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Abstract
This paper investigates the existence of denumerably many positive solutions and
two infinite families of positive solutions for the n-dimensional higher-order fractional
differential system Dα

0+x(t) + λg(t)f(t,x(t)) = 0, 0 < t < 1. The vector-valued function x is
defined by x = [x1, x2, . . . , xn]�, g(t) = diag[g1(t),g2(t), . . . ,gn(t)], where gi ∈ Lp[0, 1] for
some p ≥ 1, i = 1, 2, . . . ,n, and has infinitely many singularities in [0, 12 ). Our methods
employ the fixed point theorems combined with the partially ordered structure of a
Banach space.
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1 Introduction
Fractional differential equations, which provide a natural description of memory and
hereditary properties of various materials and processes, are regarded as an important
mathematical tool for better understanding of many real world problems in applied sci-
ences, such as physics, chemistry, aerodynamics, Bode’s analysis of feedback amplifiers,
capacitor theory, electrical circuits and so on. This is the main advantage of fractional
differential equations in comparison with classical integer-order models. For applications
and explanations of fractional differential equations, we refer the reader to the texts [1–4].
In particular, many authors have shown great interest in the subject of fractional-order
boundary value problems (BVPs), and many excellent results for BVPs equipped with dif-
ferent kinds of boundary conditions have been obtained, for more details and examples,
see [5–23] and the references cited therein.

Moreover, Alsulami, Ntouyas, Agarwal, Ahmad and Alsaedi [24] pointed out that frac-
tional differential system constitute an important and interesting field of investigation
because of their applications in many real world problems such as anomalous diffu-
sion [25], disease models [26–28], ecological models [29], synchronization of chaotic
systems [30–32] and so forth. For some theoretical work on the fractional differential
system, we refer the reader to [33–41]. However, it is not difficult to see that there
are only a few results on n-dimensional fractional differential systems; for example, see
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[42, 43], especially for n-dimensional higher-order singular fractional differential sys-
tems.

At the same time, we notice that a class of boundary value problem with integral bound-
ary conditions have attracted the attention of Boucherif [44], Zhang et al. [45, 46], Hao et
al. [47], Jiang et al. [48, 49], Kong [50], Feng et al. [51], Ahmad et al. [52], Mao et al. [53],
and Liu et al. [54, 55].

To the best of our knowledge, in the literature there are not articles on denumer-
ably many positive solutions for the analogous of n-dimensional higher-order singular
fractional differential with integral boundary conditions. More precisely, the study of
gi ∈ Lp[0, 1] for some p ≥ 1, i = 1, 2, . . . , n, and having infinitely many singularities in [0, 1

2 ),
is still open for the following n-dimensional higher-order singular fractional differential
system:

Dα
0+ x(t) + λg(t)f

(
t, x(t)

)
= 0, 0 < t < 1 (1.1)

with the following boundary conditions:

⎧
⎨

⎩
x(0) = x′(0) = · · · = x(n–2)(0) = 0,

ax(1) + bx′(1) =
∫ 1

0 h(t)x(t) dt,
(1.2)

where Dα
0+ is the standard Riemann–Liouville fractional derivative of order n – 1 < α ≤ n,

n ≥ 3, λ is a positive parameter, a > 0, b ≥ 0 and a > (α – 1)b. In addition,

x = [x1, x2, . . . , xn]�,

g(t) = diag
[
g1(t), g2(t), . . . , gn(t)

]
,

f(t, x) =
[
f1(t, x), f2(t, x), . . . , fi(t, x), . . . , fn(t, x)

]�,

h(t) = diag
[
h1(t), h2(t), . . . , hn(t)

]
,

where

fi(t, x) = fi(t, x1, x2, . . . , xi, . . . , xn).

Therefore, system (1.1) means that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dα
0+ x1(t) = λg1(t)f1(t, x1(t), x2(t), . . . , xn(t)), 0 < t < 1,

–Dα
0+ x2(t) = λg2(t)f2(t, x1(t), x2(t), . . . , xn(t)), 0 < t < 1,

· · · · · · ,

–Dα
0+ xn(t) = λgn(t)fn(t, x1(t), x2(t), . . . , xn(t)), 0 < t < 1,

(1.3)
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(1.2) means that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(0) = x′

1(1) = · · · = x(n–2)
1 (t) = 0,

ax1(1) + bx′
1(1) =

∫ 1
0 h1(t)x1(t) dt,

x′
2(0) = x′

2(1) = · · · = x(n–2)
2 (t) = 0,

ax2(1) + bx′
2(1) =

∫ 1
0 h2(t)x2(t) dt,

· · · ,

x′
n(0) = x′

n(1) = · · · = x(n–2)
n (t) = 0,

axn(1) + bx′
n(1) =

∫ 1
0 hn(t)xn(t) dt.

(1.4)

Here we emphasize that our problem is new in the sense of the n-dimensional higher-
order singular fractional differential systems introduced here. To the best of our knowl-
edge, the existence of single or multiple positive solutions for n-dimensional higher-order
singular fractional differential system (1.1)–(1.2) has not yet to be studied, especially for
the existence of denumerably many positive solutions and two infinite families of positive
solutions for system (1.1)–(1.2). In consequence, our main results of the present work will
be a useful contribution to the existing literature on the topic of n-dimensional higher-
order singular fractional differential systems. The existence of denumerably many posi-
tive solutions and two infinite families of positive solutions for the given problem are new,
though they are proved by applying the well-known method based on the fixed theory in
cones and the partially ordered structure of Banach space.

Throughout this paper, we use i = 1, 2, . . . , n, unless otherwise stated.
Let the components of g and f satisfy the following conditions:
(H1) gi ∈ Lp[0, 1] for some p ∈ [1, +∞), and there exists Ni > 0 such that gi(t) ≥ Ni a.e. on

J = [0, 1];
(H2) there exists a sequence {t′

j}∞j=1 such that t′
1 < 1

2 , t′
j ↓ t′

0 > 0 and limt→t′j gi(t) = +∞ for
all j = 1, 2, . . . ;

(H3) fi(t, x) ∈ C(J × Rn
+, R+), where R+ = [0, +∞) and Rn

+ =
∏n

i=1 R+;
(H4) hi ∈ L1[0, 1] is nonnegative with μi ∈ [0, a – (α – 1)b), where μi is defined in (2.18).
The plan of this paper is as follows. We shall introduce some basic definitions and lem-

mas of fractional calculus in the rest of this section. In Sect. 2, we give the expression
and new properties of Green’s function associated with system (1.1)–(1.2). In Sect. 3, we
present some characteristics of the integral operator associated with system (1.1)–(1.2)
and state two fixed point theorems in cones. In Sect. 4, we discuss the existence of denu-
merably many positive solutions of system (1.1)–(1.2). In Sect. 5, we will prove the exis-
tence of two infinite families of positive solutions of system (1.1)–(1.2). In Sect. 6, we give
some interesting comments and remarks associated with system (1.1)–(1.2).

In the rest of this section, we introduce some basic definitions and lemmas of fractional
calculus.

Definition 1.1 ([2]) The integral

Iα
0+f (x) =

1
�(α)

∫ x

0

f (t)
(x – t)1–α

dt, x > 0,

where α > 0, is called Riemann–Liouville fractional integral of order α.
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Definition 1.2 ([2]) For a function f (x) given in the interval [0, 1), the expression

Dα
0+f (x) =

1
�(n – α)

(
d

dx

)n ∫ x

0

f (t)
(x – t)α–n+1 dt,

where n = [α]+1, [α] denotes the integer part of number α, is called the Riemann–Liouville
fractional derivative of order α.

Lemma 1.1 ([7]) Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order
α > 0 that belongs to u ∈ C(0, 1) ∩ L(0, 1). Then

Iα
0+Dα

0+u(t) = u(t) + C1tα–1 + C2tα–2 + · · · + +CN tα–N ,

for some Ci ∈ R, i = 1, 2, . . . , N , where N is the smallest integer greater than or equal to α.

2 Green’s function associated with system (1.1)–(1.2)
In this section, we discuss the expression and properties of the Green’s function associated
with system (1.1)–(1.2).

Let y = [y1, y2, . . . , yn]�. Consider the fractional differential system

Dα
0+ x(t) + y(t) = 0, 0 < t < 1, (2.1)

with the boundary conditions (1.2). Equation (2.1) means that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dα
0+ x1(t) = y1(t), 0 < t < 1,

–Dα
0+ x2(t) = y2(t), 0 < t < 1,

· · · · · · ,

–Dα
0+ xn(t) = yn(t), 0 < t < 1.

(2.2)

Lemma 2.1 If
∫ 1

0 hi(t)tα–1 dt �= a–(α–1)b and yi ∈ C[0, 1], i = 1, 2, . . . , n, then system (2.1)–
(1.2) has a unique solution x = [x1, x2, . . . , xn]� ∈ Rn

+ in which xi(t) is given by

xi(t) =
∫ 1

0
Gi(t, s)yi(s) ds, (2.3)

where

Gi(t, s) = G1(t, s) + G2i(t, s), (2.4)

G1(t, s) =
1

�(α)(a + (α – 1)b)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

atα–1(1 – s)α–1 + b(α – 1)tα–1(1 – s)α–2

– (a + (α – 1)b)(t – s)α–1, 0 ≤ s ≤ t ≤ 1,

atα–1(1 – s)α–1 + b(α – 1)tα–1(1 – s)α–2,

0 ≤ t ≤ s ≤ 1,

(2.5)

G2i(t, s) =
tα–1

(a – (α – 1)b) –
∫ 1

0 hi(t)tα–1 dt

∫ 1

0
hi(t)G1(t, s) dt. (2.6)
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Proof By the fact that system (2.1)–(1.2) is equivalent to system (2.2)–(1.4). Therefore
system (2.1)–(1.2) has a unique solution x which is equivalent to the following sys-
tem:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+xi(t) + yi(t) = 0, 0 < t < 1,

xi(0) = x′
i(0) = · · · = x(n–2)

i (0) = 0,

axi(1) + bx′
i(1) =

∫ 1
0 hi(t)xi(t) dt

(2.7)

has a unique solution xi, which is given by (2.3).
Next, by a proof which is similar to that of Lemma 2.1 in [8], we can show that (2.3)

holds. This finishes the proof of Lemma 2.1. �

From (2.4), (2.5) and (2.6), we can prove that Gi(t, s), G1(t, s) and G2i(t, s) have the fol-
lowing properties.

Proposition 2.1 The function G1(t, s) defined by (2.5) satisfies
(i) G1(t, s) ≥ 0 is continuous for all t, s ∈ J , G1(t, s) > 0, ∀t, s ∈ (0, 1);

(ii) For all t ∈ J , s ∈ (0, 1), we have

G1(t, s) ≤ G1
(
τ (s), s

)

=
(
a
(
τ (s)
)α–1(1 – s)α–1 + b(α – 1)

(
τ (s)
)α–1(1 – s)α–2

–
(
a + b(α – 1)

)(
τ (s) – s

)α–1)/
(
�(α)

(
a + b(α – 1)

))
, (2.8)

where

τ (s) =
s

1 – e(s)(1 – s) α–1
α–2

, e(s) =
[ a + b(α–1)

1–s
a + b(α – 1)

] 1
α–2

. (2.9)

Proof (i) It is obvious that G1(t, s) is continuous on J × J and G1(t, s) ≥ 0 when s ≥ t.
For 0 ≤ s < t ≤ 1, we have

atα–1(1 – s)α–1 + b(α – 1)tα–1(1 – s)α–2 –
(
a + (α – 1)b

)
(t – s)α–1

= (1 – s)α–1
[
(
a + b(α – 1)(1 – s)–1)tα–1 –

(
a + b(α – 1)

)
(

t – s
1 – s

)α–1]

≥ 0.

So, by (2.5), we have

G1(t, s) ≥ 0, ∀t, s ∈ J .

Similarly, for t, s ∈ (0, 1), we have G1(t, s) > 0.
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(ii) Since n – 1 < α ≤ n, n ≥ 3, it is clear that G1(t, s) is increasing with respect to t for
0 ≤ t ≤ s ≤ 1.

On the other hand, from the definition of G1(t, s), for given s ∈ (0, 1), s < t ≤ 1, we have

∂G1(t, s)
∂t

=
α – 1

�(α)(a + b(α – 1))
{

atα–2(1 – s)α–1 + b(α – 1)tα–2(1 – s)α–2

–
[
a + b(α – 1)

]
(t – s)α–2}.

Let

∂G1(t, s)
∂t

= 0.

Then we have

atα–2(1 – s)α–1 + b(α – 1)tα–2(1 – s)α–2 =
[
a + b(α – 1)

]
(t – s)α–2,

and so

(
a +

b(α – 1)
1 – s

)
(1 – s)α–1 =

[
a + b(α – 1)

]
(

1 –
s
t

)α–2

. (2.10)

Noticing α > 2, from (2.10), we have

t =
s

1 – e(s)(1 – s) α–1
α–2

=: τ (s), e(s) =
[ a + b(α–1)

1–s
a + b(α – 1)

] 1
α–2

.

Then, for given s ∈ (0, 1), we have G1(t, s) arriving at a maximum at (τ (s), s) when s < t.
From this, together with the fact that G1(t, s) is increasing on s ≥ t, we see that (2.8)
holds. �

Remark 2.1 From Fig. 1, we can see G1(s, s) ≤ G1(τ (s), s) for α > 2. If 1 < α ≤ 2, then

G1(t, s) ≤ G1(s, s) =
asα–1(1 – s)α–1 + b(α – 1)sα–1(1 – s)α–2

�(α)(a + b(α – 1))
.

Figure 1 Graph of function G1(τ (s), s), G1(s, s) for
α = 5/2, a = 1, b = 0
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Figure 2 Graph of function τ (s), for α = 5/2, a = 1,
b = 0

Figure 3 Graph of function G1(τ (s), s), for α = 5/2,
a = 1, b = 0

Remark 2.2 From Fig. 2, we can see that τ (s) is increasing with respect to s.

Remark 2.3 From Fig. 3, we can see that G1(τ (s), s) > 0 for s ∈ Jθ = [θ , 1 – θ ], where θ ∈
(0, 1

2 ).

Remark 2.4 Let Ḡ1(τ (s), s) = a(τ (s))α–1(1 – s)α–1 + b(α – 1)(τ (s))α–1(1 – s)α–2 – (a + b(α –
1))(τ (s) – s)α–1. From (2.8), for s ∈ (0, 1), we have

dḠ1(τ (s), s)
ds

= –a(α – 1)(1 – s)α–2(τ (s)
)α–1

+ a(α – 1)(1 – s)α–1(τ (s)
)α–1(

τ ′(s)
)

– b(α – 1)(α – 2)(1 – s)α–3(τ (s)
)α–1

+ b(α – 1)2(1 – s)α–2(τ (s)
)α–2(

τ ′(s)
)

– (α – 1)(α – 1)
(
a + b(α – 1)

)(
τ (s) – s

)α–2(
τ ′(s) – 1

)
. (2.11)
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Remark 2.5 From (2.11), we have

lim
s→0

dḠ1(τ (s), s)
ds

= (α – 1)
[

–
(
a + b(α – 2)

)
(

α – 2
α – 1

)α–1

+
(
a + b(α – 1)

)
(

α – 2
α – 1

)α–2]

=
(

α – 2
α – 1

)α–2(
a + b(2α – 3)

)

:= f (α).

Remark 2.6 Noticing that α > 2, it follows from Remark 2.5 that f (α) > 0.

Remark 2.7 It is interesting to point out that f (α) is not decreasing with respect to α in
the case with a > 0 and b > 0. If a > 0 and b = 0, then f (α) is decreasing with respect to α.

Proposition 2.2 There exists γ > 0 such that

min
t∈[θ ,1–θ ]

G1(t, s) ≥ γ G1
(
τ (s), s

)
, ∀s ∈ J . (2.12)

Proof For t ∈ Jθ , we divide the proof into the following three cases for s ∈ J .
Case 1. If s ∈ Jθ , then from (i) of Proposition 2.1 and Remark 2.3, we have

G1(t, s) > 0, G1
(
τ (s), s

)
> 0, ∀t, s ∈ Jθ .

It is obvious that G1(t, s) and G1(τ (s), s) are bounded on Jθ . So, there exists a constant γ1 > 0
such that

G1(t, s) ≥ γ1G1
(
τ (s), s

)
, ∀t, s ∈ Jθ . (2.13)

Case 2. If s ∈ [1 – θ , 1], then from (2.5), we have

G1(t, s) =
atα–1(1 – s)α–1 + b(α – 1)tα–1(1 – s)α–2

�(α)(a + b(α – 1))
.

On the other hand, from the definition of τ (s), we see that τ (s) takes its maximum 1 at
s = 1. So

G1
(
τ (s), s

)
=
(
a
(
τ (s)
)α–1(1 – s)α–1 + b(α – 1)

(
τ (s)
)α–1(1 – s)α–2

–
(
a + b(α – 1)

)(
τ (s) – s

)α–1)/
(
�(α)

(
a + b(α – 1)

))

≤ a(τ (s))α–1(1 – s)α–1 + b(α – 1)(τ (s))α–1(1 – s)α–2

�(α)(a + b(α – 1))

=
(τ (s))α–1

tα–1
a(1 – s)α–1tα–1 + b(α – 1)(1 – s)α–2tα–1

�(α)(a + b(α – 1))

≤ 1
θα–1 G1(t, s). (2.14)

Therefore, G1(t, s) ≥ θα–1G1(τ (s), s). Letting θα–1 = γ2, we have

G1(t, s) ≥ γ2G1
(
τ (s), s

)
. (2.15)
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Case 3. If s ∈ [0, θ ], from (i) of Proposition 2.1, it is clear that

G1(t, s) > 0, G1
(
τ (s), s

)
> 0, ∀t ∈ Jθ , s ∈ (0, θ ].

In view of the Remarks 2.4–2.6, we have

lim
s→0

G1(t, s)
G1(τ (s), s)

= lim
s→0

atα–1(1 – s)α–1 + b(α – 1)tα–1(1 – s)α–2 – (a + b(α – 1))(t – s)α–1

a(τ (s))α–1(1 – s)α–1 + b(α – 1)(τ (s))α–1(1 – s)α–2 – (a + b(α – 1))(τ (s) – s)α–1

= lim
s→0

((
–a(α – 1)tα–1(1 – s)α–2 – b(α – 1)tα–1(1 – s)α–3

+ (α – 1)
(
a + b(α – 1)

)
(t – s)α–2)

/(dḠ1(τ (s), s)
ds

))

> 0. (2.16)

From (2.16), there exists a constant γ3 such that

G1(t, s) ≥ γ3G1
(
τ (s), s

)
. (2.17)

Letting γ = min{γ1,γ2,γ3} and using (2.13), (2.15) and (2.17), it follows that (2.12) holds.
This completes the proof. �

Let

μi =
∫ 1

0
hi(t)tα–1 dt. (2.18)

Proposition 2.3 If μi ∈ [0, a – b(α – 1)), then we have
(i) G2i(t, s) ≥ 0 is continuous for all t, s ∈ J , G2i(t, s) > 0, ∀t, s ∈ (0, 1);

(ii) G2i(t, s) ≤ 1
(a–b(α–1))–μi

∫ 1
0 hi(t)G1(t, s) dt, ∀t ∈ J , s ∈ (0, 1).

Proof Using the properties of G1(t, s), definition of G2i(t, s), it can easily be shown that (i)
and (ii) hold. �

Theorem 2.1 If μi ∈ [0, a – b(α – 1)), the function Gi(t, s) defined by (2.4) satisfies
(i) Gi(t, s) ≥ 0 is continuous for all t, s ∈ J , Gi(t, s) > 0, ∀t, s ∈ (0, 1);

(ii) Gi(t, s) ≤ Gi(s) for each t, s ∈ J , and

min
t∈[θ ,1–θ ]

Gi(t, s) ≥ γ ∗Gi(s), ∀s ∈ J , (2.19)

where

γ ∗ = min
{
γ , θα–1}, Gi(s) = G1

(
τ (s), s

)
+ G2i(1, s), (2.20)

τ (s) is defined by (2.9), γ is defined in Proposition 2.2.
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Proof (i) From Proposition 2.1 and Proposition 2.3, we see that Gi(t, s) ≥ 0 is continuous
for all t, s ∈ J , and Gi(t, s) > 0, ∀t, s ∈ (0, 1).

(ii) From (ii) of Proposition 2.1 and (ii) of Proposition 2.3, we have Gi(t, s) ≤ Gi(s) for
each t, s ∈ J .

Now, we show that (2.19) holds.
In fact, from Proposition 2.2, we have

min
t∈Jθ

Gi(t, s) ≥ γ G1
(
τ (s), s

)
+

θα–1

(a – b(α – 1)) – μi

∫ 1

0
hi(t)G1(t, s) dt

≥ γ ∗
[

G1
(
τ (s), s

)
+

1
(a – b(α – 1)) – μi

∫ 1

0
hi(t)G1(t, s) dt

]

= γ ∗Gi(s), ∀s ∈ J .

Then the proof of Theorem 2.1 is completed. �

Remark 2.8 From the definition of γ ∗, it is clear that 0 < γ ∗ < 1.

3 Preliminaries
Let E = C[0, 1], X = E × · · · × E︸ ︷︷ ︸

n

, and, for any x = [x1, x2, . . . , xn]� ∈ X,

‖X‖ =
n∑

i=1

sup
t∈J

∣
∣xi(t)

∣
∣. (3.1)

Then (X, ·) is a real Banach space.
To establish the existence of positive solutions to system (1.1)–(1.2), for a fixed θ ∈ (t′

0, 1
2 ),

we construct the cone Kθ in X by

Kθ =

{

x = (x1, x2, . . . , xn) ∈ X : xi(t) ≥ 0, i = 1, 2, . . . , n, t ∈ J ,

min
t∈[θ ,1–θ ]

n∑

i=1

xi(t) ≥ γ ∗‖x‖
}

, (3.2)

where γ ∗ is defined in (2.20), and it is easy to see Kθ is a closed convex cone of X.
Let {θj}∞j=1 be such that t′

j+1 < θj < t′
j , j = 1, 2, . . . . So we get 0 < · · · < t′

j+1 < θj < t′
j < · · · < t′

3 <
θ2 < t′

2 < θ1 < t′
1 < 1

2 < 1. Then, for any j ∈ N, we define the cone Kθj by

Kθj =

{

x ∈ X : xi(t) ≥ 0, t ∈ J , i = 1, 2, . . . , n, min
t∈[θj ,1–θj]

n∑

i=1

xi(t) ≥ γ ∗
j ‖x‖

}

, (3.3)

where

γ ∗
j = min

{
γj, θα–1

j
}

, (3.4)

here γj = min{γ1j,γ2j,γ3j}, γ1, γ2 and γ3 is similarly defined in (2.13), (2.14) and (2.17), re-
spectively. It is easy to see Kθj is a closed convex cone of X.
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Also, for a positive number τ , define Kτθj by

Kτθj =
{

x ∈ Kθj : ‖x‖ < τ
}

.

Let Tλ : Kθj → X be a map with components (T1
λ , T2

λ , . . . , Ti
λ, . . . , Tn

λ ). We understand that
Tλx = (T1

λx, T2
λx, . . . , Ti

λx, . . . , Tn
λ x)�, where

(
Ti

λx
)
(t) = λ

∫ 1

0
Gi(t, s)gi(s)fi

(
s, x(s)

)
ds, i = 1, 2, . . . , n. (3.5)

Remark 3.1 It follows from Lemma 2.1 and the definition of Tλ that

x = [x1, x2, . . . , xn]� ∈ X

is a solution of system (1.1)–(1.2) if and only if x = [x1, x2, . . . , xn]� is a fixed point of oper-
ator Tλ. And then x = [x1, x2, . . . , xn]� ∈ X is a solution of the system (1.1)–(1.2) if and only
if xi (i = 1, 2, . . . , n) is a fixed point of operator Ti

λ.

Lemma 3.1 Assume that (H1)–(H4) hold. Then Tλ(Kθj ) ⊂ Kθj and Tλ : Kθj → Kθj is a com-
pletely continuous.

Proof By the theory of matrix analysis, if we want to prove that Tλ(Kθj ) ⊂ Kθj and Tλ :
Kθj → Kθj is a completely continuous, then, for i = 1, 2, . . . , n, we only prove that Ti

λ(Kθj ) ⊂
Kθj and Ti

λ : Kθj → Kθj is a completely continuous.
Firstly, we prove that Ti

λ(Kθj ) ⊂ Kθj . For t ∈ J , it follows from (ii) of Theorem 2.1 and
(3.5) that

(
Ti

λx
)
(t) = λ

∫ 1

0
Gi(t, s)gi(s)fi

(
s, x(s)

)
ds

≤ λ

∫ 1

0
Gi(s)gi(s)fi

(
s, x(s)

)
ds. (3.6)

On the other hand, it follows from (2.19) and (3.5) that

min
t∈[θj ,1–θj]

(
Ti

λx
)
(t) = min

t∈[θj ,1–θj]
λ

∫ 1

0
Gi(t, s)gi(s)fi

(
s, x(s)

)
ds

≥ γ ∗
j λ

∫ 1

0
Gi(s)gi(s)fi

(
s, x(s)

)
ds

≥ γ ∗
j
∥∥Ti

λx
∥∥. (3.7)

This shows that Ti
λ(Kθj ) ⊂ Kθj .

Next, by using similar arguments of Lemma 3.1 in [7] one can prove that the operator
Ti

λ : Kθj → Kθj is completely continuous. So the proof of Lemma 3.1 is complete. �

To obtain some of the norm inequalities in our main results, we employ the famous
Hölder inequality.
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Lemma 3.2 (Hölder) Let e ∈ Lp[a, b] with p > 1, h ∈ Lq[a, b] with q > 1 and 1
p + 1

q = 1. Then
eh ∈ L1[a, b] and

‖eh‖1 ≤ ‖e‖p‖h‖q.

Let e ∈ L1[a, b], h ∈ L∞[a, b]. Then eh ∈ L1[a, b] and

‖eh‖1 ≤ ‖e‖1‖h‖∞.

Finally, we state the well-known fixed point theorems, which can be found in [56].

Lemma 3.3 Let E be a Banach space, K be a cone in E. Assume that 	1, 	2 are bounded
open subsets in E with θ ∈ 	1 and 	̄1 ⊂ 	2, where θ denotes the zero operator. Suppose
A : K ∩ (	̄2\	1) → K is completely continuous such that either

(i) ‖Ax‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂	1; ‖Ax‖ ≥ ‖x‖, ∀x ∈ K ∩ ∂	2;
(ii) ‖Ax‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂	2; ‖Ax‖ ≥ ‖x‖, ∀x ∈ K ∩ ∂	1.
Then A has a fixed point in K ∩ (	̄2\	1).

Lemma 3.4 Let E be a real Banach space and let K be a cone in E. For r > 0, we define
Kr = {x ∈ K : ‖x‖ < r}. Assume that T : K̄r → K is completely continuous such that Tx �= x
for x ∈ ∂Kr = {x ∈ K : ‖x‖ = r}.

(i) If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Kr , then i(T , Kr , K) = 0.
(ii) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr , then i(T , Kr , K) = 1.

Remark 3.2 It is well known that Lemma 3.3 and Lemma 3.4 have been instrumental in
proving the existence of positive solutions to various boundary value problems for integer-
order or fractional-order differential equations-for details; see Sect. 6.

4 The existence of denumerably many positive solutions
In this section, we establish the existence of the denumerably many positive solutions for
system (1.1)–(1.2). We give our main results in the cases with gi ∈ LP[0, 1]; p > 1, p = 1 and
p = ∞.

Firstly, we consider the case p > 1.

Theorem 4.1 Assume that (H1)–(H4) hold. Let {rj}∞j=1 and {Rj}∞j=1 be such that

Rj+1 < γ ∗
j rj < rj < Rj, j = 1, 2, . . . .

For each natural number j, we assume that f satisfies
(H5) For any t ∈ J , ‖x‖ ∈ [0, Rj], fi(t, x) ≤ LRj, where

0 < L ≤ max

{
1

nλ‖Gi‖q‖gi‖p
,

1
nλ‖Gi‖1‖gi‖∞

,
1

nλMi‖gi‖1

}
,

Mi = max
s∈J

Gi(s); (4.1)

(H6) for any t ∈ [θj, 1 – θj], ‖x‖ ∈ [γ ∗
j rj, rj], fi(t, x) ≥ lrj, where l > 0.
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Then there exists λ0 > 0, such that, for λ > λ0, system (1.1)–(1.2) has denumerably many
positive solutions {xj}∞j=1 such that

rj ≤ ‖xj‖ ≤ Rj, j = 1, 2, . . . .

Proof Let λ0 = sup{λj}, λj = 1

γ ∗
j Nil

∫ 1–θj
θj

Gi(s) ds
, i = 1, 2, . . . , n, j = 1, 2, . . . . Then, for any λ > λ0,

(3.5) and Lemma 3.1 imply that Tλ and Ti
λ (i = 1, 2, . . . , n) are all completely continuous.

We consider the open subset sequences {	1,j}∞j=1 and {	2,j}∞j=1 of X

{	1,j}∞j=1 =
{

x ∈ X : ‖x‖ < Rj
}

;

{	2,j}∞j=1 =
{

x ∈ X : ‖x‖ < rj
}

.

Let {θj}∞j=1 be as in Sect. 3 and note that 0 < t′
j+1 < θj < t′

j < 1
2 , j = 1, 2, . . . .

For fixed j, we assume that x ∈ Kθj ∩ ∂	2,j, then for any t ∈ J

rj = ‖x‖ =
n∑

i=1

sup
t∈J

∣∣xi(t)
∣∣≥ min

t∈[θj ,1–θj]

n∑

i=1

xi(t) ≥ γ ∗
j ‖x‖ = γ ∗

j rj.

Noticing (2.19) and (3.5), for all x ∈ Kθj ∩ ∂	2,j, by (H1) and (H6), we have

‖Tλx‖ ≥ sup
t∈J

∣
∣(Ti

λx
)
(t)
∣
∣

= λ sup
t∈J

∫ 1

0
Gi(t, s)gi(s)fi

(
s, x(s)

)
ds

≥ min
t∈[θj ,1–θj]

λ

∫ 1

0
Gi(t, s)gi(s)fi

(
s, x(s)

)
ds

≥ γ ∗
j λNi

∫ 1

0
Gi(s)fi

(
s, x(s)

)
ds

≥ γ ∗
j λNi

∫ 1–θj

θj

Gi(s)fi
(
s, x(s)

)
ds

≥ γ ∗
j λNil

∫ 1–θj

θj

Gi(s) dsrj

> λ0γ
∗
j Nil

∫ 1–θj

θj

Gi(s) dsrj

= rj = ‖x‖,

which shows that

‖Tλx‖ ≥ ‖x‖, ∀x ∈ Kθj ∩ ∂	2,j. (4.2)

On the other hand, for all t ∈ J , x ∈ Kθj ∩ ∂	1,j, then ‖x‖ = Rj.
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Noticing Theorem 2.1 and (3.5), for all t ∈ J , x ∈ Kθj ∩ ∂	1,j, by (H5), we have

(
Ti

λx
)
(t) = λ

∫ 1

0
Gi(t, s)gi(s)fi

(
s, x(s)

)
ds

≤ λ

∫ 1

0
Gi(t, s)gi(s)fi

(
s, x(s)

)
ds

≤ λ

∫ 1

0
Gi(s)gi(s)fi

(
s, x(s)

)
ds

≤ λ

∫ 1

0
‖Gi‖q‖gi‖pfi

(
s, x(s)

)
ds

≤ λ‖Gi‖q‖gi‖p

∫ 1

0
fi
(
s, x(s)

)
ds

≤ λ‖Gi‖q‖gi‖pLRj

≤ 1
n

Rj =
1
n

‖x‖,

which shows that

‖Tλx‖ =
n∑

i=1

sup
t∈J

∣∣(Ti
λx
)
(t)
∣∣≤ ‖x‖, ∀x ∈ Kθj ∩ ∂	1,j. (4.3)

Applying Lemma 3.3 to (4.2) and (4.3) yields that operator Tλ has a fixed point xj ∈
Kθj ∩ (	̄2,j/	1,j) such that rj ≤ ‖xj‖ ≤ Rj. And then it follows from Remark 3.2 that sys-
tem (1.1)–(1.2) has a solution xj = (x1j, x2j, . . . , xnj)�. Since j ∈N was arbitrary, the proof is
complete. �

The following theorem deals with the case p = ∞.

Theorem 4.2 Assume that (H1)–(H4) hold. Let {rj}∞j=1 and {Rj}∞j=1 be such that

Rj+1 < γ ∗
j rj < rj < Rj, j = 1, 2, . . . .

For each natural number j, we assume that f satisfies (H5) and (H6), then there exists λ0 > 0,
such that, for λ > λ0, system (1.1)–(1.2) has denumerably many positive solutions {xj(t)}∞j=1

such that

rj ≤ ‖xj‖ ≤ Rj, j = 1, 2, . . . .

Proof Let ‖Gi‖1‖gi‖∞ replace ‖Gi‖q‖gi‖p and repeat the previous argument. �

Finally, we consider the case of p = 1.

Theorem 4.3 Assume that (H1)–(H4) hold. Let {rj}∞j=1 and {Rj}∞j=1 be such that

Rj+1 < γ ∗
j rj < rj < Rj, j = 1, 2, . . . .
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For each natural number j, we assume that f satisfies (H5) and (H6), then there exists λ0 > 0,
such that, for λ > λ0, system (1.1)–(1.2) has denumerably many positive solutions {xj(t)}∞j=1
such that

rj ≤ ‖xj‖ ≤ Rj, j = 1, 2, . . . .

Proof Let Mi‖gi‖1 replace ‖Gi‖q‖gi‖p and repeat the previous argument. �

Corollary 4.1 Assume that (H1)–(H4) hold. Let {rj}∞j=1 and {Rj}∞j=1 be such that

Rj+1 < γ ∗
j rj < rj < Rj, j = 1, 2, . . . .

For each natural number j, we assume that f satisfies:
(H ′

5) for any t ∈ J , ‖x‖ ∈ [0, rj], f (t, x) ≤ Lrj, where L is defined in (4.1);
(H ′

6) for any t ∈ [θj, 1 – θj], ‖x‖ ∈ [γ ∗
j Rj, Rj], f (t, x) ≥ lRj, where l > 0.

Then there exists λ0 > 0, such that, for λ > λ0, system (1.1)–(1.2) has denumerably many
positive solutions {xj(t)}∞j=1 such that

rj ≤ ‖xj‖ ≤ Rj, j = 1, 2, . . . .

5 The existence of two infinite families of positive solutions
In this section, we use Lemma 3.4 to establish the existence of two infinite families of
positive solutions for system (1.1)–(1.2).

For ease of expression, we introduce the following notations:

(
f τ
0
)i = max

{
max

t∈J

fi(t, x)
τ

, 0 ≤ ‖x‖ ≤ τ

}
, Fτ

0 = max
1≤i≤n

(
f τ
0
)i,

(
f τ
γ ∗

j τ

)i = min

{
min

t∈[θj ,1–θj]

fi(t, x)
τ

,γ ∗
j τ ≤ ‖x‖ ≤ τ

}
, Fτ

γ ∗
j τ

= min
1≤i≤n

(
f τ
γ ∗

j τ

)i,

where i = 1, 2, . . . , n, j = 1, 2, . . . .
In this section, we also consider the following three cases for gi ∈ LP[0, 1]: p > 1, p = 1

and p = ∞. Case p > 1 is treated in the following theorem.

Theorem 5.1 Assume that (H1)–(H4) hold. Let {rj}∞j=1, {ηj}∞j=1and {Rj}∞j=1 be such that

Rj+1 < σjrj < rj < σjηj < ηj < Rj, j = 1, 2, . . . . (5.1)

Furthermore, for each natural number j, we assume that f satisfies
(H7) Frj

0 ≤ L and FRj
0 ≤ L, where L is defined in (4.1);

(H8) Fηj
γ ∗

j ηj
≥ l, where l > 0.

Then there exists λ0 > 0 such that, for λ > λ0, system (1.1)–(1.2) has two infinite families of
positive solutions {x(1)

j (t)}∞j=1, {x(2)
j (t)}∞j=1 and ‖x(1)

j ‖ > γ ∗
j ηj.

Proof Let λ0 be defined as in Theorem 4.1. Then, for any λ > λ0, (3.5) and Lemma 3.1
imply that Tλ and Ti

λ (i = 1, 2, . . . , n) are all completely continuous.
Let t ∈ J , x ∈ ∂Krjθj . Then ‖x‖ = rj.
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Therefore, for any x ∈ ∂Krjθj , it follows from (H7) that

(
Ti

λx
)
(t) = λ

∫ 1

0
Gi(t, s)gi(s)fi

(
s, x(s)

)
ds

≤ λ

∫ 1

0
Gi(t, s)gi(s)fi

(
s, x(s)

)
ds

≤ λ

∫ 1

0
Gi(s)gi(s)fi

(
s, x(s)

)
ds

≤ λ

∫ 1

0
‖Gi‖q‖gi‖pfi

(
s, x(s)

)
ds

≤ λ‖Gi‖q‖gi‖p

∫ 1

0
fi
(
s, x(s)

)
ds

≤ λ‖Gi‖q‖gi‖pLrj

≤ 1
n

rj =
1
n

‖x‖,

which shows that

‖Tλx‖ =
n∑

i=1

sup
t∈J

∣
∣(Ti

λx
)
(t)
∣
∣≤ ‖x‖, ∀x ∈ ∂Krjθj . (5.2)

And then, by Lemma 3.4, we get

i(Tλ, Krjθi , Kθj ) = 1. (5.3)

Similarly, for x ∈ ∂KRjθj , we have ‖Tλx‖ ≤ ‖x‖, and it follows from Lemma 3.4 that

i(Tλ, KRjθj , Kθj ) = 1. (5.4)

On the other hand, letting

x ∈ K̄ηj
γ ∗

j ηjθj
=

{

x ∈ Kθj : ‖x‖ ≤ ηj, min
t∈[θj ,1–θj]

n∑

i=1

xi(t) ≥ γ ∗
j ηj

}

,

then ‖x‖ ≤ ηj. And hence, similar to the proof of (5.2), we have

‖Tλx‖ ≤ ηj. (5.5)

Furthermore, for x ∈ K̄ηj
γ ∗

j ηjθj
, we have

‖x‖ ≤ ηj, t ∈ J , min
t∈[θj ,1–θj]

n∑

i=1

xi(t) ≥ γ ∗
j ηj,
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and then it follows from (H8) that

(Tλx)(t) ≥ sup
t∈J

∣
∣(Ti

λx
)
(t)
∣
∣

≥ λ

∫ 1

0
Gi(t, s)gi(s)fi

(
s, x(s)

)
ds

≥ min
t∈[θj ,1–θj]

λ

∫ 1

0
Gi(t, s)gi(s)fi

(
s, x(s)

)
ds

≥ γ ∗
j λNi

∫ 1

0
Gi(s)fi

(
s, x(s)

)
ds

≥ γ ∗
j λNi

∫ 1–θj

θj

Gi(s)fi
(
s, x(s)

)
ds

≥ γ ∗
j ηjλNil

∫ 1–θj

θj

Gi(s) ds

> λ0γ
∗
j ηjNil

∫ 1–θj

θj

Gi(s) ds

= ηj = ‖x‖. (5.6)

Letting x0 = (x1
0, x2

0, . . . , xi
0, . . . , xn

0) and F(t, x) = (1 – t)Tλx + tx0, where xi
0 ≡ γ ∗

j ηj+ηj
2 , i =

1, 2, . . . , n, then F : J × K̄ηj
γ ∗

j ηjθj
→ Kθj is completely continuous, and from the analysis above,

we obtain, for (t, x) ∈ J × K̄ηi
γ ∗

j ηjθj
,

F(t, x) ∈ K̄ηj
γ ∗

j ηjθj
. (5.7)

Therefore, for t ∈ J , x ∈ K̄ηj
σjηjθj

, we have F(t, x) �= x. Hence, by the normality property and
the homotopy invariance property of the fixed point index, we obtain

i
(
Tλ, Kηj

γ ∗
j ηjθj

, Kθj

)
= i
(
x0, Kηj

γ ∗
j ηjθj

, Kθj

)
= 1. (5.8)

Consequently, by the solution property of the fixed point index, Tλ has a fixed point x(1)
j

and x(1)
j ∈ K̄ηj

γ ∗
j ηjθj

. By Remark 3.1, it follows that x(1)
j is a solution to system (1.1)–(1.2), and

∥∥x(1)
j
∥∥≥ min

t∈[θj ,1–θj]

n∑

i=1

x(1i)
j )(t) > γ ∗

j ηj.

On the other hand, from (5.3), (5.4) and (5.8) together with the additivity of the fixed
point index, we get

i
(
Tλ, KRjθj /

(
K̄rjθj ∪ K̄ηj

γ ∗
j ηjθj

)
, Kθj

)

= i(Tλ, KRjθj , Kθj ) – i
(
Tλ, K̄ηj

γ ∗
j ηjθj

, Kθj

)
– i(Tλ, K̄rjθj , Kθj )

= 1 – 1 – 1 = –1. (5.9)
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Hence, by the solution property of the fixed point index, Tλ has a fixed point x(2)
j and

x(2)
j ∈ KRj /(K̄rj ∪ K̄ηj

γ ∗
j ηjθj

). Since j ∈N was arbitrary, the proof is complete. �

The following corollary deals with the case p = ∞.

Corollary 5.1 Assume that (H1)–(H4) hold. Let {rj}∞j=1, {ηj}∞j=1and {Rj}∞j=1 satisfy (5.1). Fur-
thermore, for each natural number j, we assume that f satisfies (H7) and (H8). Then there
exist λ0 > 0 such that, for λ > λ0, system (1.1)–(1.2) has two infinite families of positive
solutions {x(1)

j (t)}∞j=1, {x(2)
j (t)}∞j=1 and ‖x(1)

j ‖ > γ ∗
j ηj.

Proof Let ‖Gi‖1‖gi‖∞ replace ‖Gi‖q‖gi‖p and repeat the argument above. �

Finally, we consider the case of p = 1.

Corollary 5.2 Assume that (H1)–(H4) hold. Let {rj}∞j=1, {ηj}∞j=1and {Rj}∞j=1 satisfy (5.1). Fur-
thermore, for each natural number j, we assume that f satisfies (H7) and (H8). Then there
exist λ0 > 0 such that, for λ > λ0, system (1.1)–(1.2) has two infinite families of positive
solutions {x(1)

j (t)}∞j=1, {x(2)
j (t)}∞j=1 and ‖x(1)

j ‖ > γ ∗
j ηj.

Proof Let Mi‖gi‖1 replace ‖Gi‖q‖gi‖p and repeat the previous argument. Similar to the
proof of Theorem 5.1, we can get Corollary 5.2. �

Corollary 5.3 Assume that (H1)–(H4) hold. Let {rj}∞j=1, {ηj}∞j=1and {Rj}∞j=1 satisfy (5.1). Fur-
thermore, for each natural number j, we assume that f satisfies (H8). Then there exist λ0 > 0
such that, for λ > λ0, system (1.1)–(1.2) has one infinite family of positive solutions.

If we replace (H7) by the following condition:
(H ′

7) Frj
0 ≤ L or FRj

0 ≤ L, where L is defined in (4.1), then we have the following corollary.

Corollary 5.4 Assume that (H1)–(H4) hold. Let {rj}∞j=1, {ηj}∞j=1and {Rj}∞j=1 satisfy (5.1). Fur-
thermore, for each natural number j, we assume that f satisfies (H ′

7). Then for all λ > 0,
system (1.1)–(1.2) has one infinite family of nonnegative solutions.

6 Comments and remarks
In this section, we give some comments and remarks associated with system (1.1)–(1.2).

It is well known that Lemma 3.3 and Lemma 3.4 have been instrumental in proving
the existence of positive solutions to various boundary value problems for integer-order
differential equations. See for instance [44–46, 51] and the references therein. Several au-
thors have investigated boundary value problems of fractional differential equations; see
for instance [8, 11, 13].

However, it is not difficult to see that if (H1)–(H4) hold, and f satisfies (H6), by using
Lemma 3.3, we can not obtain the results of Corollary 5.3.

At the same time, it is not difficult to see that (H2) plays an important role in the proof
that system (1.1)–(1.2) has two infinite families of positive solutions. However, if the con-
dition (H2) does not hold, then we can only obtain the existence results of one and two
positive solution for system (1.1)–(1.2).
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Theorem 6.1 Assume that (H1), (H3) and (H4) hold. Furthermore, we assume that f sat-
isfies:

(H ′
5) for any t ∈ J , ‖x‖ ∈ [0, R], fi(t, x) ≤ LR, where L satisfies (4.1);

(H ′
6) for any t ∈ [θ , 1 – θ ], ‖x‖ ∈ [γ ∗r, r], fi(t, x) ≥ lr, where l > 0.

Letting 0 < r < R, then there exists λ0 > 0, such that, for λ > λ0, system (1.1)–(1.2) has at
least one positive solution x with

r ≤ ‖x‖ ≤ R.

Theorem 6.2 Assume that (H1), (H3), (H4) hold and 0 < r < η < R. Furthermore, we assume
that f satisfies

(H ′′
7 ) Fr

0 ≤ L and FR
0 ≤ L, where L is defined in (4.1);

(H ′
8) Fη

ση ≥ l, where l > 0.
Then there exist λ0 > 0 such that, for λ > λ0, system (1.1)–(1.2) has at least two positive
solutions x(1), x(2) and

∑n
i=1 x(1)

i (t) > γ ∗η, ∀t ∈ [θ , 1 – θ ].

Remark 6.1 If (H2) does not hold, we can also consider the other cases.

To this aim, we begin by introducing the notations

f 0
i = lim sup

‖y‖→0
max

t∈J

fi(t, y)
‖y‖ , f ∞

i = lim sup
‖y‖→∞

max
t∈J

fi(t, y)
‖y‖ ,

Kr,R =
{

x|x ∈ Kθ , r < ‖x‖ < R
}

.

Theorem 6.3 Assume that (H1), (H3) and (H4) hold. Furthermore, let the following two
conditions hold:

(i) f 0
i = 0 or f ∞

i = 0;
(ii) There exist ρ > 0, δ > 0, such that fi(t, x) ≥ δ for ‖x‖ ≥ ρ , t ∈ J

be satisfied, then there exists λ0 > 0 such that, for all λ > λ0, system (1.1)–(1.2) has at least
one positive solution x∗.

Proof Considering f 0
i = 0, there exists 0 < r < ρ such that fi(t, x) ≤ ε1r, for 0 ≤ ‖x‖ ≤ r,

t ∈ J , where ε1 > 0 satisfies λε1‖Gi‖q‖gi‖p ≤ 1
n .

So, for x ∈ ∂Krθ , we have from (3.5)

(
Ti

λx
)
(t) = λ

∫ 1

0
Gi(t, s)gi(s)fi

(
s, x(s)

)
ds

≤ λ

∫ 1

0
Gi(t, s)gi(s)fi

(
s, x(s)

)
ds

≤ λ

∫ 1

0
Gi(s)gi(s)fi

(
s, x(s)

)
ds

≤ λ

∫ 1

0
‖Gi‖q‖gi‖pfi

(
s, x(s)

)
ds

≤ λ‖Gi‖q‖gi‖p

∫ 1

0
fi
(
s, x(s)

)
ds
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≤ λ‖Gi‖q‖gi‖pε1r

≤ 1
n

r =
1
n

‖x‖,

which shows that

‖Tλx‖ =
n∑

i=1

sup
t∈J

∣∣(Ti
λx
)
(t)
∣∣≤ ‖x‖, ∀x ∈ ∂Krθ . (6.1)

If f ∞
i = 0, similar to the proof of (4.1), there exists R > ρ such that fi(t, x) ≤ ε2‖x‖, for

‖x‖ ≥ R, t ∈ J , where ε2 > 0 satisfies λε2‖Gi‖q‖gi‖p ≤ 1
n , and, for x ∈ ∂KRθ , we have

‖Tλx‖ ≤ ‖x‖. (6.2)

On the other hand, from (ii), when a ρ > 0 is fixed, then there exists a λ0 > 0 such that
fi(t, x) ≥ δ > 1

λ
[γ ∗δNi

∫ 1–θj
θj

Gi(s) ds]–1ρ for λ > λ0, x ∈ ∂Kρθ .
Therefore, for x ∈ ∂Kρθ , t ∈ J , we have

‖Tλx‖ ≥ sup
t∈J

∣∣(Ti
λx
)
(t)
∣∣

= λ sup
t∈J

∫ 1

0
Gi(t, s)gi(s)fi

(
s, x(s)

)
ds

≥ min
t∈[θj ,1–θj]

λδ

∫ 1

0
Gi(t, s)gi(s) ds

≥ γ ∗λδNi

∫ 1

0
Gi(s) ds

≥ γ ∗λδNi

∫ 1–θj

θj

Gi(s) ds

> ρ = ‖x‖.

Consequently, for x ∈ ∂Kρθ , we have

‖Tλx‖ > ‖x‖. (6.3)

By Lemma 3.3, for all λ > λ0, (6.1) and (6.3), (6.2) and (6.3), respectively, show that Tλ

has a fixed point x∗ ∈ K̄r,ρ , r ≤ ‖x∗‖ < ρ and
∑n

i=1 x∗
i (t) ≥ γ ‖x∗‖, t ∈ [θ , 1 – θ ] or x∗ ∈ K̄ρ,R,

ρ < ‖x∗‖ ≤ R and
∑n

i=1 x∗
i (t) ≥ γ ‖x∗‖ > 0, t ∈ [θ , 1 – θ ]. Thus it follows that system (1.1)–

(1.2) has at least one positive solution x∗ for all λ > λ0. �

Theorem 6.4 Assume that (H1) and (H3) hold. Furthermore, lett the following two condi-
tions hold:

(i) f 0
i = 0 and f ∞

i = 0;
(ii) there exist ρ > 0, δ > 0, such that fi(t, x) ≥ δ for ‖x‖ ≥ ρ , t ∈ J ,

are satisfied, then there exists λ0 > 0 such that, for all λ > λ0, system (1.1)–(1.2) has at least
two positive solutions x∗ and x∗∗.
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Proof The proof is similar to that of Theorem 6.3. By Lemma 3.3, (6.1)–(6.3) show that Tλ

has at least two fixed points x∗, x∗∗, where x∗ ∈ K̄r,ρ , r ≤ ‖x∗‖ < ρ and
∑n

i=1 x∗
i (t) ≥ γ ‖x∗‖ >

0, t ∈ [θ , 1 – θ ], x∗∗ ∈ K̄ρ,R, ρ < ‖x∗‖ ≤ R and
∑n

i=1 x∗∗
i (t) ≥ γ ‖x∗∗‖, t ∈ [θ , 1 – θ ]. Thus it

follows that system (1.1)–(1.2) has at least two positive solutions x∗, x∗∗ for all λ > λ0. �

Remark 6.2 Results similar to Theorems 6.3–6.4 have been established by Wang [57] for
other types of n-dimensional system.

Remark 6.3 Boundary value problem with infinitely many singularities has been studied
by Kaufmann, Kosmatov, Wang and Feng. For more details on this study, we refer the
reader to [58, 59] for a second order two point boundary value problem.

7 An example
In Example 7.1, we select n = 3, α = 5

2 , a = 2, b = 1.

Example 7.1 Consider the following system:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ x(t) + λg(t)f(t, x(t)) = 0, 0 < t < 1,

x(0) = x′(0) = 0,

ax(1) + bx′(1) =
∫ 1

0 h(t)x(t) dt,

(7.1)

where

g(t) =

⎛

⎜
⎝

g1(t) 0 0
0 g2(t) 0
0 0 g3(t)

⎞

⎟
⎠ , h(t) =

⎛

⎜
⎝

5 0 0
0 5 0
0 0 5

⎞

⎟
⎠ ,

f(t, x) =

⎛

⎜
⎝

( 1
6 + 1

6 t)Lx1 + 1
3 Lx2 + + 1

3 Lx3

( 1
6 + 1

6 t)Lx1 + 1
3 Lx2 + + 1

3 Lx3

( 1
6 + 1

6 t)Lx1 + 1
3 Lx2 + + 1

3 Lx3

⎞

⎟
⎠ ,

where L is defined in (4.1), hi(t) ≡ 5 on J , fi(t, x) = fi(t, x1, x2, x3) = ( 1
6 + 1

6 t)Lx1 + 1
3 Lx2 +

+ 1
3 Lx3 on t ∈ J , gi(t) (i = 1, 2, 3) are singular at t′

j , j = 1, 2, . . . , and

t′
j =

2
5

–
1

10

j∑

i=1

1
(2i – 1)4 , j = 1, 2, . . . . (7.2)

It follows from (7.2) that

t′
1 =

2
5

–
1

10
=

3
10

,

t′
j – t′

j+1 =
1

10(2j + 1)4 , j = 1, 2, . . . ,

and from
∑∞

j=1
1

(2j–1)4 = π4

96 , there is

t′
0 = lim

j→∞ t′
j =

2
5

–
1

10

∞∑

j=1

1
(2j – 1)4 =

2
5

–
1

10
· π4

96
=

2
5

–
π4

960
>

1
10

.
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Consider the function

g1(t) =
∞∑

j=1

g(1)
j (t), g2(t) =

∞∑

j=1

g(2)
j (t), g3(t) =

∞∑

j=1

g(3)
j (t), t ∈ J ,

where

g(1)
j (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+2
(j+1)!(t′j +t′j+1) , t ∈ [0,

t′j +t′j+1
2 ),

1√
t′j –t

, t ∈ [
t′j +t′j+1

2 , t′
j),

1√
t–t′j

, t ∈ (t′
j ,

t′j +t′j–1
2 ],

j+2
(j+1)!(2–t′j –t′j–1) , t ∈ (

t′j +t′j–1
2 , 1],

g(2)
j (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
(2j–2)!(t′j +t′j+1) , t ∈ [0,

t′j +t′j+1
2 ),

1√
t′j –t

, t ∈ [
t′j +t′j+1

2 , t′
j),

1√
t–t′j

, t ∈ (t′
j ,

t′j +t′j–1
2 ],

2
(2j–2)!(2–t′j –t′j–1) , t ∈ (

t′j +t′j–1
2 , 1],

g(3)
j (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j
2j(t′j +t′j+1) , t ∈ [0,

t′j +t′j+1
2 ),

1√
t′j –t

, t ∈ [
t′j +t′j+1

2 , t′
j),

1√
t–t′j

, t ∈ (t′
j ,

t′j +t′j–1
2 ],

j
2j(2–t′j –t′j–1) , t ∈ (

t′j +t′j–1
2 , 1].

From
∑∞

j=1
j+2

(j+1)! = 2e – 3,
∑∞

j=1
2

(2j–2)! = e + e–1,
∑∞

j=1
j

2j = 2 and
∑∞

j=1
1

(2j–1)2 = π2

8 , we get

∞∑

j=1

∫ 1

0
g(1)

j (t) dt =
∞∑

j=1

{∫ t′j +t′j+1
2

0

j + 2
(j + 1)!(t′

j + t′
j+1)

dt +
∫ 1

t′j–1+t′j
2

j + 2
(j + 1)!(2 – t′

j – t′
j–1)

dt

+
∫ t′j

t′j +t′j+1
2

1
√

t′
j – t

dt +
∫ t′j–1+t′j

2

t′j

1
√

t – t′
j

dt
}

=
∞∑

j=1

j + 2
(j + 1)!

+
√

2
∞∑

j=1

(√
t′
j – t′

j+1 +
√

t′
j–1 – t′

j

)

= 2e – 3 +
√

2√
10

∞∑

j=1

(
1

(2j + 1)2 +
1

(2j – 1)2

)

= 2e – 3 +
√

2√
10

(
π2

8
– 1 +

π2

8

)

= 2e – 3 +
√

2√
10

(
π2

4
– 1
)

, (7.3)
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∞∑

j=1

∫ 1

0
g(2)

j (t) dt =
∞∑

j=1

{∫ t′j +t′j+1
2

0

2
(2j – 2)!(t′

j + t′
j+1)

dt +
∫ 1

t′j–1+t′j
2

2
(2j – 2)!(2 – t′

j – t′
j–1)

dt

+
∫ t′j

t′j +t′j+1
2

1
√

t′
j – t

dt +
∫ t′j–1+t′j

2

t′j

1
√

t – t′
j

dt
}

=
∞∑

j=1

2
(2j – 2)!

+
√

2
∞∑

j=1

(√
t′
j – t′

j+1 +
√

t′
j–1 – t′

j

)

= e + e–1 +
√

2√
10

∞∑

j=1

(
1

(2j + 1)2 +
1

(2j – 1)2

)

= e + e–1 +
√

2√
10

(
π2

8
– 1 +

π2

8

)

= e + e–1 +
√

2√
10

(
π2

4
– 1
)

, (7.4)

∞∑

j=1

∫ 1

0
g(3)

j (t) dt =
∞∑

j=1

{∫ (t′j +t′j+1)/2

0

j
2j(t′

n + t′
j+1)

dt +
∫ 1

(t′j–1+t′j )/2

j
2j(2 – t′

j – t′
j–1)

dt

+
∫ t′j

(t′j +t′j+1)/2

1
√

t′
j – t

dt +
∫ (t′j–1+t′j )/2

t′j

1
√

t – t′
j

dt
}

=
∞∑

j=1

j
2j +

√
2

∞∑

j=1

(√
t′
j – t′

j+1 +
√

t′
j–1 – t′

j

)

= 2 +
√

2√
10

∞∑

j=1

(
1

(2j + 1)2 +
1

(2j – 1)2

)

= 2 +
√

2√
10

(
π2

8
– 1 +

π2

8

)

= 2 +
√

2√
10

(
π2

4
– 1
)

. (7.5)

Thus, from (7.3), (7.4) and (7.5), it is easy to see that

∫ 1

0
g1(t) dt =

∫ 1

0

∞∑

j=1

g(1)
j (t) dt =

∞∑

j=1

∫ 1

0
g(1)

j (t) dt = 2e – 3 +
√

2√
10

(
π2

4
– 1
)

< +∞,

∫ 1

0
g2(t) dt =

∫ 1

0

∞∑

j=1

g(2)
j (t) dt =

∞∑

j=1

∫ 1

0
g(2)

j (t) dt = e + e–1 +
√

2√
10

(
π2

4
– 1
)

< +∞,

∫ 1

0
g3(t) dt =

∫ 1

0

∞∑

j=1

g(3)
j (t) dt =

∞∑

j=1

∫ 1

0
g(3)

j (t) dt = 2 +
√

2√
10

(
π2

4
– 1
)

< +∞.

Therefore gi(t) ∈ L1[0, 1], i = 1, 2, 3, which shows that conditions (H1) and (H2) hold.
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On the other hand, it is not difficult to see that by means of the definition of f(t, x) con-
dition (H3) holds. At the same time, it follows from a = 2, b = 1, α = 5

2 and hi(t) ≡ 5 that

μi =
∫ 1

0
hi(t)tα–1 dt = 2 < a + b(α – 1) =

7
2

, i = 1, 2, 3,

which shows that condition (H4) holds.
Next, we show that conditions (H5) and (H6) of Theorem 4.1 hold. In fact, for any t ∈ J ,

‖x‖ ∈ [0, Rj], we get

fi(t, x) =
(

1
6

+
1
6

t
)

Lx1 +
1
3

Lx2 + +
1
3

Lx3 ≤ LRj;

for any t ∈ [θj, 1 – θj], ‖x‖ ∈ [γ ∗
j rj, rj], we get

fi(t, x) =
(

1
6

+
1
6

t
)

Lx1 +
1
3

Lx2 + +
1
3

Lx3 ≥ lrj, where l =
(

1
3

Lθjγ
∗
j +

1
3

L +
1
3

L
)

.

Therefore, it follows from Theorem 4.1 that there exists λ0 > 0, such that, for λ > λ0,
system (7.1) has denumerably many positive solutions {xj}∞j=1 satisfying

rj ≤ ‖xj‖ ≤ Rj, j = 1, 2, . . . .
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