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Abstract
We consider the solvable intervals of three positive parameters λi (i = 1, 2, 3) in which
the second-order impulsive boundary value problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

–x′′ = a(t)xy + λ1g(t)f (x), 0 < t < 1, t �= tk ,

–y′′ = λ2b(t)x, 0 < t < 1,

�x|t=tk = λ3Ik(x(tk)), k = 1, 2, . . . ,n,
x(0) = 0, x′(1) = 0,

y(0) = y(1) = 0

admits at least two positive solutions. The main interest is that the weight functions
a(t), b(t), and g(t) change sign on [0, 1], λi (i = 1, 2, 3) �≡ 1, and Ik �= 0 (k = 1, 2, . . . ,n). We
will obtain several interesting results: there exist positive constants λ∗, λ∗, λ∗

i (i = 1, 3),
λ∗∗
i (i = 1, 2, 3) and α with α �= 1 such that: (i) if α > 1, then for λi ∈ [λ∗

i , +∞) (i = 1, 3)
and λ2 ∈ [λ∗,λ∗], the above boundary value problem admits at least two positive
solutions; (ii) if 0 < α < 1, then for λi ∈ (0,λ∗∗

i ] (i = 1, 2, 3), the above boundary value
problem admits at least two positive solutions.

Keywords: Solvable intervals of three parameters; Positive solutions; Indefinite
impulsive boundary value problem; Fixed point technique

1 Introduction
It is well established that impulsive differential equations can provide a natural descrip-
tion of observed evolution processes. Therefore it is regarded as an important mathemat-
ical tool to better understand many real world problems in applied sciences. On details
and explanations, we refer the readers to the texts [1–4]. Specially, Nieto and O’Regan [5]
pointed out that in a second order differential equation u′′ = f (t, u, u′), one usually consid-
ers impulses in the position u and the velocity u′. However, in the motion of spacecraft
one has to consider instantaneous impulses depending on the position that result in jump
discontinuities in velocity, but with no change in position [6]. The impulses only on ve-
locity occur also in impulsive mechanics [7]. Recently, a great interest has been shown by
many authors in the subject of impulsive boundary value problems (IBVPs) by applying
different approaches, for example, see [8–28] and the references cited therein.

At the same time, we notice that a class of indefinite weight problems have attracted the
attention of Ma and Han [29], López-Gómez and Tellini [30], Boscaggin and Zanolin [31,
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32], Sovrano and Zanolin [33], Bravo and Torres [34], Wang and An [35], and Yao [36]. In
[29], Ma and Han considered the following boundary value problem:

⎧
⎨

⎩

u′′ + λa(t)f (u) = 0, 0 < t < 1,

u(0) = u(1) = 0,

where a ∈ C[0, 1] may change sign, λ is a parameter. They proved the existence, multi-
plicity, and stability of positive solutions for the above problem by applying bifurcation
techniques.

In [33], applying the shooting method, Sovrano and Zanolin presented a multiplicity
result of positive solutions for the Neumann problem

⎧
⎪⎪⎨

⎪⎪⎩

u′′ + a(t)f (u) = 0, 0 < t < 1,

u(t) > 0, t ∈ [0, T],

u′(0) = u′(T) = 0,

where the weight function a ∈ C[0, 1] has indefinite sign.
Recently, Wang and An in [35] dealt with the existence and multiplicity of positive so-

lutions for the second-order differential system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′ = a(t)ϕu + h(t)f (u), 0 < t < 1,

–ϕ′′ = b(t)u, 0 < t < 1,

u(0) = u(1) = 0,

ϕ(0) = ϕ(1) = 0,

where a(t), b(t), g(t) are allowed to change sign on [0, 1].
Very recently, López-Gómez, Omari, and Rivetti [37, 38] studied a class of quasilinear

indefinite problems
⎧
⎨

⎩

–( u′√
1+u′2 )′ = λa(x)f (u),

u′(0) = u′(1) = 0,

where λ ∈ R is a parameter, a ∈ L1[0, 1] changes sign. They derived many results on the
existence and the multiplicity of positive (regular) solutions by applying topological degree
and variational approach, respectively.

For all we know, in literature there are no articles on multiple positive solutions for the
analogous of indefinite impulsive problems with multiple parameters. More precisely, the
study of λi (i = 1, 2, 3) �≡ 1, and a(t), b(t), and g(t) changing sign on [0, 1] is still open for
the second order impulsive boundary value problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–x′′ = a(t)xy + λ1g(t)f (x), 0 < t < 1, t �= tk ,

–y′′ = λ2b(t)x, 0 < t < 1,

�x|t=tk = λ3Ik(x(tk)), k = 1, 2, . . . , n,

x(0) = 0, x′(1) = 0,

y(0) = y(1) = 0,

(1.1)
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where λ1 > 0, λ2 > 0, and λ3 > 0 are three parameters, a(t), b(t), g(t) change sign on [0, 1],
tk (k = 1, 2, . . . , n) (where n is a fixed positive integer) are fixed points with 0 = t0 < t1 <
t2 < · · · < tk < · · · < tn < tn+1 = 1, �x|t=tk denotes the jump of x(t) at t = tk , i.e., �x|t=tk =
x(t+

k ) – x(t–
k ), where x(t+

k ) and x(t–
k ) represent the right-hand limit and left-hand limits of

x(t) at t = tk , respectively. Moreover, throughout this paper, we assume that a, g , b, f and
Ik (k = 1, 2, . . . , n) satisfy

(H1) a, g , b : [0, 1] → (–∞, +∞) and continuous, and there exists a constant ξ ∈ (0, 1)
such that

⎧
⎨

⎩

a(t), g(t), b(t) ≥ 0, ∀t ∈ [0, ξ ],

a(t)), g(t), b(t) ≤ 0, ∀t ∈ [ξ , 1].

Moreover, a(t), g(t), b(t) do not vanish identically on any subinterval of [0, 1].
(H2) f ∈ C(R+,R+), and f (s) > 0 for s > 0, where R+ = [0, +∞).
(H3) Ik ∈ C(R+,R+), and Ik(s) > 0 for s > 0, k = 1, 2, . . . , n.
We denote
a+(t) = max{a(t), 0}, a–(t) = – min{a(t), 0} such that a(t) = a+(t) – a–(t), ∀t ∈ [0, 1],
g+(t) = max{g(t), 0}, g–(t) = – min{g(t), 0} such that g(t) = g+(t) – g–(t), ∀t ∈ [0, 1],
b+(t) = max{b(t), 0}, b–(t) = – min{b(t), 0} such that b(t) = b+(t) – b–(t), ∀t ∈ [0, 1].
Some special cases of problem (1.1) have been investigated. For example, Sovrano and

Zanolin [33] considered problem (1.1) when λ1 ≡ 1, λ2 = 0, and Ik = 0 (k = 1, 2, . . . , n). By
applying the shooting method, they presented a multiplicity result of positive solutions
for problem (1.1). In [35], Wang and An studied problem (1.1) with λ1 ≡ 1, λ2 ≡ 1, and
Ik = 0 (k = 1, 2, . . . , n). Using a fixed point technique, they showed the existence of positive
solutions for problem (1.1).

Remark 1.1 Comparing with other related indefinite problems [29–32], the main features
of this paper are as follows.

(i) Ik �= 0 (k = 1, 2, . . . , n) is considered.
(ii) λi > 0 is available, not only λi ≡ 1, i = 1, 2, 3.

(iii) The method used in the present paper is completely different from those in [29–32].

Remark 1.2 It is very difficult to obtain the solvable intervals of three positive parameters
λi (i = 1, 2, 3), especially for parameter λ2. For details, see the proof of part I of Theorem 3.1.

It is well accepted that fixed point theorems in cones have been instrumental in showing
the existence, multiplicity of positive solutions of various boundary value problems for
differential equations. See, for instance, [39–46] and the references therein. In this paper,
we will use Krasnoselskii’s fixed point theorem in a cone to investigate the existence and
multiplicity of positive solutions of problem (1.1). We remark that this is probably the first
time that multiple positive solutions of impulsive differential system with indefinite weight
and multiple parameters have been studied.

The rest of the present article is organized as follows. In Sect. 2 we give some preliminary
results to be used in the subsequent sections. Section 3 is devoted to stating and proving
the main results. Several related remarks are given in Sect. 4, and we give an example to
illustrate the main results in the final section.
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2 Preliminaries
In this section, we give some preliminary results for the convenience of later use and ref-
erence.

Let J = [0, 1], J ′ = J\{t1, t2, . . . , tn}, J0 = [t0, t1], Jk = (tk , tk+1], k = 1, 2, . . . , n, and

PC[0, 1] =
{

x : x is continuous at t �= tk , x
(
t–
k
)

= x(tk) and x
(
t+
k
)

exists, k = 1, 2, . . . , n
}

.

Then PC[0, 1] is a real Banach space with the norm

‖x‖PC = max
t∈J

∣
∣x(t)

∣
∣.

By a positive solution of problem (1.1), we understand a pair of functions (x, y) with
x ∈ C2(J ′) ∩ PC[0, 1], y ∈ C2(J) ∩ C[0, 1], if (x, y) satisfies problem (1.1), and x ≥ 0, t ∈ J ′,
y ≥ 0, t ∈ J , x, y �≡ 0.

It is clear that problem (1.1) is equivalent to the following two boundary value problems:

⎧
⎪⎪⎨

⎪⎪⎩

–x′′ = a(t)xy + λ1g(t)f (x), 0 < t < 1, t �= tk ,

�x|t=tk = λ3Ik(x(tk)), k = 1, 2, . . . , n,

x(0) = 0, x′(1) = 0,

(2.1)

and
⎧
⎨

⎩

–y′′ = λ2b(t)x, 0 < t < 1,

y(0) = y(1) = 0.
(2.2)

Lemma 2.1 Assume that (H1)–(H3) hold. Then problem (2.1) has a solution x, and x can
be expressed in the form:

x(t) =
∫ 1

0
G(t, s)a(s)x(s)y(s) ds + λ1

∫ 1

0
G(t, s)g(s)f

(
x(s)

)
ds

+ λ3

n∑

k=1

G′
s(t, tk)Ik

(
x(tk)

)
, (2.3)

where

G(t, s) =

⎧
⎨

⎩

t, 0 ≤ t ≤ s ≤ 1,

s, 0 ≤ s ≤ t ≤ 1.
(2.4)

It is obvious that

G′
s(t, s) =

⎧
⎨

⎩

0, 0 ≤ t ≤ s ≤ 1,

1, 0 ≤ s ≤ t ≤ 1,
(2.5)

and

max
t,s∈J ,t �=s

∣
∣G′

s(t, s)
∣
∣ = 1.
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Proof The proof of Lemma 2.1 is similar to that of Lemma 2.6 in [47]. �

It follows from the definition of G(t, s) that Proposition 2.1 holds.

Proposition 2.1 Let G(t, s) be given as in (2.4). Then we have the following results:

G(t, s) > 0, ∀t, s ∈ (0, 1),

tG(s, s) ≤ G(t, s) ≤ G(s, s) = s ≤ 1, ∀t, s ∈ J , (2.6)

G(t, s) ≥ ξG(s, s), ∀t ∈ [ξ , 1], s ∈ J .

Proof By the definition of G(t, s), it is not difficult to see that G(t, s) > 0, ∀t, s ∈ (0, 1).
Next, turning to (2.6), if t ≤ s, then G(t, s) = t ≤ s; if t ≥ s, then G(t, s) = s. So we get that

G(t, s) ≤ s = G(s, s), ∀t, s ∈ J .
On the other hand, noticing that t, s ∈ J , if t ≤ s, then G(t, s) = t ≥ ts; if t ≥ s, then G(t, s) =

s ≥ st. Therefore, we obtain that G(t, s) ≥ ts = tG(s, s), ∀t, s ∈ J . This gives the proof of (2.6).
If t ∈ [ξ , 1], it is easy to see that by (2.6), G(t, s) ≥ ξG(s, s), ∀s ∈ J . �

Remark 2.1 Noticing that tk ∈ (0, 1), we get G(tk , tk) > 0.

Lemma 2.2 Assume that (H1)–(H3) hold. Then problem (2.2) has a solution y given by

y(t) = λ2

∫ 1

0
G1(t, s)b(s)x(s) ds, (2.7)

where

G1(t, s) =

⎧
⎨

⎩

t(1 – s), 0 ≤ t ≤ s ≤ 1,

s(1 – t), 0 ≤ s ≤ t ≤ 1.
(2.8)

Proof The proof of Lemma 2.2 is similar to that of Lemma 2.1 in [48]. �

Similar to the proof of Proposition 2.1, we can get Proposition 2.2.

Proposition 2.2 Let G1(t, s) be given as in (2.8). Then we have the following results:

G1(t, s) > 0, ∀t, s ∈ (0, 1),

G1(t, t)G1(s, s) ≤ G1(t, s) ≤ G1(s, s) = s(1 – s) ≤ 1
4

, ∀t, s ∈ J , (2.9)

G1(t, s) ≥ ξ 2G1(s, s), ∀t ∈ [ξ , 1 – ξ ], s ∈ J .

Remark 2.2 Letting (x, y) be a solution of problem (1.1), from Lemma 2.1 and Lemma 2.2,
we have

x(t) = λ2

∫ 1

0

∫ 1

0
G(t, s)G1(s, τ )a(s)b(τ )x(s)x(τ ) dτ ds

+ λ1

∫ 1

0
G(t, s)g(s)f

(
x(s)

)
ds + λ3

n∑

k=1

G′
s(t, tk)Ik

(
x(tk)

)
, (2.10)
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and y is defined in (2.7).

To obtain the existence of positive solution of problem (1.1), we make the following
hypotheses:

(H4) There exists 0 < σ1 < ξ such that

σ1

∫ ξ

σ1

G1(t, s)b+(s) ds ≥ ξ

∫ 1

ξ

G1(t, s)b–(s) ds;

(H5) There exists 0 < σ2 < ξ such that

σ2

∫ ξ

σ2

G(t, s)G1(s, s)a+(s) ds ≥ ξ

∫ 1

ξ

G(t, s)a–(s) ds;

(H6) There exists 0 < μ ≤ 1 such that

f (ω) ≥ μϕ(ω), ω ∈ [0, +∞),

where ϕ(ω) = max{f (ρ) : 0 ≤ ρ ≤ ω};
(H7) There exist 0 < α < +∞ with α �= 1 and k1, k2, l1, l2 > 0 such that

k1xα ≤ f (x) ≤ k2xα , l1xα ≤ Ik(x) ≤ l2xα , x ∈ [0, +∞);

(H8) There exists 0 < σ3 < ξ satisfying σ3
2 < t1 < σ3 such that

σα
3 μ2k1

∫ ξ

σ3

G(t, s)g+(s) ds ≥ k2ξ
α

∫ 1

ξ

G(t, s)g–(s) ds.

We denote

C+
0 [0, 1] =

{
x ∈ PC[0, 1] : min

t∈J
x(t) ≥ 0, x(0) = 0, x′(1) = 0

}
,

K =
{

x ∈ C+
0 [0, 1] : x is concave on [0, ξ ], and convex on [ξ , 1]

}
.

If x ∈ K , it is not difficult to see that ‖x‖PC = max0≤t≤ξ x(t). Also, for a positive number
r, we define �r by �r = {x ∈ K : ‖x‖PC < r}, and then we get ∂�r = {x ∈ K : ‖x‖PC = r}.

Define T : K → PC[0, 1] by

(Tx)(t) = λ2

∫ 1

0

∫ 1

0
G(t, s)G1(s, τ )a(s)b(τ )x(s)x(τ ) dτ ds

+ λ1

∫ 1

0
G(t, s)g(s)f

(
x(s)

)
ds + λ3

n∑

k=1

G′
s(t, tk)Ik

(
x(tk)

)
. (2.11)

Remark 2.3 It follows from Lemmas 2.1–2.2 and Remark 2.2 that (x, y) is a solution of
problem (1.1) if and only if x is a fixed point of operator T and y satisfies (2.7).

Lemma 2.3 Assume that (H1)–(H8) hold. Then T(K) ⊂ K and T : K → K is completely
continuous.
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Proof Define a function e : [0, 1] → [0, 1] as follows:

if x(1) = 0, then e(t) = min

{
t
ξ

,
1 – t
1 – ξ

}

, ∀t ∈ J ;

if x(1) > 0, then e(t) = min

{
t
ξ

, 1
}

, ∀t ∈ J .

So, we get minσ≤t≤ξ e(t) = σ
ξ

, maxξ≤t≤1 e(t) = 1.
Letting x ∈ K , then x is concave on [0, ξ ] and convex on [ξ , 1]. Noticing that x(0) = 0,

x′(1) = 0, we get x(t) ≥ x(ξ )e(t), t ∈ [0, ξ ], x(t) ≤ x(ξ )e(t), t ∈ [ξ , 1].
Firstly, for any x ∈ K , we show that

∫ 1

0
G1(t, s)b(s)x(s) ds ≥

∫ σ1

0
G1(t, s)b+(s)x(s) ds, t ∈ J . (2.12)

In fact, for x ∈ K , noticing (H4), we get

∫ 1

0
G1(t, s)b(s)x(s) ds –

∫ σ1

0
G1(t, s)b+(s)x(s) ds

=
∫ ξ

σ1

G1(t, s)b+(s)x(s) ds –
∫ 1

ξ

G1(t, s)b–(s)x(s) ds

≥
∫ ξ

σ1

G1(t, s)b+(s)e(s)x(ξ ) ds –
∫ 1

ξ

G1(t, s)b–(s)e(s)x(ξ ) ds

≥ x(ξ )
[

min
s∈[σ1,ξ ]

e(s)
∫ ξ

σ1

G1(t, s)b+(s) ds – max
s∈[ξ ,1]

e(s)
∫ 1

ξ

G1(t, s)b–(s) ds
]

= x(ξ )
[
σ1

ξ

∫ ξ

σ1

G1(t, s)b+(s) ds –
∫ 1

ξ

G1(t, s)b–(s) ds
]

≥ 0,

which shows that (2.12) holds.
Next, for any x ∈ K , we prove

∫ 1

0

∫ 1

0
G(t, s)G1(s, τ )a(s)b(τ )x(s)x(τ ) dτ ds

≥
∫ σ2

0

∫ 1

0
G(t, s)G1(s, τ )a+(s)b(τ )x(s)x(τ ) dτ ds, t ∈ J . (2.13)

Noticing
∫ 1

0 G1(t, s)b(s)x(s) ds ≥ 0, ∀t ∈ J , (2.9) and (H5), we obtain

∫ 1

0

∫ 1

0
G(t, s)G1(s, τ )a(s)b(τ )x(s)x(τ ) dτ ds

–
∫ σ2

0

∫ 1

0
G(t, s)G1(s, τ )a+(s)b(τ )x(s)x(τ ) dτ ds

=
∫ ξ

σ2

∫ 1

0
G(t, s)G1(s, τ )a+(s)b(τ )x(s)x(τ ) dτ ds
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–
∫ 1

ξ

∫ 1

0
G(t, s)G1(s, τ )a–(s)b(τ )x(s)x(τ ) dτ ds

≥
∫ ξ

σ2

G(t, s)a+(s)e(s)x(ξ )
∫ 1

0
G1(s, τ )b(τ )x(τ ) dτ ds

–
∫ 1

ξ

G(t, s)a–(s)e(s)x(ξ )
∫ 1

0
G1(s, τ )b(τ )x(τ ) dτ ds

≥
∫ ξ

σ2

G(t, s)a+(s) min
s∈[σ2,ξ ]

e(s)x(ξ )
∫ 1

0
G1(s, τ )b(τ )x(τ ) dτ ds

–
∫ 1

ξ

G(t, s)a–(s) max
s∈[ξ ,1]

e(s)x(ξ )
∫ 1

0
G1(s, τ )b(τ )x(τ ) dτ ds

≥ x(ξ )
σ2

ξ

∫ ξ

σ2

G(t, s)a+(s)
∫ 1

0
G1(s, τ )b(τ )x(τ ) dτ ds

– x(ξ )
∫ 1

ξ

G(t, s)a–(s)
∫ 1

0
G1(s, τ )b(τ )x(τ ) dτ ds

≥ x(ξ )
σ2

ξ

∫ ξ

σ2

G(t, s)a+(s)
∫ 1

0
G1(s, s)G1(τ , τ )b(τ )x(τ ) dτ ds

– x(ξ )
∫ 1

ξ

G(t, s)a–(s)
∫ 1

0
G1(τ , τ )b(τ )x(τ ) dτ ds

= x(ξ )
∫ 1

0
G1(τ , τ )b(τ )x(τ ) dτ

[
σ2

ξ

∫ ξ

σ2

G(t, s)G1(s, s)a+(s) ds –
∫ 1

ξ

G(t, s)a–(s) ds
]

,

which proves that (2.13) holds.
Thirdly, for any x ∈ K , we prove

∫ 1

0
G(t, s)g(s)f

(
x(s)

)
ds ≥

∫ σ3

0
G(t, s)g+(s)f

(
x(s)

)
ds, t ∈ J . (2.14)

In fact, for any t ∈ J and x ∈ K , noticing (2.6), it is obvious that by (H6)–(H8)

∫ 1

0
G(t, s)g(s)f

(
x(s)

)
ds –

∫ σ3

0
G(t, s)g+(s)f

(
x(s)

)
ds

=
∫ ξ

σ3

G(t, s)g+(s)f
(
x(s)

)
ds –

∫ 1

ξ

G(t, s)g–(s)f
(
x(s)

)
ds

≥ μ

∫ ξ

σ3

G(t, s)g+(s)ϕ
(
u(s)

)
ds –

∫ 1

ξ

G(t, s)g–(s)ϕ
(
u(s)

)
ds

≥ μ

∫ ξ

σ3

G(t, s)g+(s)ϕ
(
e(s)u(ξ )

)
ds –

∫ 1

ξ

G(t, s)g–(s)ϕ
(
e(s)u(ξ )

)
ds

≥ μ

∫ ξ

σ3

G(t, s)g+(s)f
(
e(s)u(ξ )

)
ds –

1
μ

∫ 1

ξ

G(t, s)g–(s)f
(
e(s)u(ξ )

)
ds

≥ μ

∫ ξ

σ3

G(t, s)g+(s)k1eα(s)uα(ξ ) ds –
1
μ

∫ 1

ξ

G(t, s)g–(s)k2eα(s)uα(ξ ) ds

≥ μ
[

min
s∈[σ3,ξ ]

e(s)
]α

∫ ξ

σ3

G(t, s)g+(s)k1uα(ξ ) ds
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–
1
μ

[
min

s∈[ξ ,1]
e(s)

]α
∫ 1

ξ

G(t, s)g–(s)k2uα(ξ ) ds

≥ uα(ξ )
[

μk1
σα

3
ξα

∫ ξ

σ3

G(t, s)g+(s) ds

–
1
μ

k2

∫ 1

ξ

G(t, s)g–(s) ds
]

≥ 0.

This proves that (2.14) holds. Thus, for x ∈ K , we get

(Tx)(t) = λ2

∫ 1

0

∫ 1

0
G(t, s)G1(s, τ )a(s)b(τ )x(s)x(τ ) dτ ds

+ λ1

∫ 1

0
G(t, s)g(s)f

(
x(s)

)
ds + λ3

n∑

k=1

G′
s(t, tk)Ik

(
x(tk)

)

≥ λ2

∫ σ2

0
G(t, s)a+(s)x(s)

∫ 1

0
G1(s, τ )b(τ )x(τ ) dτ ds

+ λ1

∫ σ3

0
G(t, s)g+(s)f

(
x(s)

)
ds + λ3

n∑

k=1

G′
s(t, tk)Ik

(
x(tk)

)

≥ 0.

Moreover, by direct calculation, we obtain

(Tx)(0) = 0, (Tx)′(1) = 0,

(Tx)′′(t) = –λ2a+(t)x(t)
∫ 1

0
G1(t, s)b(s)x(s) ds – λ1g+(t)f (x) ≤ 0, t ∈ [0, ξ ],

(Tx)′′(t) = λ2a–(t)x(t)
∫ 1

0
G1(t, s)b(s)x(s) ds + λ1g–(t)f (x) ≥ 0, t ∈ [ξ , 1],

which shows that Tx is concave on [0, ξ ] and convex on [ξ , 1]. It follows that T : K → K .
Finally, by standard methods and Arzelà–Ascoli theorem, one can prove T is completely

continuous. So it is omitted. �

Remark 2.4 The idea of the proof of Lemma 2.3 comes from Theorem 3.1 of [36].

Lemma 2.4 (Theorem 2.3.4 of [49], Fixed point theorem of cone expansion and compres-
sion of norm type) Let �1 and �2 be two bounded open sets in a real Banach space E such
that 0 ∈ �1 and �̄1 ⊂ �2. Let the operator T : P ∩ (�̄2\�1) → P be completely continuous,
where P is a cone in E. Suppose that one of the two conditions

(i) ‖Tx‖ ≤ ‖x‖,∀x ∈ P ∩ ∂�1 and ‖Tx‖ ≥ ‖x‖,∀x ∈ P ∩ ∂�2,
and

(ii) ‖Tx‖ ≥ ‖x‖,∀x ∈ P ∩ ∂�1, and ‖Tx‖ ≤ ‖x‖,∀x ∈ P ∩ ∂�2,
is satisfied. Then T has at least one fixed point in P ∩ (�̄2\�1).
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3 Main results
In this part, applying Lemma 2.4, we get the optimal intervals of positive parameters λi

(i = 1, 2, 3) in which problem (1.1) admits at least two positive solutions.

Theorem 3.1 Assume that (H1)–(H8) hold. Then we have:
(I) If α > 1, then there exist λ∗

1,λ∗
3,λ∗,λ∗ > 0 such that, for λi ∈ [λ∗

i ,∞) (i = 1, 3) and
λ2 ∈ [λ∗,λ∗], problem (1.1) admits at least two positive solutions.

(II) If 0 < α < 1, then there exist λ∗∗
1 ,λ∗∗

2 ,λ∗∗
3 > 0 such that, for λi ∈ (0,λ∗

i ], problem (1.1)
admits at least two positive solutions.

Proof Part (I). Considering the case α > 1, it follows from (H7) that

lim
x→0

f (x)
x

≤ lim
x→0

k2xα

x
= 0, lim

x→0

Ik(x)
x

≤ lim
x→0

l2xα

x
= 0,

which shows that there exists r′ > 0 such that

f (x) ≤ ε1x, Ik(x) ≤ ε2x, k = 1, 2, . . . , n, x ∈ [
0, r′],

where ε1, ε2 satisfy

3λ1ε1

∫ ξ

0
g+(s) ds < 1, 3nλ3ε2 < 1. (3.1)

Let

A = λ2

∫ ξ

0

∫ ξ

0
G1(s, τ )a+(s)b+(τ ) dτ ds, (3.2)

A∗ =
∫ ξ

0

∫ ξ

0
G1(s, τ )a+(s)b+(τ ) dτ ds, (3.3)

and choose r = min{(3A)–1, r′
2 }. This implies λ2 ≤ 1

3A∗r .
Then, for any x ∈ K ∩ ∂�r , noticing (2.6), we get

(Tx)(t) = λ2

∫ 1

0

∫ 1

0
G(t, s)G1(s, τ )a(s)b(τ )x(s)x(τ ) dτ ds

+ λ1

∫ 1

0
G(t, s)g(s)f

(
x(s)

)
ds + λ3

n∑

k=1

G′
s(t, tk)Ik

(
x(tk)

)

= λ2

∫ ξ

0

∫ 1

0
G(t, s)G1(s, τ )a+(s)b(τ )x(s)x(τ ) dτ ds

– λ2

∫ 1

ξ

∫ 1

0
G(t, s)G1(s, τ )a–(s)b(τ )x(s)x(τ ) dτ ds

+ λ1

∫ ξ

0
G(t, s)g+(s)f

(
x(s)

)
ds – λ1

∫ 1

ξ

G(t, s)g–(s)f
(
x(s)

)
ds

+ λ3

n∑

k=1

G′
s(t, tk)Ik

(
x(tk)

)
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≤ λ2

∫ ξ

0

∫ 1

0
G(t, s)G1(s, τ )a+(s)b(τ )x(s)x(τ ) dτ ds

+ λ1

∫ ξ

0
G(t, s)g+(s)f

(
x(s)

)
ds + λ3

n∑

k=1

G′
s(t, tk)Ik

(
x(tk)

)

= λ2

∫ ξ

0

∫ ξ

0
G(t, s)G1(s, τ )a+(s)b+(τ )x(s)x(τ ) dτ ds

– λ2

∫ ξ

0

∫ ξ

0
G(t, s)G1(s, τ )a+(s)b–(τ )x(s)x(τ ) dτ ds

+ λ1

∫ ξ

0
G(t, s)g+(s)f

(
x(s)

)
ds + λ3

n∑

k=1

G′
s(t, tk)Ik

(
x(tk)

)

≤ λ2

∫ ξ

0

∫ ξ

0
G(s, s)G1(s, τ )a+(s)b+(τ )x(s)x(τ ) dτ ds

+ λ1

∫ ξ

0
G(s, s)g+(s)f

(
x(s)

)
ds + λ3

n∑

k=1

Ik
(
x(tk)

)

≤ λ2ξ

∫ ξ

0

∫ ξ

0
G1(s, τ )a+(s)b+(τ )x(s)x(τ ) dτ ds + λ1ξ

∫ ξ

0
g+(s)f

(
x(s)

)
ds

+ λ3

n∑

k=1

Ik
(
x(tk)

)

< λ2

∫ ξ

0

∫ ξ

0
G1(s, τ )a+(s)b+(τ )x(s)x(τ ) dτ ds + λ1

∫ ξ

0
g+(s)ε1x(s) ds

+ λ3

n∑

k=1

ε2x(tk)

≤ λ2

∫ ξ

0

∫ ξ

0
G1(s, τ )a+(s)b+(τ ) dτ ds‖x‖2

PC + λ1ε1

∫ ξ

0
g+(s) ds‖x‖PC

+ λ3nε2‖x‖PC

<
1
3
‖x‖PC +

1
3
‖x‖PC +

1
3
‖x‖PC

= ‖x‖PC , (3.4)

which shows that

‖Tx‖PC < ‖x‖PC , ∀x ∈ K ∩ ∂�r . (3.5)

On the other hand, noticing that α > 1, then it follows from (H7) that

lim
x→∞

f (x)
x

≥ lim
x→∞

k1xα

x
= ∞, lim

x→∞
Ik(x)

x
≥ lim

x→∞
l1xα

x
= ∞,

which shows that there exists R′ > 0 such that

f (x) ≥ ε3x, Ik(x) ≥ ε4x, x ≥ R′,
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where ε3, ε4 satisfy

3σ2

2
λ1ε3�

∫ σ3

σ3
2

G(s, s)g+(s) ds > 1, 3λ3ε4� > 1,

� = min
σ3
2 ≤t≤σ3

δ(t) > 0, δ(t) = min

{
t
ξ

,
ξ – t

ξ

}

, t ∈ [0, ξ ].
(3.6)

If x ∈ K , then from the concavity on [0, ξ ], it follows that

x(t) ≥ δ(t)‖x‖PC , t ∈ [0, ξ ]. (3.7)

Let B and B∗ denote the following constants:

B = λ2
σ2

2
min

σ2
2 ≤t≤σ2

δ(t) min
σ1
2 ≤t≤σ1

δ(t)
∫ σ2

σ2
2

∫ σ1

σ1
2

G(s, s)G1(s, τ )a+(s)b+(τ ) dτ ds > 0, (3.8)

B∗ =
σ2

2
min

σ2
2 ≤t≤σ2

δ(t) min
σ1
2 ≤t≤σ1

δ(t)
∫ σ2

σ2
2

∫ σ1

σ1
2

G(s, s)G1(s, τ )a+(s)b+(τ ) dτ ds > 0. (3.9)

Noticing that, for all d ∈ (0, ξ ), min d
2 ≤t≤d δ(t) = min{ d

2ξ
, ξ–d

ξ
} > 0, B and B∗ are defined

well.
Setting R = max{(3B)–1, R′

�
, r′} + 1, it follows that λ2 > λ′

2 = 1
3B∗R , and then for any x ∈

K ∩ ∂�R, we get

min
σ3
2 ≤t≤σ3

x(t) ≥ min
σ3
2 ≤t≤σ3

δ(t)‖x‖PC ≥ �R > R′.

Then it follows from (2.6), (2.9), (3.8), and (3.9) that

‖Tx‖PC = max
t∈J

{

λ2

∫ 1

0

∫ 1

0
G(t, s)G1(s, τ )a(s)b(τ )x(s)x(τ ) dτ ds

+ λ1

∫ 1

0
G(t, s)g(s)f

(
x(s)

)
ds + λ3

n∑

k=1

G′
s(t, tk)Ik

(
x(tk)

)
}

≥ max
t∈J

{

λ2

∫ σ2

0
G(t, s)a+(s)x(s)

∫ 1

0
G1(s, τ )b(τ )x(τ ) dτ ds

+ λ1

∫ σ3

0
G(t, s)g+(s)f

(
x(s)

)
ds + λ3

n∑

k=1

G′
s(t, tk)Ik

(
x(tk)

)
}

≥ λ2 min
σ2
2 ≤t≤σ2

∫ σ2

σ2
2

G(t, s)a+(s)x(s)
∫ σ1

σ1
2

G1(s, τ )b+(τ )x(τ ) dτ ds

+ min
σ2
2 ≤t≤σ2

λ1

∫ σ3

σ3
2

G(t, s)g+(s)f
(
x(s)

)
ds + λ3 min

σ3≤t≤ξ

∑

t
2 <tk <t

Ik
(
x(tk)

)

≥ λ2
σ2

2

∫ σ2

σ2
2

G(s, s)a+(s)δ(s)‖x‖PC

∫ σ1

σ1
2

G1(s, τ )b+(τ )δ(τ )‖x‖PC dτ ds

+ λ1
σ2

2

∫ σ3

σ3
2

G(s, s)g+(s)ε3x(s) ds + λ3
∑

σ3
2 <tk<σ3

ε4x(tk)
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≥ λ2
σ2

2

∫ σ2

σ2
2

G(s, s)a+(s)δ(s)‖x‖PC

∫ σ1

σ1
2

G1(s, τ )b+(τ )δ(τ )‖x‖PC dτ ds

+ λ1
σ2

2

∫ σ3

σ3
2

G(s, s)g+(s)ε3x(s) ds + λ3ε4
∑

σ3
2 <t1<σ3

x(t1)

≥ B‖x‖2
PC + λ1

σ2

2
ε3 min

σ3
2 ≤t≤σ3

δ(t)
∫ σ3

σ3
2

G(s, s)g+(s) ds‖x‖PC

+ λ3ε4 min
σ3
2 ≤t≤σ3

δ(t)‖x‖PC

>
1
3
‖x‖PC +

1
3
‖x‖PC +

1
3
‖x‖PC

= ‖x‖PC .

Consequently,

‖Tx‖PC > ‖x‖PC , x ∈ K ∩ ∂�R. (3.10)

Let

λ∗
1 =

(6DA∗ – 2B∗)η
3DA∗σ2ση

∫ σ3
σ3
2

G(s, s)g+(s) ds
, λ∗

2 =
1
2

3DA∗η
, λ∗

3 =
B∗
2 η

3DA∗σ ∗
η

,

where 0 < η < r, D = r2

η2 , A∗ is defined in (3.3), and B∗ is defined in (3.9).
We define ση and σ ∗

η by

ση = min
�η≤x≤η

{
f (x)

}
> 0, σ ∗

η = min{mk , k = 1, 2, . . . , n} > 0,

mk = min
�η≤x≤η

{
Ik(x)

}
, k = 1, 2, . . . , n,

where � is defined in (3.6). Noticing (H2) and (H3), then ση and σ ∗
η are defined well and

ση > 0, σ ∗
η > 0. So, for any x ∈ K ∩ ∂�η , we get

�η ≤ �‖x‖PC ≤ min
σ3
2 ≤t≤σ3

x(t) ≤ x(t) ≤ η,
σ3

2
≤ t ≤ σ3,

and hence, it follows from (2.6), (2.7), (3.7), and (3.9) that

‖Tx‖PC = max
t∈J

{

λ2

∫ 1

0

∫ 1

0
G(t, s)G1(s, τ )a(s)b(τ )x(s)x(τ ) dτ ds

+ λ1

∫ 1

0
G(t, s)g(s)f

(
x(s)

)
ds + λ3

n∑

k=1

G′
s(t, tk)Ik

(
x(tk)

)
}

≥ max
t∈J

{

λ2

∫ σ2

0
G(t, s)a+(s)x(s)

∫ 1

0
G1(s, τ )b(τ )x(τ ) dτ ds

+ λ1

∫ σ3

0
G(t, s)g+(s)f

(
x(s)

)
ds + λ3

n∑

k=1

G′
s(t, tk)Ik

(
x(tk)

)
}
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≥ λ2 min
σ2
2 ≤t≤σ2

∫ σ2

σ2
2

G(t, s)a+(s)x(s)
∫ σ1

σ1
2

G1(s, τ )b+(τ )x(τ ) dτ ds

+ min
σ2
2 ≤t≤σ2

λ1

∫ σ3

σ3
2

G(t, s)g+(s)f
(
x(s)

)
ds + λ3 min

σ3≤t≤ξ

∑

t
2 <tk <t

Ik
(
x(tk)

)

≥ λ2
σ2

2

∫ σ2

σ2
2

G(s, s)a+(s)δ(s)‖x‖PC

∫ σ1

σ1
2

G1(s, τ )b+(τ )δ(τ )‖x‖PC dτ ds

+ λ1
σ2

2

∫ σ3

σ3
2

G(s, s)g+(s)ση ds + λ3
∑

σ3
2 <tk <σ3

σ ∗
η

≥ λ2
σ2

2

∫ σ2

σ2
2

G(s, s)a+(s)δ(s)‖x‖PC

∫ σ1

σ1
2

G1(s, τ )b+(τ )δ(τ )‖x‖PC dτ ds

+ λ1
σ2

2

∫ σ3

σ3
2

G(s, s)g+(s)ση ds + λ3σ
∗
η

≥ λ∗
2B∗‖x‖2

PC + λ∗
1
σ2

2
ση

∫ σ3

σ3
2

G(s, s)g+(s) ds + λ∗
3σ

∗
η

=
B∗
2

3DA∗ ‖x‖PC +
3DA∗ – B∗

3DA∗ ‖x‖PC +
B∗
2

3DA∗ ‖x‖PC

= ‖x‖PC .

This shows

‖Tx‖PC > ‖x‖PC , x ∈ K ∩ ∂�η. (3.11)

Let λ∗ = max{λ′
2,λ∗

2}, λ∗ = 1
3A∗r , then, for λi ∈ [λ∗

i , +∞), i = 1, 3, and λ2 ∈ [λ∗,λ∗], applying
Lemma 2.4 to (3.5), (3.10), and (3.11) yields that T has two fixed points x1 and x2 satisfying
x1 ∈ K ∩ (�̄R \ �̄r), x2 ∈ K ∩ (�r \ �η). Thus it follows from Remark 2.3 that problem
(1.1) admits at least two positive solutions (xi, yi) (i = 1, 2) with x1 ∈ K ∩ (�̄R \ �̄r), x2 ∈
K ∩ (�r \ �η), and

y1(t) = λ2

∫ 1

0
G1(t, s)b(s)x1(s) ds,

y2(t) = λ2

∫ 1

0
G1(t, s)b(s)x2(s) ds.

Part (II). Next turning to 0 < α < 1, it follows from (H7) that

lim
x→0

f (x)
x

≥ lim
x→0

k1xα

x
= +∞,

lim
x→0

Ik(x)
x

≥ lim
x→0

l1xα

x
= +∞,

which shows that there exists a positive constant r > 0 such that

f (x) ≥ ε5x, Ik(x) ≥ ε6x, k = 1, 2, . . . , n, 0 ≤ x ≤ r,



Jiao and Zhang Advances in Difference Equations  (2018) 2018:158 Page 15 of 24

where ε5, ε6 satisfy

λ1σ2ε5 min
σ3
2 ≤t≤σ3

δ(t)
∫ σ3

σ3
2

G(s, s)g+(s) ds > 1, 2λ3ε6 min
σ3
2 ≤t≤σ3

δ(t) > 1,

where δ(t) is defined in (3.6), and A is defined in (3.2).
Therefore, for any x ∈ K ∩ ∂�r , noticing (3.7), we get

‖Tx‖PC = max
t∈J

{

λ2

∫ 1

0

∫ 1

0
G(t, s)G1(s, τ )a(s)b(τ )x(s)x(τ ) dτ ds

+ λ1

∫ 1

0
G(t, s)g(s)f

(
x(s)

)
ds + λ3

n∑

k=1

G′
s(t, tk)Ik

(
x(tk)

)
}

≥ max
t∈J

{

λ2

∫ σ2

0
G(t, s)a+(s)x(s)

∫ 1

0
G1(s, τ )b(τ )x(τ ) dτ ds

+ λ1

∫ σ3

0
G(t, s)g+(s)f

(
x(s)

)
ds + λ3

n∑

k=1

G′
s(t, tk)Ik

(
x(tk)

)
}

≥ λ2 min
σ2
2 ≤t≤σ2

∫ σ2

σ2
2

G(t, s)a+(s)x(s)
∫ σ1

σ1
2

G1(s, τ )b+(τ )x(τ ) dτ ds

+ min
σ2
2 ≤t≤σ2

λ1

∫ σ3

σ3
2

G(t, s)g+(s)f
(
x(s)

)
ds + λ3 min

σ3≤t≤ξ

∑

t
2 <tk <t

Ik
(
x(tk)

)

≥ λ2
σ2

2

∫ σ2

σ2
2

G(s, s)a+(s)δ(s)‖x‖PC

∫ σ1

σ1
2

G1(s, τ )b+(τ )δ(τ )‖x‖PC dτ ds

+ λ1
σ2

2

∫ σ3

σ3
2

G(s, s)g+(s)ε5x(s) ds + λ3
∑

σ3
2 <tk<σ3

ε6x(tk)

≥ λ1
σ2

2

∫ σ3

σ3
2

G(s, s)g+(s)ε5x(s) ds + λ3ε6
∑

σ3
2 <t1<σ3

x(t1)

≥ λ1
σ2

2
ε5 min

σ3
2 ≤t≤σ3

δ(t)
∫ σ3

σ3
2

G(s, s)g+(s) ds‖x‖PC + λ3ε6 min
σ3
2 ≤t≤σ3

δ(t)‖x‖PC

>
1
2
‖x‖PC +

1
2
‖x‖PC

= ‖x‖PC .

Consequently,

‖Tx‖PC > ‖x‖PC , x ∈ K ∩ ∂�r . (3.12)

On the other hand, notice that 0 < α < 1, then it follows from (H7) that

lim
x→∞

f (x)
x

≤ lim
x→∞

k2xα

x
= 0, lim

x→∞
Ik(x)

x
≤ lim

x→∞
l2xα

x
= 0,
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which shows that there exists R′ > r such that

f (x) ≤ ε7x, Ik(x) ≤ ε8x, x ≥ R′,

where ε7, ε8 satisfy

5λ1ε7

∫

D(x)
g+(s) ds < 1, 5λ3nε8 < 1.

Let

M = λ1 max
‖x‖PC =R′ f (x)

∫ ξ

0
g+(s) ds, M′ = λ1n max

‖x‖PC =R′ Ik(x).

Then it is not difficult to see that M < +∞ and M′ < +∞.
Choosing max{R′, 5M, 5M′} < R < (5A)–1, then M < R

5 , M′ < R
5 .

Now, choosing x ∈ K ∩ ∂�R arbitrarily and letting x̄(t) = min{x(t), R′}, then x̄(t) ≤ R′.
Moreover, write D(x) = {t ∈ [0, ξ ] : x(t) > R′}. Therefore, for t ∈ D(x), we get R′ < x(t) ≤
‖x‖PC = R, ∀t ∈ D(x). By the choice of R′, for t ∈ D(x), we have f (x) ≤ ε1R.

Similarly, one can define D′(x) = {tk ∈ J : x(tk) > R′}. Then, for tk ∈ D′(x), we get R′ <
x(tk) ≤ ‖x‖PC = R, ∀t ∈ D′(x). By the choice of R′, for tk ∈ D′(x), we get Ik(x(tk)) ≤ ε2R,
k = 1, 2, . . . , n.

Therefore, for any x ∈ K ∩ ∂�R, we get

(Tx)(t) = λ2

∫ 1

0

∫ 1

0
G(t, s)G1(s, τ )a(s)b(τ )x(s)x(τ ) dτ ds

+ λ1

∫ 1

0
G(t, s)g(s)f

(
x(s)

)
ds + λ3

n∑

k=1

G′
s(t, tk)Ik

(
x(tk)

)

= λ2

∫ ξ

0

∫ 1

0
G(t, s)G1(s, τ )a+(s)b(τ )x(s)x(τ ) dτ ds

– λ2

∫ 1

ξ

∫ 1

0
G(t, s)G1(s, τ )a–(s)b(τ )x(s)x(τ ) dτ ds

+ λ1

∫ ξ

0
G(t, s)g+(s)f

(
x(s)

)
ds – λ1

∫ 1

ξ

G(t, s)g–(s)f
(
x(s)

)
ds

+ λ3

n∑

k=1

G′
s(t, tk)Ik

(
x(tk)

)

≤ λ2

∫ ξ

0

∫ 1

0
G(t, s)G1(s, τ )a+(s)b(τ )x(s)x(τ ) dτ ds

+ λ1

∫ ξ

0
G(t, s)g+(s)f

(
x(s)

)
ds + λ3

n∑

k=1

G′
s(t, tk)Ik

(
x(tk)

)

= λ2

∫ ξ

0

∫ ξ

0
G(t, s)G1(s, τ )a+(s)b+(τ )x(s)x(τ ) dτ ds

– λ2

∫ ξ

0

∫ ξ

0
G(t, s)G1(s, τ )a+(s)b–(τ )x(s)x(τ ) dτ ds
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+ λ1

∫ ξ

0
G(t, s)g+(s)f

(
x(s)

)
ds + λ3

n∑

k=1

G′
s(t, tk)Ik

(
x(tk)

)

≤ λ2

∫ ξ

0

∫ ξ

0
G(s, s)G1(s, τ )a+(s)b+(τ )x(s)x(τ ) dτ ds

+ λ1

∫ ξ

0
G(s, s)g+(s)f

(
x(s)

)
ds + λ3

n∑

k=1

Ik
(
x(tk)

)

≤ λ2ξ

∫ ξ

0

∫ ξ

0
G1(s, τ )a+(s)b+(τ )x(s)x(τ ) dτ ds + λ1ξ

∫ ξ

0
g+(s)f

(
x(s)

)
ds

+ λ3

n∑

k=1

Ik
(
x(tk)

)

< λ2

∫ ξ

0

∫ ξ

0
G1(s, τ )a+(s)b+(τ )x(s)x(τ ) dτ ds + λ1

∫

D(x)
g+(s)f

(
x(s)

)
ds

+ λ1

∫

[0,ξ ]\D(x)
g+(s)f

(
x(s)

)
ds + λ3

∑

tk∈D′(x)

Ik
(
x(tk)

)

+ λ3
∑

tk∈J\D′(x)

Ik
(
x(tk)

)

≤ λ2

∫ ξ

0

∫ ξ

0
G1(s, τ )a+(s)b+(τ )x(s)x(τ ) dτ ds + λ1

∫

D(x)
g+(s)f

(
x(s)

)
ds

+ λ1

∫ ξ

0
g+(s)f

(
x̄(s)

)
ds + λ3

∑

tk∈D′(x)

Ik
(
x(tk)

)
+ λ3

n∑

k=1

Ik
(
x̄(tk)

)

≤ λ2

∫ ξ

0

∫ ξ

0
G1(s, τ )a+(s)b+(τ ) dτ ds‖x‖2

PC + λ1ε7

∫

D(x)
g+(s) ds‖x‖PC

+ M + λ3nε8‖x‖PC + M′

<
1
5
‖x‖PC +

1
5
‖x‖PC +

1
5
‖x‖PC +

1
5
‖x‖PC +

1
5
‖x‖PC

= ‖x‖PC , (3.13)

which shows that

‖Tx‖PC < ‖x‖PC , ∀x ∈ K ∩ ∂�R. (3.14)

Let

λ∗∗
1 =

η

3Mη

∫ ξ

0 g+(s) ds
, λ∗∗

2 =
1

3A∗R
<

1
3A∗η

, λ∗∗
3 =

η

3nM∗
η

,

where 0 < η < r, and A∗ is defined in (3.3).
We define Mη and M∗

η by

Mη = max
0≤x≤η

{
f (x)

}
> 0, M∗

η = max{mk , k = 1, 2, . . . , n} > 0,

mk = min
0≤x≤η

{
Ik(x)

}
, k = 1, 2, . . . , n.
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Noticing (H2) and (H3), then Mη and M∗
η are defined well and Mη > 0, M∗

η > 0. So, for any
x ∈ K ∩ ∂�η , similar to the proof of (3.4), we get

‖Tx‖PC ≤ λ2

∫ ξ

0

∫ ξ

0
G(s, τ )a+(s)b+(τ )x(s)x(τ ) dτ ds

+ λ1

∫ ξ

0
g+(s)f

(
x(s)

)
ds + λ3

n∑

k=1

Ik
(
x(tk)

)

≤ λ2‖x‖2
PCA∗ + λ1

∫ ξ

0
g+(s) dsMη + nλ3M∗

η

≤ λ∗∗
2 ‖x‖2

PCA∗ + λ∗∗
1

∫ ξ

0
g+(s) dsMη + nλ∗∗

3 M∗
η

≤ 1
3
‖x‖PC +

1
3
‖x‖PC +

1
3
‖x‖PC

= ‖x‖PC ,

which shows

‖Tx‖PC ≤ ‖x‖PC , x ∈ K ∩ ∂�η. (3.15)

Therefore, applying Lemma 2.4 to (3.12), (3.14), and (3.15) yields T has two fixed points
x1 and x2 satisfying x1 ∈ K ∩ (�̄R \ �̄r), x2 ∈ K ∩ (�r \�η). Thus it follows from Remark 2.3
that problem (1.1) admits at least two positive solutions (xi, yi) (i = 1, 2) with x1 ∈ K ∩ (�̄R \
�̄r), x2 ∈ K ∩ (�r \ �η), and

y1(t) = λ2

∫ 1

0
G1(t, s)b(s)x1(s) ds,

y2(t) = λ2

∫ 1

0
G1(t, s)b(s)x2(s) ds.

The proof of Theorem 3.1 is complete. �

4 Remarks and comments
In this section, we offer some remarks and comments on the associated problem (1.1).

Remark 4.1 It is not difficult to see that the details of the proof of (3.4), (3.10) are very
different from those of (3.12) and (3.13), respectively. And the idea to prove (3.13) comes
from Theorem 3.2 of [50].

Remark 4.2 Some ideas of dealing with parameters in Theorem 3.1 come from Theorems
2.1–2.4 in [51], but there are very few papers in the literature considering the multiplicity
of positive solutions for second-order impulsive differential system, especially under the
case the weight functions a(t), b(t), and g(t) change sign on [0, 1].

Remark 4.3 It is not difficult to see that conditions (H2), (H3), and (H7) play an important
role in the proof of Theorem 3.1, and there are many functions satisfying (H2), (H3), and
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(H7), for example,

f (x) = xα , Ik(x) = xα , k = 1, 2, . . . , n, 0 < α < +∞.

Remark 4.4 If we respectively replace conditions (H2) and (H3) by
(H ′

2) f ∈ C(R+,R+),
(H ′

3) Ik ∈ C(R+,R+),
then we cannot guarantee ση > 0, σ ∗

η > 0, Mη > and M∗
η > 0, which are respectively defined

in Theorem 3.1. Further, we cannot obtain the results of Theorem 3.1.

Remark 4.5 Similarly, one can consider the multiplicity of positive solutions for the fol-
lowing nonlocal impulsive systems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–x′′ = a(t)xy + λ1g(t)f (x), 0 < t < 1, t �= tk ,

–y′′ = λ2b(t)x, 0 < t < 1,

�x|t=tk = λ3Ik(x(tk)),

�x′|t=tk = 0, k = 1, 2, . . . , n,

x(0) = 0, x′(1) = 0,

y(0) = 0, y′(1) = 0,

(4.1)

where λ1 > 0, λ2 > 0, and λ3 > 0 are three parameters, a(t), b(t), g(t) change sign on [0, 1].
On the other hand, we conjecture that the conclusion in Theorem 3.1 holds for the fol-

lowing systems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–x′′ = a(t)xy + λ1g(t)f (x), 0 < t < 1, t �= tk ,

–y′′ = λ2b(t)x, 0 < t < 1,

–�x′|t=tk = λ3Ik(x(tk)), k = 1, 2, . . . , n,

x(0) = 0, x′(1) = 0,

y(0) = y(1) = 0,

(4.2)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–x′′ = a(t)xy + λ1g(t)f (x), 0 < t < 1, t �= tk ,

–y′′ = λ2b(t)x, 0 < t < 1,

–�x′|t=tk = λ3Ik(x(tk)), k = 1, 2, . . . , n,

x(0) = 0, x′(1) = 0,

y(0) = 0, y′(1) = 0,

(4.3)

where λ1 > 0, λ2 > 0, and λ3 > 0 are three parameters, a(t), b(t), g(t) change sign on [0, 1].



Jiao and Zhang Advances in Difference Equations  (2018) 2018:158 Page 20 of 24

5 An example
Example 5.1 Let n = 1, t1 = 1

5 . Consider the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–x′′ = a(t)xy + λ1g(t)
√

x, 0 < t < 1, t �= 1
5 ,

–y′′ = λ2b(t)x, 0 < t < 1,

�x|t= 1
5

= λ3I1(x( 1
5 )),

�x′|t= 1
5

= 0,

x(0) = 0, x′(1) = 0,

y(0) = y(1) = 0,

(5.1)

where I1(x) =
√

x and

b(t) =

⎧
⎨

⎩

128
3 ( 1

3 – t), t ∈ [0, 1
3 ],

– 1
16 (t – 1

3 ), t ∈ [ 1
3 , 1],

a(t) =

⎧
⎨

⎩

2048
3 ( 1

3 – t), t ∈ [0, 1
3 ],

– 1
16 (t – 1

3 ), t ∈ [ 1
3 , 1],

g(t) =

⎧
⎨

⎩

64√
3 ( 1

3 – t), t ∈ [0, 1
3 ],

– 1
16 (t – 1

3 ), t ∈ [ 1
3 , 1].

Firstly, we give a result which is similar to that of Proposition 2.3 in [36]. Consider the
following boundary value problems:

⎧
⎨

⎩

–x′′ = k(t)xα , 0 < t < 1,

x(0) = 0, x′(1) = 0,
(5.2)

⎧
⎨

⎩

–x′′ = k(t)xα , 0 < t < 1,

x(0) = x(1) = 0,
(5.3)

where α > 0 with α �= 1, k(t) satisfies the changing sign condition

⎧
⎨

⎩

k(t) ≥ 0, t ∈ [0, ξ ],

k(t) ≤ 0, t ∈ [ξ , 1],

and

c1xα ≤ f (x) = xα ≤ c2xα , c1, c2 > 0.

If there exists 0 < σ < ξ such that

c1
ξ – σ

1 – ξ
σα+1μ2k+

(

ξ –
ξ – σ

1 – ξ
τ

)

≥ c2ξ
αk–(ξ + τ ), τ ∈ [0, 1 – ξ ], (5.4)
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then the following inequalities hold:

σαμ2
∫ ξ

σ

G(t, s)k+(s) ds ≥ c2

c1
ξα

∫ 1

ξ

G(t, s)k–(s) ds, (5.5)

σαμ2
∫ ξ

σ

G1(t, s)k+(s) ds ≥ c2

c1
ξα

∫ 1

ξ

G1(t, s)k–(s) ds. (5.6)

Next, we study the multiplicity of positive solutions of problem (5.1). From definitions
of a(t), b(t), and g(t), we know that ξ = 1

3 .
Step 1. We show that (H4) holds. For fixed c1 = c2 = 1, σ1 = 1

4 , μ = 1, and α = 1, (5.4) is
equivalent to the following inequality:

3
128

b+
(

1
3

–
1
8
τ

)

≥ b–
(

1
3

+ τ

)

, τ ∈
[

0,
2
3

]

.

Letting 1
3 – 1

8τ = ζ , then the above inequality is equivalent to

3
128

b+(ζ ) ≥ b–(3 – 8ζ ), ζ ∈
[

1
4

,
1
3

]

.

By the definition of b(t), the above inequality holds obviously. It is clear that by (5.6), (H4)
is reasonable.

Step 2. We show that (H5) holds. Similar to the arguments in Step 1, letting c1 = 1, c2 = 16,
σ2 = 1

4 , μ = 1, and α = 1, then by (5.5) we get

1
4

∫ 1
3

1
4

G(t, s)a+(s) ds ≥ 16
3

∫ 1

1
3

G(t, s)a–(s) ds.

Further, from the above inequality, it follows that

1
4

∫ 1
3

1
4

G(t, s)
3

16
a+(s) ds ≥

∫ 1

1
3

G(t, s)a–(s) ds

⇔ 1
4

∫ 1
3

1
4

G(t, s)
(

min
s∈[ 1

4 , 1
3 ]

G1(s, s)
)

a+(s) ds ≥
∫ 1

1
3

G(t, s)a–(s) ds

⇒ 1
4

∫ 1
3

1
4

G(t, s)G1(s, s)a+(s) ds ≥
∫ 1

1
3

G(t, s)a–(s) ds

⇒ 1
4

∫ 1
3

1
4

G(t, s)G1(s, s)a+(s) ds >
1
3

∫ 1

1
3

G(t, s)a–(s) ds.

So, (H5) holds.
Step 3. Similar to the arguments in Step 1, letting c1 = c2 = 1, σ3 = 1

4 , μ = 1, and α = 1
2 ,

then (H8) holds.
Step 4. It is easy to see by direct calculation that

∫ ξ

0
g+(s) ds =

∫ 1
3

0

64√
3

(
1
3

– s
)

ds =
32

9
√

3
,
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A∗ =
∫ ξ

0

∫ ξ

0
G1(s, τ )a+(s)b+(τ ) dτ ds =

∫ 1
3

0
a+(s)

∫ 1
3

0
G1(s, τ )b+(τ ) dτ ds

=
∫ 1

3

0
a+(s)

[∫ s

0
τ (1 – s)b+(τ ) dτ +

∫ 1
3

s
s(1 – τ )b+(τ ) dτ

]

ds =
4,325,376
885,735

.

Let η = 1, r = 2, and R = 10. Then we have

Mη = max
0≤x≤1

{√x} = 1, M∗
η = max

{
m∗

k , k = 1, 2, . . . , n
}

= 1,

mk = max
0≤x≤1

{√x} = 1, k = 1, 2, . . . , n.

Therefore, we get

λ∗∗
1 =

η

3Mη

∫ ξ

0 g+(s) ds
≈ 0.1623, λ∗∗

2 =
1

3A∗R
≈ 0.0068,

λ∗∗
3 =

η

3nM∗
η

≈ 0.3333.

Hence, all conditions of (II) of Theorem 3.1 hold. Thus by (II) of Theorem 3.1, problem
(5.1) admits at least two positive solutions for 0 < λ1 ≤ 0.1623, 0 < λ2 ≤ 0.0068, and 0 <
λ3 ≤ 0.3333.
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