
⎩

xi+1 = xi + xi[r1 – a1xi – b1xiyi
x2

i +my2
i

– f1
1+w1xi

]�t – σ1xi
1+w1xi

√
�tξi + σ 2

1 xi
2(1+w1xi)2 (ξ 2

i – 1)�t,

yi+1 = yi + yi[r2 – b2yi
k2+xi

– f2
1+w2yi

]�t – σ2yi
1+w2yi

√
�tηi + σ 2

2 yi
2(1+w2yi)2 (η2

i – 1)�t,

where ξi and ηi (i = 1, 2, . . . , n) are independent Gaussian random variables which follow
N(0, 1) [35].

We start our numerical simulation with environmental forcing intensities σ1 = 0.02,
σ2 = 0.02, catchability coefficient f1 = 0.06, f2 = 0.06 and starting from the initial point
(4.5, 9). It is easy to verify that all conditions in Theorems 3.1, 4.1, and 5.1 hold, and SDE
model (1.2) is stochastic permanence, persistence in the mean and existence of station-
ary distribution. Results of one simulation run are reported in Fig. 1. We observe that,
after some initial transients, the population densities fluctuate around the deterministic
steady-state values 4.55 and 9.08, respectively. The stationary distribution of the prey and
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Figure 2 The left is density function diagrams of system (1.2); the right is the solutions of stochastic system
(1.2) and its corresponding deterministic system (1.1) with initial value (x(0), y(0)) = (4.5, 9). The parameters are
taken as Eq. (7.1) and σ1 = σ2 = 0.2, f1 = f2 = 0.06

Figure 3 Numerical simulation for system (1.1) and (1.2) with initial value (x(0), y(0)) = (4.5, 9). The parameters
are taken as Eq. (7.1) and σ1 = σ2 = 0.2, f1 = f2 = 0.6 shows that both prey and predator populations go to
extinction

predator population is also provided in Fig. 1. From stationary distribution of two popula-
tions, it is clear that they are distributed normally around the mean values 4.55 and 9.08,
respectively.

Next we increase strengths of environmental forcing to σ1 = 0.2, σ2 = 0.2, and the catcha-
bility coefficient does not change. It is easy to verify that parameter values chosen above are
consistent with the conditions required for Theorems 3.1, 4.1, and 5.1. We know that there
is a unique stationary distribution and again we observe that the population distribution
fluctuates around the deterministic steady-state value, but the amplitude of fluctuation is
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Figure 4 The left is a sample phase portrait of system (1.3); middle and right are the solutions of stochastic
system (1.3) with initial value (x(0), y(0)) = (4.5, 9). The parameters are taken as Eq. (7.2) and σ1 = σ2 = 0

Figure 5 The left is a sample phase portrait of system (1.3); middle and right are the solutions of stochastic
system (1.3) with initial value (x(0), y(0)) = (4.5, 9). The parameters are taken as Eq. (7.2) and
σ1 = σ2 = 0.001 + 0.0001 sin(t)

more compared to the earlier case. This fluctuation is also reflected at the stationary dis-
tribution as the prey population is distributed within (2, 7) and the predator population
within the range (6, 12) (see Fig. 2). From Figs. 1 and 2, we conclude that, as the noise
intensity decreases, the variability of the stochastic model decreases and approaches the
deterministic model dynamics.

If we choose σ1 = 0.2, σ2 = 0.2, f1 = 0.6, and f2 = 0.6, then the second condition of The-
orem 4.2 will be satisfied. As a result, the prey as well as the predator population go to
extinction (see Fig. 3). It tell us that overharvesting will lead to the depletion of the popu-
lation.

For numerical simulations of the stochastic model (1.3), we choose the parameters as
follows:

r1 = 0.5 + 0.002 sin(t), a1 = 0.1 + 0.002 sin(t), b1 = 0.1 + 0.002 sin(t),

m = 4 + 0.002 sin(t), w1 =
1
6

+ 0.002 sin(t), r2 = 0.5 + 0.002 sin(t),

b2 = 0.5 + 0.002 sin(t), k2 = 5 + 0.002 sin(t), w2 =
1
6

+ 0.002 sin(t),

f1 = 0.06 + 0.002 sin(t), f2 = 0.06 + 0.002 sin(t),

(7.2)

and the initial values are taken as (4.5, 9). Then we use different values of σ1, σ2 in order to
understand the role of the noise strength on the resulting dynamics for system (1.3). We
start our numerical simulation with two different noise intensities:

(i) σ1 = 0, σ2 = 0; (ii) σ1 = 0.001 + 0.0001 sin(t), σ2 = 0.001 + 0.0001 sin(t). It is easy to ver-
ify that all conditions in Theorems 4.1 and 6.1 hold, and SDE model (1.3) is stochastically
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persistent in the mean and has a periodic solution. Results of one simulation run are re-
ported in Figs. 4 and 5. One can see that, for any positive initial value, the solution of the
deterministic system will enter the periodic orbit after a period of time, and the solution
of the stochastic system is fluctuating in a small neighborhood of the periodic orbit when
the noise intensity is small.

Results of simulations run reveal that the forcing intensity of fluctuating environment
and catchability play a crucial role behind the survival of prey and predator species.
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