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Abstract
This article presents the bifurcation and chaos phenomenon of the three-dimensional
generalized Hénon map. We establish the existence and stability conditions for the
fixed points of the system. According to the center manifold theorem and bifurcation
theory, we get the existence conditions for fold bifurcation, flip bifurcation, and
Naimark–Sacker bifurcation of the system. Finally, the bifurcation diagrams, Lyapunov
exponents, phase portraits are carried out to illustrate these theoretical results.
Furthermore, as parameter varies, new interesting dynamics behaviors, including from
stable fixed point to attracting invariant cycle and to chaos, from periodic-10 to chaos,
etc., are observed from the numerical simulations. In particular, we find the
double-cycle phenomenon from bifurcation diagrams and phase portraits.
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1 Introduction
Classic Hénon map is a two-dimensional discrete time system. It was first defined in [1]
via constant Jacobian determinant. Since the late 1970s, the Hénon map has attracted
considerable attention of investigators and has been widely studied. The Hénon map has
a wide range of applications in many areas, there are more and more researchers [2–5] to
study the Hénon map. Besides, many sophisticated algorithms have been developed on the
basis of the Hénon map recently. In paper [6], the Hénon map is used in image encryption,
and its encryption speed is faster than other image encryption schemes. Alligood and
Sauer [7] explored the specific properties of periodic orbits of the Hénon map. Compound
windows of the Hénon map were introduced by Lorenz [8]. The authors in paper [9] mainly
studied the application of the fractional order derived in the generalized hyperchaotic
Hénon map. In addition, researchers also have proposed different types of the generalized
Hénon [10, 11] map, which exhibit more complex dynamics.

In 1900, Baier and Klein [10] defined the n-dimensional generalized Hénon map.
And then Richter [12] collected analytical and numerical results for maps of lower and
higher dimensions of the n-dimensional generalized Hénon map in 2002. Since the three-
dimensional Hénon map [13–15] is of great importance in the study of high-dimensional
Hénon map, more and more investigators consider the three-dimensional Hénon map. For
example, the authors in [16] proposed a new interesting three-dimensional generalized
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Hénon map. Different types of Lorenz-type attractors in the three-dimensional Hénon
map are presented in [17]. Gonchenko [18] investigated the pseudo-hyperbolic attractors
in the three-dimensional generalized Hénon map.

However, the study of bifurcations and chaos for the three-dimensional generalized
Hénon map is still rare. According to [12], we consider the m-dimensional generalized
Hénon map with the following form:

{
x1(n + 1) = a – x2

m–1(n) + bxm(n),
xj+1(n + 1) = xj(n),

j = 1, . . . , m – 1. (1)

In particular, we consider the case of m = 3. Let x1 = x, x2 = y, x3 = z, map (1) can be
rewritten as

⎧⎪⎨
⎪⎩

xn+1 = a – y2
n + bzn,

yn+1 = xn,
zn+1 = yn.

(2)

This paper aims at exploring the dynamical behaviors of system (2).
We use the center manifold theorem and bifurcation theory [19] to explore the fold

bifurcation, flip bifurcation, and Naimark–Sacker bifurcation of system (2). Then we il-
lustrate our theoretical results by numerical simulations. From the numerical simulation
results, we observe many new interesting dynamical behaviors, such as bifurcation, peri-
odic orbit, invariant cycle, chaos, and periodic window. In particular, bifurcation diagrams
and phase portraits show coexistence of unstable invariant cycle and stable invariant cycle
in system (2) for b = –0.85.

The main content of the paper is as follows. In Sect. 2, we investigate the existence and
stability of the fixed points of system (2). In Sect. 3, the analytical conditions of codimen-
sion one bifurcations including fold bifurcation, flip bifurcation, and Naimark–Sacker bi-
furcation are derived on the basis of center manifold theorem and bifurcation theory. In
Sect. 4, we give the numerical simulations by using MATLAB to illustrate our theoretical
results. From those numerical results we find that system (2) has new interesting complex
dynamical behaviors. Finally, we give a brief conclusion of the paper in Sect. 5.

2 Existence and stability of fixed points
Direct computations from system (2) show that the fixed point Z∗(x∗, y∗, z∗) satisfies

⎧⎪⎨
⎪⎩

x∗ = a – y∗2 + bz∗,
y∗ = x∗,
z∗ = y∗.

(3)

We can get the relationship between three elements of the fixed point Z∗, that is, x∗ = y∗ =
z∗, besides x∗ satisfies x∗2 – (b – 1)x∗ – a = 0.

Then we obtain the proposition for the existence of the fixed points.

Proposition 1
(1) If a > a0, system (2) has two fixed points Z∗

1(x∗
1, y∗

1, z∗
1) and Z∗

2(x∗
2, y∗

2, z∗
2);

(2) If a = a0, system (2) has a unique fixed point Z∗
0(x∗

0, y∗
0, z∗

0);
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(3) If a < a0, system (2) has no fixed point,
where a0 = – (b–1)2

4 , x∗
i = y∗

i = z∗
i , i = 0, 1, 2, x∗

0 = b–1
2 , x∗

1 = 1
2 [(b – 1) –

√
4a + (b – 1)2], x∗

2 =
1
2 [(b – 1) +

√
4a + (b – 1)2].

Next, we give the condition for the stability of the fixed points Z∗
i (i = 1, 2) of system (2).

The Jacobian matrix J of system (2) associated with the fixed point Z∗
i is

J =

⎛
⎜⎝

0 –2y∗
i b

1 0 0
0 1 0

⎞
⎟⎠ .

The characteristic equation of J is

λ3 + 2y∗
i λ – b = 0. (4)

Let λ = μ+1
μ–1 , (4) becomes

μ3 + a1μ
2 + a2μ + a3 = 0, (5)

where a1 = 3+3b–2y∗
i

1–b+2y∗
i

, a2 = 3–3b–2y∗
i

1–b+2y∗
i

, a3 = 1+b+2y∗
i

1–b+2y∗
i

.
Obviously, |λ| < 1 is equivalent to Re[μ] < 0. So, the fixed point Z∗

i of system (2) is stable
when Re[μ] < 0.

By Routh–Hurwitz theorem, we know that Re[μ] < 0 if and only if the following con-
ditions hold: ai > 0, i = 1, 2, 3, D1 = a1 > 0, D2 = a1a2 – a3 > 0, and D3 = a3D2 > 0. That
is,

⎧⎪⎨
⎪⎩

a1 > 0,
a3 > 0,
a1a2 – a3 > 0.

By analyzing the above conditions, we find that the fixed point Z∗
1 is always unstable,

and the fixed point Z∗
2 is stable if

⎧⎨
⎩0 ≤ b < 1,

– (b–1)2

4 < a < (b–1)2(b+1)(b+3)
4

or

⎧⎨
⎩–1 < b < 0,

b2 – (b–1)2

4 < a < (b–1)2(b+1)(b+3)
4 .

We summarize the above results about the stability of the fixed points as follows.

Proposition 2
(1) The fixed point Z∗

1 of (2) is always unstable;
(2) The fixed point Z∗

2 of (2) is stable if one of the following conditions is satisfied:
(i) b ∈ [0, 1) and a ∈ (a0, ah),

(ii) b ∈ (–1, 0) and a ∈ (a∗, ah),
where a0 = – (b–1)2

4 , a∗ = b2 – (b–1)2

4 , ah = (b–1)2(b+1)(b+3)
4 .

The stable region of Z∗
2 of (2) in the parametric space is shown in Fig. 1. In the next

section, we will prove that the boundary of the stable region of Z∗
2 consists of codimension

one bifurcations.
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Figure 1 The stable region and its boundary curves, HB, fold,
and flip of Z∗

2 in the (b,a)-plane, where HB, fold, and flip
represent Naimark–Sacker, fold, and flip bifurcation curves,
respectively

3 Codimension one bifurcations
The sufficient conditions for the existence of fold bifurcation, flip bifurcation, and
Naimark–Sacker bifurcation are deduced in this section. In order to get the conditions
for the existence of the bifurcations, the parameter a is taken as the bifurcation parame-
ter. Since the fixed point Z∗

1 is always unstable, we just analyze the bifurcations of the fixed
point Z∗

2 in this section.
The characteristic equation of J associated with Z∗

2 is

λ3 +
[
(b – 1) +

√
4a + (b – 1)2

]
λ – b = 0. (6)

3.1 Fold bifurcation
If a = a0 and b ∈ (0, 1), the system of (2) has a unique fixed point Z∗

2 = Z∗
0 . The roots of (6)

are λ1(a0) = 1, λ2,3(a0) = –1±√
1–4b

2 . Particularly, if b ∈ (0, 1
4 ), λ2,3(a0) = –1±√

1–4b
2 are a pair

of real roots; if b = 1
4 , λ2,3(a0) = – 1

2 ; if b ∈ ( 1
4 , 1), λ2,3(a0) = –1±i

√
4b–1

2 are a pair of conjugate
complex roots. So we analyze the fold bifurcation in three cases, i.e., Case (I) b ∈ (0, 1

4 ),
Case (II) b = 1

4 , and Case (III) b ∈ ( 1
4 , 1). For the fold bifurcation, it requires |λ2,3(a0)| �= 1.

In fact, it is not hard to prove |λ2,3(a0)| < 1 as b ∈ (0, 1).
Let x̄ = x – x∗

0, ȳ = y – y∗
0, z̄ = z – z∗

0, and ā = a – a0, system (2) becomes

⎛
⎜⎜⎜⎝

x̄
ȳ
z̄
ā

⎞
⎟⎟⎟⎠ �−→

⎛
⎜⎜⎜⎝

0 1 – b b 1
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x̄
ȳ
z̄
ā

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

–ȳ2

0
0
0

⎞
⎟⎟⎟⎠ . (7)

For Case (I), let (x̄, ȳ, z̄, ā)′ = T(u, v, w,μ)′, then map (7) becomes

⎛
⎜⎜⎜⎝

u
v
w
μ

⎞
⎟⎟⎟⎠ �−→

⎛
⎜⎜⎜⎝

1 1 0 0
0 1 0 0
0 0 – 1+

√
1–4b
2 0

0 0 0 –1+
√

1–4b
2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

u
v
w
μ

⎞
⎟⎟⎟⎠ + f (u, v, w,μ)

⎛
⎜⎜⎜⎝

2
√

1 – 4b
0

3 –
√

1 – 4b
–3 –

√
1 – 4b

⎞
⎟⎟⎟⎠ , (8)

where

T =

⎛
⎜⎜⎜⎝

1 2 ( 1+
√

1–4b
2 )2 ( –1+

√
1–4b

2 )2

1 1 – 1+
√

1–4b
2

–1+
√

1–4b
2

1 0 1 1
0 2 + b 0 0

⎞
⎟⎟⎟⎠
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and

f (u, v, w,μ) = –
(u + v + –1–

√
1–4b

2 w + –1+
√

1–4b
2 μ)2

2(2 + b)
√

1 – 4b
.

The center manifold theory [19] tells us that, in order to study the stability and the fold
bifurcation of (x̄, ȳ, z̄) = (0, 0, 0) near ā = 0, we only need to consider a one-parameter family
of maps which is the reduced form of (7) on a center manifold W c(0), where W c(0) =
{(u, v, w,μ) | w = h1(u, v),μ = h2(u, v), hi(0, 0) = 0, Dhi(0, 0) = 0, i = 1, 2}. So, we assume that
hi(u, v) = αiu2 + βiuv + γiv2 + O(3), i = 1, 2, where O(3) is the sum of all terms whose degree
is greater than 2.

From the existence theorem for center manifolds, the restrictions of map (8) can be
obtained as follows:

u �−→ F(u, v), (9)

where F(u, v) = u + v + 2
√

1 – 4bf (u, v, h1(u, v), h2(u, v)) = u + v – (u+v)2

2+b + O(3). Since the fold
bifurcation is independent of the term O(3) of F(u, v), there is no need to compute hi(u, v),
i = 1, 2. Since F(0, 0) = 0, Fu(0, 0) = 1, Fv(0, 0) = 1, Fuu(0, 0) = – 2

b+2 < 0. So, the fixed point
(u, v) = (0, 0) is a fold bifurcation point for map (9).

As for Cases (II) and (III), we are still able to achieve the same results using only similar
analysis and transformation, (x̄, ȳ, z̄, ā)′ = Ti(u, v, w,μ)′, i = 1, 2, respectively, where

T1 =

⎛
⎜⎜⎜⎝

1 2 1/4 –1
1 1 –1/2 1
1 0 1 0
0 9/4 0 0

⎞
⎟⎟⎟⎠ ,

T2 =

⎛
⎜⎜⎜⎝

1 2 –
√

b – 1/4 1/2 – b
1 1

√
b – 1/4 –1/2

1 0 0 1
0 2 + b 0 0

⎞
⎟⎟⎟⎠ .

Summarizing the above serious analysis, we can get the following theorem.

Theorem 3 Map (2) undergoes a fold bifurcation at Z∗
0 if the following conditions are sat-

isfied: b ∈ (0, 1) and a = a0. Moreover, the two fixed points, Z∗
1 and Z∗

2 , bifurcate from Z∗
0

for a > a0, coalesce as the fixed point Z∗
0 at a = a0, and disappear for a < a0.

3.2 Flip bifurcation
The conditions for the flip bifurcation occurring at the fixed point Z∗

2 of map (2) are elab-
orated in this subsection. If a = a∗ and b ∈ (–1, 0), x∗

2 = y∗
2 = z∗

2 = – b+1
2 . The roots of (6) are

λ1(a∗) = –1, λ2,3(a∗) = 1±√
1+4b

2 . Particularly, if b ∈ (– 1
4 , 0), λ2,3(a∗) = 1±√

1+4b
2 ; if b = – 1

4 ,
λ2,3(a∗) = 1

2 ; if b ∈ (–1, – 1
4 ), λ2,3(a∗) = 1±i

√
–(1+4b)
2 . So we analyze the flip bifurcation in

three cases: b ∈ (– 1
4 , 0), b = – 1

4 , and b ∈ (–1, – 1
4 ). For the flip bifurcation, it requires that

|λ2,3(a∗)| �= 1. In fact, it is easy to prove that |λ2,3(a∗)| < 1 as b ∈ (–1, 0).
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Let x̄ = x – x∗
2, ȳ = y – y∗

2, z̄ = z – z∗
2, ā = a – a∗, then system (2) becomes

⎛
⎜⎜⎜⎝

x̄
ȳ
z̄
ā

⎞
⎟⎟⎟⎠ �−→

⎛
⎜⎜⎜⎝

0 1 + b b 1
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x̄
ȳ
z̄
ā

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

–ȳ2

0
0
0

⎞
⎟⎟⎟⎠ . (10)

For the case of b ∈ (– 1
4 , 0), let (x̄, ȳ, z̄, ā)′ = T̂(u, v, w,μ)′, then map (10) becomes

⎛
⎜⎜⎜⎝

u
v
w
μ

⎞
⎟⎟⎟⎠ �−→

⎛
⎜⎜⎜⎝

–1 0 0 0
0 1 0 0
0 0 1–

√
1+4b
2 0

0 0 0 1+
√

1+4b
2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

u
v
w
μ

⎞
⎟⎟⎟⎠

+ f̂ (u, v, w,μ)

⎛
⎜⎜⎜⎝

2
√

1 + 4b
0

–3 –
√

1 + 4b
3 –

√
1 + 4b

⎞
⎟⎟⎟⎠ , (11)

where

T̂ =

⎛
⎜⎜⎜⎝

1 – 1
2b ( 1–

√
1+4b
2 )2 ( 1+

√
1+4b
2 )2

–1 – 1
2b

1–
√

1+4b
2

1+
√

1+4b
2

1 – 1
2b 1 1

0 1 0 0

⎞
⎟⎟⎟⎠

and

f̂ (u, v, w,μ) = –
(–u – 1

2b v + 1–
√

1+4b
2 w + 1+

√
1+4b
2 μ)2

2(2 – b)
√

1 + 4b
.

From the center manifold theory [19], we can get the conditions of the stability and
the flip bifurcation of (x̄, ȳ, z̄) = (0, 0, 0) near ā = 0 by investigating a one-parameter family
of maps which is the reduced form of (10) on a center manifold W c(0), where W c(0) =
{(u, v, w,μ) | w = ĥ1(u, v),μ = ĥ2(u, v), ĥi(0, 0) = 0, Dĥi(0, 0) = 0, i = 1, 2}. So, we assume that
ĥi(u, v) = α̂iu2 + β̂iuv + γ̂iv2 + O(3), i = 1, 2.

Because of invariance of the center manifold [19], we have that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ĥ1(–u + 2
√

1 + 4bf̂ (u, v, ĥ1(u, v), ĥ2(u, v)), v)

= 1–
√

1+4b
2 ĥ1(u, v) – (3 +

√
1 + 4b)f̂ (u, v, ĥ1(u, v), ĥ2(u, v))),

ĥ2(–u + 2
√

1 + 4bf̂ (u, v, ĥ1(u, v), ĥ2(u, v)), v)

= 1+
√

1+4b
2 ĥ2(u, v) + (3 –

√
1 – 4b)f̂ (u, v, ĥ1(u, v), ĥ2(u, v))).

(12)

We can obtain the values of α̂i, β̂i, γ̂i, i = 1, 2, by comparing the coefficients of u2, uv, v2

in (12). From the existence theorem for center manifolds, the restrictions of map can be
obtained as follows:

u �−→ F̂(u, v), (13)
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where F̂(u, v) = –u + 2
√

1 + 4bf̂ (u, v, ĥ1(u, v), ĥ2(u, v)). It is easy to verify that F̂(0, 0) =
0, F̂u(0, 0) = –1, F̂v(0, 0) = 0, F̂uu(0, 0) = – 2

2–b , F̂uv(0, 0) = – 1
b(2–b) , F̂vv(0, 0) = – 1

2b2(2–b) ,
F̂uuu(0, 0) = – 12(1–b)

b(2–b)2 , and

k1 = F̂uu(0, 0)F̂v(0, 0) + 2F̂uv(0, 0) = –
2

b(2 – b)
> 0,

k2 =
1
2
(
F̂uu(0, 0)

)2 +
1
3

F̂u,u,u(0, 0) =
2

b(2 – b)
< 0.

So, map (13) undergoes a flip bifurcation at (u, v) = (0, 0), and the periodic-2 points that
bifurcate from (u, v) = (0, 0) for v > 0 are unstable.

As for the case of b = – 1
4 and b ∈ (–1, – 1

4 ), we have the same results by making use of the
similar analysis.

Summarizing the above discussion, we have the following results.

Theorem 4 If b ∈ (–1, 0) and a = a∗, then map (2) undergoes a flip bifurcation at Z∗
2 .

Moreover, the period-2 points bifurcating from Z∗
2 are unstable for a > a∗.

3.3 Naimark–Sacker bifurcation
In this subsection, we discuss the Naimark–Sacker bifurcation of map (2) occurring at
Z∗

2 . If a = ah and b ∈ (–1, 1), then the roots of (6) are λ1,2(ah) = – b
2 ± i

√
4–b2
2 , λ3(ah) = b.

Apparently, |λ1,2(ah)| = 1, |λ3(ah)| < 1.
If a ≈ ah, then the roots of (6) are λ1,2(a) = α ± iβ and λ3, where α|a=ah = – b

2 , β|a=ah =√
4–b2
2 , and λ3|a=ah = b.
Since λ1,2(a) satisfy (6), we have that

⎧⎨
⎩α3 – 3αβ3 + [(b – 1) +

√
4a + (b – 1)2]α – b = 0,

3α2 – β2 + [(b – 1) +
√

4a + (b – 1)2] = 0.

It is easy to calculate that d
da |λ1,2(ah)| = 1

(1–b)(2+b)(1+2b2) > 0. Besides, for the Naimark–
Sacker bifurcation, it requires that λ

j
1,2(ah) �= 1, j = 1, 2, 3, 4, which implies that b �= ±2,

b �= 1, b �= 0. So, it requires that b �= 0 since b ∈ (–1, 1).
Let x̄ = x – x∗

2, ȳ = y – y∗
2, z̄ = z – z∗

2, then system (2) becomes

⎛
⎜⎝

x̄
ȳ
z̄

⎞
⎟⎠ �−→

⎛
⎜⎝

0 –(1 – b2) b
1 0 0
0 1 0

⎞
⎟⎠

⎛
⎜⎝

x̄
ȳ
z̄

⎞
⎟⎠ +

⎛
⎜⎝

–ȳ2

0
0

⎞
⎟⎠ . (14)

Let (x̄, ȳ, z̄)′ = T̃(u, v, w)′, then map (14) becomes

⎛
⎜⎝

u
v
w

⎞
⎟⎠ �−→

⎛
⎜⎝

– b
2 –

√
4–b2
2 0

–
√

4–b2
2 – b

2 0
0 0 b

⎞
⎟⎠

⎛
⎜⎝

u
v
w

⎞
⎟⎠ + F̃(u, v, w)

⎛
⎜⎝

3b√
4 – b2

–
√

4 – b2

⎞
⎟⎠ , (15)
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where

T̃ =

⎛
⎜⎝

–b
√

4–b2
2

b2–2
2 b2

√
4–b2
2 – b

2 b
0 1 1

⎞
⎟⎠

and

F̃(u, v, w) =
(
√

4–b2
2 u – b

2 v + bw)2

(1 + 2b2)
√

4 – b2
.

By the similar method as in Sects. 3.1 and 3.2, we can study the stability and the
Naimark–Sacker bifurcation of (x̄, ȳ, z̄) = (0, 0, 0) near ā = 0. Let W c(0) = {(u, v, w) | w =
h̃(u, v), h̃(0, 0) = 0, Dh̃(0, 0) = 0}, where h̃(u, v) = α̃u2 + β̃uv + γ̃ v2 + O(3).

Because of invariance of the center manifold [19], we have that

h̃
(

–
b
2

u –
√

4 – b2

2
v + 3bF̃

(
u, v, h̃(u, v)

)
,
√

4 – b2

2
u –

b
2

v +
√

4 – b2F̃
(
u, v, h̃(u, v)

))

= bw –
√

4 – b2F̃
(
u, v, h̃(u, v)

)
. (16)

We can obtain the values of α̃, β̃ , γ̃ by comparing the coefficients of u2, uv, v2 in (16). From
the existence theorem for center manifolds, the restrictions of map are

(
u
v

)
�−→

(
– b

2 –
√

4–b2
2√

4–b2
2 – b

2

)(
u
v

)
+

(
f̃ (u, v)
g̃(u, v)

)
, (17)

where f̃ (u, v) = 3bF̃(u, v, h̃(u, v)), g̃(u, v) =
√

4 – b2F̃(u, v, h̃(u, v)).
Then we use the method given in [20] to study the Naimark–Sacker bifurcation of map

(2). The coefficients are given as follows:

ξ20(u, v) =
1
8
[
(f̃uu – f̃vv + 2g̃uv) + i(g̃uu – g̃vv – 2f̃uv)

]

=
b(1 – b2 + i(1 + b2

√
4 – b2))

4(1 + 2b2)
√

4 – b2
,

ξ11(u, v) =
1
4
[
(f̃uu + f̃vv) + i(g̃uu + g̃vv)

]

=
3b + i

√
(4 – b2)

2(1 + 2b2)
√

4 – b2
,

ξ02(u, v) =
1
8
[
(f̃uu – f̃vv – 2g̃uv) + i(g̃uu – g̃vv + 2f̃uv)

]

=
b(5 – 2b2) + i(1 – 2b2)

√
4 – b2

4(1 + 2b2)
√

4 – b2
,

ξ21(u, v) =
1

16
[
(f̃uuu + f̃uvv + g̃uuv + g̃vvv) + i(g̃uuu + g̃uvv – f̃uuv – f̃vvv)

]
=

[
b
(
–2i – 8bi – 10b2i + 3b3i – 3b4i + 2b5i – 5b2

√
4 – b2 – 3b3

√
4 – b2
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+ 2b4
√

4 – b2
)] · [4(1 – b)

√
4 – b2

(
1 + 2b2)2(1 + 2b + b2 – b3)]–1,

k = – Re

[
(1 – 2λ)(λ̄)2

1 – λ
ξ11ξ20

]
–

1
2
|ξ11|2 – |ξ02|2 + Re[λ̄ξ21]

=
(1 + b)(2b2 – 2b – 3)

4(1 – b(2 + b)(1 + 2b2)(1 + 2b + b2 – b3)
.

We can easily see that k > 0 for b ∈ (–1, –
√

7–1
2 ) and k < 0 for b ∈ (–

√
7–1
2 , 1). From the

above analysis, we have the following results.

Theorem 5 Assume that b ∈ (–1, 1) and b �= 0. If b ∈ (–1, –
√

7–1
2 ), map (2) undergoes a sub-

critical Naimark–Sacker bifurcation at Z∗
2 for a = ah, and a repelling invariant circle occurs

for a < ah; if b ∈ (–
√

7–1
2 , 1), the map undergoes a supercritical Naimark–Sacker bifurcation

at Z∗
2 for a = ah, and an attracting invariant circle occurs for a > ah.

4 Numerical simulations
In this section, rich complex dynamical behaviors of system (2) are displayed by the bifur-
cation graphs, maximum Lyapunov exponents, and phase portraits. The numerical simu-
lations also support theoretical analysis.

4.1 Numerical simulations for stability and codimension one bifurcations of fixed
points

In this subsection, some numerical simulations verify the correctness of Proposition 2 and
Theorems 3–5. Four cases are considered as follows:

Case(1) Let b = 0.5, then a0 = –0.0625, a∗ = 0.1875, and ah = 0.3281. From Proposi-
tion 2, the fixed point Z∗

2 of system (2) is stable for a ∈ (a0, ah). System (2) undergoes a fold
bifurcation at Z∗

0 for a = a0 by Theorem 3. Since b ∈ (–
√

7–1
2 , 1), we have that the super

Naimark–Sacker bifurcation occurs at Z∗
2 for a = ah by Theorem 5. Figure 2(a) shows the

correctness of Proposition 2 and Theorems 3–5.
Case (2) Let b = –0.5, then a0 = –0.5625, a∗ = 0.3125, and ah = 0.7031. From Propo-

sition 2, we have that the fixed point of system (2) Z∗
2 is stable for a ∈ (a∗, ah). Map (2)

undergoes a fold bifurcation at Z∗
0 for a = a0 by Theorem 3. Since k2 < 0, we have that the

unstable flip bifurcation occurs at Z∗
2 for a = a∗ by Theorem 4. Since b ∈ (–

√
7–1
2 , 1), we

have that the super Naimark–Sacker bifurcation occurs at Z∗
2 for a = ah by Theorem 5.

Figure 2(b) shows the correctness of Proposition 2 and Theorems 3–5.
Case (3) Let b = –0.85, a0 = –0.8556, a∗ = –0.1331, and ah = 0.2759. From Proposition 2,

we have that the fixed point Z∗
2 is stable for a ∈ (a∗, ah). Map (2) undergoes a fold bifurca-

tion at Z∗
0 for a = a0 by Theorem 3. Since k2 < 0, we have that the unstable flip bifurcation

occurs at Z∗
2 for a = a∗ by Theorem 4. Since b ∈ (–1, –

√
7–1
2 ), we have that the subcritical

Naimark–Sacker bifurcation occurs at Z∗
2 for a = ah by Theorem 5. Figure 2(c) shows the

correctness of Proposition 2 and Theorems 3–5.
Case (4) Fig. 2(d) shows the local bifurcation diagram for b = –0.85 and a ∈ (0.273, 0.279).

For b = –0.85, ah = 0.2759, Theorem 5 tells us that map (2) undergoes a subcritical
Naimark–Sacker bifurcation at Z∗

2 for a = ah and has a small amplitude unstable invari-
ant cycle for a < ah slightly. However, Fig. 2(d) exhibits that there exists a large amplitude
stable invariant cycle in map (2) for a ∈ (0.274, 0.279). Note that ah ∈ (0.274, 0.279). So,
we infer that there exist a stable invariant cycle and an unstable one at the same time for
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Figure 2 (a)–(c) show bifurcation diagrams of system (2) in the (a, x) plane for b = 0.5, b = –0.5, and b = –0.85,
respectively. Here, the fold bifurcation, flip bifurcation, and Naimark–Sacker bifurcation are labeled as “Fold”,
“Flip”, and “HB”, respectively. (d) shows the local enlarged diagram of (c) for a ∈ (0.273, 0.279)

a ∈ (0.274, ah) in map (2). Furthermore, the stable invariant cycle is outside the unsta-
ble invariant cycle and they coincide with each other to be a semi-stable invariant cycle
at a = 0.274. So the system has a double-cycle structure for a ∈ (0.274, ah). Because the
small amplitude invariant cycle is unstable, it cannot be plotted in the figure. But the large
amplitude stable invariant cycle can be observed from Fig. 2(d), Fig. 7(a), and Fig. 8(a).

4.2 Further numerical simulations for system (2)
In this subsection, some numerical simulations show that system (2) has some new dy-
namical behaviors as its parameters vary.

Next, we give numerical simulations in three cases for b = 0.5,b = –0.5, and b = –0.85,
respectively.

Case (A) Let b = 0.5, then ah = 0.3281. We illustrate the bifurcation diagram and the
maximum Lyapunov exponent of system (2) for a ∈ (0.3, 0.8) in Figs. 3(a) and 3(b), re-
spectively. In Fig. 3(a), the fixed point is stable for a ∈ (0.3, ah). With the increase of the
parameter a, the stable fixed point will become unstable. The Naimark–Sacker bifurcation
occurs at a ∼ ah. Simultaneously, a stable invariant circle will appear as a is slightly greater
than ah. Figure 3(c) is the local enlarged diagram of Fig. 3(a) for a ∈ (0.73, 0.732), which
shows the process from the period-10 orbits at a = 0.73085 to the chaotic region. We can
also observe several periodic windows in the chaotic regions. In Fig. 3(b), the maximal
Lyapunov exponent can rapidly change its values between negative and positive numbers.
We deduce that there are stable fixed points or stable periodic windows in the chaotic
region when the maximal Lyapunov exponent is negative. Fig. 4 shows phase portraits
for a = ah + 0.02, a = ah + 0.15, a = 0.73085, and a = ah + 0.4, which correspond to stable
invariant cycle, stable quasi-invariant cycle, periodic-10 orbit, and chaos, respectively.

Case (B) Let b = –0.5, then ah = 0.7031. We illustrate the bifurcation diagram and the
maximum Lyapunov exponent of system (2) for a ∈ (0.7, 1.0) in Figs. 5(a) and 5(b), respec-
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Figure 3 (a) Bifurcation diagram of fixed points of system (2) in the (a, x) plane for a ∈ (0.3, 0.8) and b = 0.5;
(b) Maximum Lyapunov exponent corresponding to (a); (c) The local amplified bifurcation diagram of (a) for
a ∈ (0.73, 0.732)

Figure 4 Phase portraits for b = 0.5:
(a) a = ah + 0.02; (b) a = ah + 0.15; (c) a = 0.73085;
(d) a = ah + 0.40, where, ah = 0.3281

Figure 5 (a) Bifurcation diagram of fixed points of system (2) in the (a, x) plane for a ∈ (0.7, 1.0) and b = –0.5;
(b) Maximum Lyapunov exponent corresponding to (a); (c) The local amplified bifurcation diagram of (a) for
a ∈ (0.91, 0.935)

tively. Figure 5(c) is the local enlarged diagram of Fig. 5(a) for a ∈ (0.91, 0.935). As a varies,
we can see the existence of chaotic regions and periodic windows. From Fig. 5(b), the max-
imal Lyapunov exponent can rapidly change its values between negative and positive as
a ∈ (0.85, 1.0). We deduce that there are stable fixed points or stable periodic windows
in the chaotic region when the maximal Lyapunov exponent is negative. From Fig. 5(c)
we observed that there is a periodic window at a ∼ 0.92205. Fig. 6 shows phase portraits
for a = ah + 0.02, a = ah + 0.1, a = 0.92205, and a = ah + 0.15, which correspond to stable
invariant cycle, stable quasi-invariant cycle, periodic orbit, and chaos, respectively.
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Figure 6 Phase portraits for b = –0.5:
(a) a = ah + 0.02; (b) a = ah + 0.1; (c) a = 0.92205;
(d) a = ah + 0.15, where ah = 0.7031

Figure 7 (a) Bifurcation diagram of fixed points of system (2) in the (a, x) plane for a ∈ (0.25, 0.45) and
b = –0.85; (b) Maximum Lyapunov exponent corresponding to (a); (c) The local amplified bifurcation diagram
of (a) for a ∈ (0.4, 0.435)

Figure 8 Phase portraits for b = –0.85:
(a) a = ah – 0.001; (b) a = ah + 0.02; (c) a = 0.415;
(d) a = ah + 0.15, where ah = 0.2759

Case (C) Let b = –0.85, then ah = 0.2759. We illustrate the bifurcation diagram and the
maximum Lyapunov exponent of system (2) for a ∈ (0.25, 0.45) in Figs. 7(a) and 7(b), re-
spectively. Figure 7(c) is the local enlarged diagram of Fig. 7(a) for a ∈ (0.4, 0.435). With the
increase of the parameter a, we can see the existence of chaotic regions and periodic win-
dows. Similar to the case in Fig. 5(b), we can see as a ∈ (0.35, 0.45), some Lyapunov expo-
nents are positive and some are negative in Fig. 7(b). We can also expect that there are sta-
ble fixed points or stable periodic windows in the chaotic region as the maximal Lyapunov
exponent is negative. Figure 7(c) shows the process from approximate period-40 orbits to
chaos at a ∼ 0.415. Fig. 8 shows phase portraits for a = ah – 0.001, a = ah + 0.02, a = 0.415,
and a = ah + 0.15, which correspond to stable invariant cycle, stable quasi-invariant cycle,
periodic orbit, and chaos, respectively.
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5 Conclusion
In this paper we use the analytic and numerical methods to study the three-dimensional
Hénon map with non-constant Jacobian determinant. From the bifurcation theory and
center manifold theorem, we know that system (2) can undergo the fold bifurcation, flip
bifurcation, and Naimark–Sacker bifurcation. The analytic results are illustrated by nu-
merical simulations. We observe a number of interesting phenomena, such as the process
of bifurcation to chaos, period windows, invariant cycle, coexistence of periodic orbit and
chaos, etc., from bifurcation diagrams, maximum Lyapunov exponents, and phase por-
traits. In particular, we find coexistence of an unstable invariant cycle and a stable invari-
ant cycle in the system for b = –0.85 from bifurcation diagrams and phase portraits. Due
to the specific form of high-dimensional generalized Hénon map, we believe that some
conclusions in the paper can be extended to high-dimensional generalized Hénon map
easily. The research methods and results of our paper will contribute to the study of the
generalized Hénon map.
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