
Li et al. Advances in Difference Equations  (2018) 2018:141 
https://doi.org/10.1186/s13662-018-1597-8

R E S E A R C H Open Access

Zero-Hopf bifurcation and Hopf
bifurcation for smooth Chua’s system
Junze Li, Yebei Liu and Zhouchao Wei*

*Correspondence:
weizhouchao@163.com
School of Mathematics and Physics,
China University of Geosciences,
Wuhan, China

Abstract
Based on the fact that Chua’s system is a classic model system of electronic circuits,
we first present modified Chua’s system with a smooth nonlinearity, described by a
cubic polynomial in this paper. Then, we explore the distribution of the equilibrium
points of the modified Chua circuit system. By using the averaging theory, we
consider zero-Hopf bifurcation of the modified Chua system. Moreover, the existence
of periodic solutions in the modified Chua system is derived from the classical Hopf
bifurcation theorem.
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1 Introduction
As we all know, Chua’s circuit is the first analog system to implement chaos in experi-
ments. Although Chua’s system is comprised of simple ordinary differential equations, it
can present some extremely complex dynamical behaviors such as chaos and bifurcation.
It is for this reason that Chua’s circuit shows comparative advantage in practical applica-
tions and has attracted many researchers [1–15].

People have noticed that the research of Chua’s circuit relies heavily on computer nu-
merical simulations. Many fundamental questions, such as complex chaotic behavior and
the existence of a global attractive compact set, are still not solved. Recently, a hidden
attractor was proposed by Leonov et al. [16–18], and means basin of attraction does not
contain neighborhoods of any equilibria. Based on the idea of a hidden attractor, Leonov et
al. discovered a hidden Chua attractor [17] in smooth Chua systems. Chua et al. expressed
a conjecture that Andronov–Hopf bifurcation can lead to the birth of hidden attractors in
Chua systems [19].

Regarding the original Chua’s system, people use continuous piecewise linear functions
with two non-differentiable breakpoints and three segments to characterize the charac-
teristics of Chua’s diode. It can be easily implemented experimentally with simple elec-
tronics for piecewise-linear functions. However, we should know that, seriously talking,
the characteristics of segmented devices are generally smooth in the actual circuits [20].
Thus, it is also extremely important to consider the complex dynamics in smooth Chua’s
systems whose piecewise linear functions are replaced by smooth polynomials [21–38].
Llibre and Valls analyzed the existence of the first integral locally and globally for Chua’s
system [34]. By using the Poincaré compactification for a polynomial vector field in R3,
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Messias researched the dynamics at infinity of the modified smoothly Chua system [36].
The local codimension one, two, and three Hopf bifurcations, which occur in Chua’s dif-
ferential equations with cubic nonlinearity, was studied in [37]. In addition, Algaba and his
coworkers proved the existence of codimension-three Hopf bifurcations for the nontriv-
ial equilibria in Chua’s system[38]. Based on the works mentioned above and the research
about the Hopf bifurcations in [38], the modified Chua circuit system is described as the
following form:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = α(y – bx – cx2 – ax3),

ẏ = x – y + z,

ż = –βy – γ z,

(1)

where a = ±1 and α,β ,γ , c, b ∈ R. Note that for α = 0 system (1) is linear and if β = 0 it is
uncoupled. In this paper we extend the result in [38] and consider the case a = 1. System
(1) will be of the following form:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = α(y – bx – cx2 – x3),

ẏ = x – y + z,

ż = –βy – γ z.

(2)

The rest of this paper is organized as follows. In Sect. 2, distribution of equilibria of
system (2) is presented. The problem of zero-Hopf bifurcation of system (2) is addressed
in Sect. 3. In Sect. 4, the classical Hopf bifurcation is studied to illustrate the existence of
periodic solution. Finally, we conclude this paper in Sect. 5.

2 Distribution of equilibria of Chua’s system
In this section, the distribution of the equilibria in the modified Chua system (2) is studied.
The equilibria of system (2) can be obtained from the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

y – bx – cx2 – x3 = 0,

x – y + z = 0,

–βy – γ z = 0.

(3)

Hence we can draw the following conclusions.

Theorem 2.1 Denote

A0 = (β + γ )
(
4γ – 4b(β + γ ) + c2(β + γ )

)
,

E± =
(

–
c
2

±
√

A0

2(β + γ )
, –

γ (cβ + cγ ∓ √
A0)

2(β + γ )2 ,
β(cβ + cγ ∓ √

A0)
2(β + γ )2

)

,

E1
± =

(
–c ± √

4 – 4b + c2

2
,

–c ± √
4 – 4b + c2

2
, 0

)

,

E2
± =

(
–c ± √

–4b + c2

2
, 0,

–c ∓ √
–4b + c2

2

)

.
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Table 1 The distribution of equilibrium of system (1)

α β γ b c Distribution of equilibrium

= 0 �= 0 �= 0 Plane ( (β+γ )y
γ , y, – βy

γ )
= 0 = 0 �= 0 Plane (x, x, 0)
= 0 �= 0 = 0 Plane (x, 0, –x)
= 0 = 0 = 0 Plane (x, y, –x + y)
�= 0 = 0 �= 0 4 – 4b + c2 ≥ 0 E0 = (0, 0, 0) and E1±
�= 0 = 0 �= 0 4 – 4b + c2 < 0 Unique E0 = (0, 0, 0)
�= 0 = 0 = 0 Surface (x, x(b + cx + x2), x(–1 + b + cx + x2))
�= 0 �= 0 = 0 –4b + c2 ≥ 0 Unique E0 = (0, 0, 0) and E2±
�= 0 �= 0 = 0 –4b + c2 < 0 E0 = (0, 0, 0)
�= 0 �= 0 �= 0 A0 ≥ 0 Unique E0 = (0, 0, 0)
�= 0 �= 0 �= 0 A0 < 0 E0 = (0, 0, 0) and E±

The distribution of equilibria of system (2) are summarized in Table 1 when the parameters
α, β , γ , b, and c vary in R

3.

3 Zero-Hopf bifurcation of system (2)
It is easy to obtain the characteristic equation associated with the equilibrium E0 in Table 1:

p(λ) = λ3 + (1 + bα + γ )λ2 + (–α + bα + β + γ + bαγ )λ + bαβ – αγ + bαγ = 0. (4)

Zero-Hopf bifurcation at the equilibrium E0 in Table 1 could happen in condition that the
characteristic equation associated with the equilibrium E0 has a zero real eigenvalue and
a pair of pure imaginary eigenvalues. Therefore, we have the following proposition.

Proposition 3.1 The differential system (2) has a zero-Hopf equilibrium localized at equi-
librium E0 if the following condition is satisfied:

b = –
–1 – γ

α
, β =

γ (1 + α + γ )
1 + γ

,

α = –
–1 – 3γ – 3γ 2 – γ 3 – ω2 – γω2

1 + 2γ
.

(5)

Moreover, the eigenvalues at the origin are 0, and ±ωi.

Now, we give the averaging theory.

Theorem 3.2 (First-order averaging theory [39–43]) We consider the following two initial
value problems:

ẋ = εf (t, x) + ε2g(t, x, ε), x(0) = x0, (6)

and

ẏ = εf 0(y), y(0) = x0, (7)
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where x, y, x0 ∈ � is an open subset of Rn, t ∈ [0,∞), ε ∈ (0, ε0], f and g are periodic of period
T in the variable t, and f 0(y) is the averaged function of f (t, x) with respect to t, i.e.,

f 0(y) =
1
T

∫ T

0
f (t, y) dt. (8)

Suppose:
(i) f , its Jacobian ∂f

∂x , its Hessian ∂2f
∂x2 , g and its Jacobian ∂g

∂x are defined, continuous, and
bounded by a constant independent of ε in [0,∞) × � and ε ∈ (0, ε0];

(ii) T is a constant independent of ε; and
(iii) y(t) belongs to � on the interval of time [0, 1/ε]. Then the following statements hold:

(a) On the time scale 1/ε, we have that x(t) – y(t) = O(ε), as ε → 0.
(b) If p is a singular point of the averaged system (9) such that the determinant of

the Jacobian matrix

∂f 0

∂y

∣
∣
∣
∣
y=p

(9)

is not zero, then there exists a limit cycle φ(t, ε) of period T for system (8) which
is close to p and such that φ(t, ε) → p as ε → 0.

(c) The stability or instability of the limit cycle φ(t, ε) is given by the stability or
instability of the singular point p of the averaged system (9). In fact, the singular
point p has the stability behavior of the Poincaré map associated to the limit
cycle φ(t, ε).

In the rest of this section, we employ the three-dimensional zero-Hopf bifurcation the-
ory and apply symbolic computations to perform the analysis of parametric variations in
system (2).

Theorem 3.3 Let

b = –
–1 – γ

α
+ ε, β =

γ (1 + α + γ )
1 + γ

+ ε,

α = –
–1 – 3γ – 3γ 2 – γ 3 – ω2 – γω2

1 + 2γ
+ ε.

(10)

If ω �= 0 and � > 0, where

� = γ
(
10γ 14 + γ 15 + 16γ 12(8 + ω2) + γ 13(45 + 2ω2)

+ γ 10(422 + 120ω2 – 10ω4)

+ γ 11(266 + 57ω2 – ω4) + 2ω4(–1 + ω2 + ω4)

+ γ 9(518 + 168ω2 – 41ω4 – 4ω6)

– 2γ 8(–247 – 88ω2 + 55ω4 + 12ω6)

– 2γ 6(–92 – 45ω2 + 158ω4 + 45ω6 + ω8)

– γ 7(–357 – 134ω2 + 217ω4 + 62ω6 + ω8)
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+ 2γ 2ω2(5 – 53ω2 + 14ω4 + 19ω6 + 5ω8 + ω10)

+ γ 5(62 + 86ω2 – 383ω4 – 79ω6 + 3ω8 + 2ω10)

+ 2γ 4(6 + 38ω2 – 189ω4 – 16ω6 + 11ω8 + 4ω10)

+ γ
(
ω2 – 23ω4 + 13ω6 + 15ω8 + 3ω10 + ω12)

+ γ 3(1 + 39ω2 – 258ω4 + 16ω6 + 43ω8 + 13ω10 + ω12)).

Then the smooth Chua system (2) has a zero-Hopf bifurcation and produces a limit cycle
at the equilibrium point E0 located at the origin of coordinates for ε > 0 sufficiently small.
The equilibrium point of a planar differential system has the same stability or instability
as this limit cycle, and the equilibrium point with eigenvalues

A1A2 ± √
–γ (1 + γ )4A3A4

2√
γ (1 + 2γ )ω3(γ + γ 2 – ω2)(γ 2 + ω2)A1

, (11)

where Ai (i = 1, 2, 3, 4) can be found in the Appendix.

Proof of Theorem 3.3 We first write the linear part at the origin of the differential system
(2) when condition (5) is satisfied into its real Jordan normal form, i.e., into the following
form:

⎛

⎜
⎝

0 –ω 0
ω 0 0
0 0 0

⎞

⎟
⎠ . (12)

For that we consider the linear change

x = –
(

3ω + 2γω

γ 2 + ω2 +
ω

γ (γ 2 + ω2)

)

u

+
(

–
–γ 2 + ω2 – 1 – 2γ

γ 2 + ω2 +
ω2

γ (γ 2 + ω2)

)

v

–
(

γ 2 + ω2 + 1 + 2γ

γ 2 + ω2

)

ω,

y = –
(

2ω

γ 2 + ω2 +
ω

γ (γ 2 + ω2)

)

u –
1 + 2γ

γ 2 + ω2 v –
1 + 2γ

γ 2 + ω2 w,

z = v + w.

(13)

By using the replaced variables (u, v, w), the differential system (2) will be changed to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇ = B1
γ 2+ω2 u + B2

ω(γ 2+ω2) v + γ B1
ω(γ 2+ω2) w,

v̇ = 1
ω2 (uB3 + α(uB4+vB5+wB6)2(–cγ 3+uB7–cγω2+vB5+wB6)

B8

+ wγ (–B9 + B10 + v(–γ B9 + B11))),

ẇ = 1
ω2 (uB12 + α(uB4+vB5+wB6)2(–cγ 3+uB7–cγω2+vB5+wB6)

B8

+ vB13 + wB14),

(14)
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where Bi (i = 1, 2, . . . , 10) can be found in the Appendix. Then we use the cylindrical coor-
dinates (u, v) = (r cos θ , r sin θ ) and obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ = – 1
c2

1
(C1 cos θ (C2γ w + C2ωr cos θ + C3r sin θ ) – 1

C5γ 2 sin θ (B3
4αr3 cos θ3

+ γ 2(B11C5C2
6 + 3B5C2

4αw2 – C5C6C7βγ – 2cC4C6C7α(1 + γ )w)r sin θ

– B2
5(cC6 – 3C4w)αγ r2 sin θ2 + B3

5αr3 sin θ3

+ B2
4αr2 cos θ2(–cC6γ + 3C4γ w + 3B5r sin θ )

+ ωr cos θ (γ 2(C4w(–2cC6 + 3C4w)αC8 + C5C6(–C7β + C6γ (1 + γ )

+ C6α(–1 + b + bγ ))) – 2C5C7αγ (cC6(1 + γ )2 – 3C4(1 + γ 2)w)r sin θ

+ 3C5C2
7α(1 + γ )3r2 sin θ2)

+ wγ 2(γ (bC4C2
6α – cC2

4C6αw + C3
4αw2 – C5C6(C6α + C7β)

+ C2
6C7γ ) + 6C4C5C7αωr2 sin 2θ ))),

θ̇ = 1
c2

1r (C1 sin θ (C2γ w + C2ωr cos θ + C3r sin θ ) – 1
C5γ 2 cos θ (B3

4αr3 cos θ3

+ γ 2(B11C5C2
6 + 3B5C2

4αw2 – C5C6C7βγ – 2cC4C6C7α(1 + γ )w)r sin θ

– B2
5(cC6 – 3C4w)αγ r2 sin θ2 + B3

5αr3 sin θ3

+ B2
4αr2 cos θ2(–cC6γ + 3C4γ w + 3B5r sin θ )

+ ωr cos θ (γ 2(C4w(–2cC6 + 3C4w)αC8 + C5C6(–C7β + C6γ (1 + γ )

+ C6α(–1 + b + bγ ))) – 2C5C7αγ (cC6(1 + γ )2 – 3C4(1 + γ 2)w)r sin θ

+ 3C5C2
7α(1 + γ )3r2 sin θ2)

+ wγ 2(γ (bC4C2
6α – cC2

4C6αw + C3
4αw2 – C5C6(C6α + C7β)

+ C2
6C7γ ) + 6C4C5C7αωr2 sin 2θ ))),

ω̇ = w
C2

1 C5
(cC2

4C6αγ w – C3
4αγ w2 – C3

6γ (1 + γ )

+ C2
6(C8β + (–bC4 + C5)αγ )) – B3

4αr3 cos θ3

– γ 2(3B5C2
4αw2 – 2cC4C6C7α(1 + γ )w

– C2
6(C8β – (1 + γ )(γ 3 – ω2 – γω2)

+ α(γ – 2(–1 + b)γ 2 – bγ 3 + bω2 + bγ (–1 + ω2))))r sin θ

+ B2
5αγ (cC6 – 3C4w)r2 sin θ2

– B3
5αr3 sin θ3 – B2

4αr2 cos θ2(–cC6γ + 3C4γ w + 3B5r sin θ )

+ ωr cos θ (2cC4C6C8αγ 2w

– 3C2
4C8αγ 2w2 + C5C2

6γ (β(1 + γ ) – γ (γ (1 + γ ) + α(–1 + b + bγ )))

+ 2C5C7r(cC6 – 3C4w)αγ (1 + γ )2 sin θ – 3C5C2
7r2α(1 + γ )3 sin θ2),

(15)

where Ci (i = 1, 2, . . . , 8) can be found in the Appendix.
We take condition (6) into system (15), and rescale (r, w) = (εR, εW ) with ε > 0 being a

sufficiently small parameter, so system (15) becomes

⎧
⎨

⎩

dR
dθ

= εF11(θ , R, W ) + O(ε2),
dW
dθ

= εF21(θ , R, W ) + O(ε2),
(16)
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where

F11(θ , R, W ) = –
1

(1 + γ )D1

(

C3
5ω cos θ

(
Rω cos θ + γ (W + R sin θ )

)

–
1
γ

sin θ
(
D2W 2 – WD3 + D4R2 cos θ2

– γ
(
γ C2

5C7 – 2c(1 + γ )3C7C2
4W + D5

)
R sin θ

+ cR2(1 + γ )4C2
7C4 sin θ2

+ C5ωR cos θ (D8W – D6 + D7R sin θ )
)
)

,

F21(θ , R, W ) =
1

γ D1
(1 + γ )

(
–cγ 2C3

4W 2 + γ C6D9W – D10R2 cos θ2

– γ
(
2c(1 + γ )C7C4W

)2R – C6D11
)

sin θ – D12R2 sin θ2

– C5ωR cos θ (D15W – D13 + D14R sin θ ),

(17)

and Di (i = 1, 2, . . . , 15) can be found in the Appendix.
By using the notation of the averaging theory, we get t = θ , T = 2π , x = (R, W ). Then

we mark g(R, W ) = (g11(R, W ), g21(R, W )) and calculate the integrals (17), which are the
averaged functions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g11(R, W ) = 1
2π

∫ 2π

0 F11(θ , R, W ) dθ

= – R(C3
5ω2–C4(E1+E2W ))

2(1+γ )D1
,

g21(R, W ) = 1
2π

∫ 2π

0 F21(θ , R, W ) dθ

= – (1+γ )(–cC2
4 ((1+γ )2C6R2+2γ 2C4W 2)+2γ C6E3W )

2γ D1
,

(18)

where

E1 = –γ 2(1 + γ (3 + γ )
)(

1 + γ
(
2 + γ + γ 2)) – γ (1 + γ )3ω2 + (1 + γ )3ω4,

E2 = 2c(1 + γ )3C7C4,

E3 = 1 + γ
(
5 + 8γ + 6γ 2 + 4γ 3 + γ 4 + 2(1 + γ )2ω2 + ω4).

(19)

Therefore, from g11(R, W ) = g21(R, W ) = 0, we can obtain a unique positive real solution
(R∗, W∗) (satisfying R∗ > 0)

R∗ =

√
�

2c2(1 + γ )4C2
7C4

4
, W∗ =

E4

2c(1 + γ )C7C2
4

, (20)

where

E4 = 4γ 6 + γ 7 + γ 5(6 + ω2) + γ 4(8 + 3ω3) + γ 2(1 + 7ω2 – 2ω4) + γ 3(5 + 4ω2 – ω4)

– ω2(–1 + ω2 + ω4) – γω2(–5 + 2ω2 + ω4). (21)
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We recall that � is defined in the statement of Theorem 3.2, and get the Jacobian matrix

∂(g11, g21)
∂(R, W )

∣
∣
∣
∣
(R,W )=(R∗,W∗)

=

⎛

⎝
0 (1+γ )2C7C4

√
γ�

C5C6ω3√
2E5

– (1+γ )3C4
√

�

C5ω3√
2γ E5

– C5
ωC7

⎞

⎠ , (22)

where

E5 = (1 + γ )2(1 + 2γ )
(
γ + 3γ 2 + 3γ 3 + γ 4 – γω2 – ω2(1 + ω2)). (23)

Furthermore, the determinant of Jacobian matrix (22) at (R∗, W∗) takes the following value:

(1 + γ )5C7C2
4�

C2
5C6ω62E2

5
�= 0. (24)

In a nutshell, we prove that when ε > 0 sufficiently small, the periodic solutions cor-
responding to (R∗, W∗) produce a periodic solution that bifurcates from the coordinate
origin of the differential system (18). Theorem 3.3 guarantees the existence of a periodic
solution corresponding to the point (R∗, W∗) of the form (R(θ , ε), W (θ , ε)) for ε > 0 small
enough, such that (R(0, ε), W (0, ε)) → (R∗, W∗) when ε → 0. Thus we get the periodic so-
lution of system (14)

u(θ , ε) = εR cos θ , v(θ , ε) = εR sin θ , w(θ , ε) = εW (25)

for ε > 0 small enough. From relation (28) to the linear change of variable (13), we can
get a periodic solution (x(θ ), y(θ ), z(θ )) of system (2). Finally, we get the conclusion that
the modified Chua system (2) has a periodic solution (x(θ ), y(θ ), z(θ )) for ε > 0 sufficiently
small, and when ε → 0, it tends to the origin of coordinates. The periodic solution starts
from the zero-Hopf equilibrium point, and is located at the origin of coordinates when
ε = 0. So we have completed the proof of Theorem 3.3. �

4 Hopf bifurcation of the modified Chua system
Assume that the characteristic equation of the modified Chua system (2) has a pair of
imaginary roots ±iω (ω ∈ R+). It is not hard to know that when

β = β0 = –
(αb + 1)(α(bγ + b – 1) + γ (γ + 1))

γ + 1
, (26)

(4) yields

λ1 = –bα – γ – 1 < 0, λ2,3 = ±i

√
α(αb2(γ + 1) – αb + γ )

–γ – 1
, (27)

where bα + γ + 1 > 0, α(αb2(γ + 1) – αb + γ )(–γ – 1) > 0.

Proposition 4.1 Define

T =
{

(α,β ,γ , b) | bα + γ + 1 > 0,α
(
αb2(γ + 1) – αb + γ

)
(–γ – 1) > 0

}
,

β = β0 = –
(αb + 1)(α(bγ + b – 1) + γ (γ + 1))

γ + 1
,

(28)
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then the Jacobian matrix of system (2) at O(0, 0, 0) has a negative real eigenvalue –bα–γ –1
and a pair of purely imaginary eigenvalues ±i

√
α(αb2(γ +1)–αb+γ )

–γ –1 .

Let β be the Hopf bifurcation parameter, the transverse condition

Re
(
λ′(β0)

)∣
∣
λ=±i

√
α(αb2(γ +1)–αb+γ )

–γ –1

=
(γ + 1)2

2((α + 3)γ + 2α2b2(γ + 1) + αb(2(γ + 1)2 – α) + γ 3 + 3γ 2 + 1)
�= 0 (29)

can also be satisfied. Consequently, we can get the following theorem.

Theorem 4.2 If (α,β ,γ , b) ∈ T and β varies and passes through the critical value

β0 = –
(αb + 1)(α(bγ + b – 1) + γ (γ + 1))

γ + 1
,

system (2) undergoes the Hopf bifurcation at the equilibrium O(0, 0, 0).

Firstly, let us retrospect the projection method presented in [44], but after the study of
[45–51], used to figure out the first Lyapunov coefficient l1 connected with the stability of
a Hopf bifurcation. Consider the following differential equation:

Ẋ = f (X,μ), (30)

where X ∈ R3 and μ ∈ R5 are respectively vectors representing phase variables and control
parameters. Assume that f is a class of C∞ in R3 ×R5. Suppose that (33) has an equilibrium
X = X0 at μ = μ0. Denoting the variable X = X0 at μ = μ0, and denoting the variable X – X0

also by X, write

F(X) = f (X,μ0) (31)

as

F(X) = AX +
1
2

B(X, X) +
1
6

C(X, X, X) + O
(‖X‖4), (32)

where A = fx(0,μ0) and, for i = 1, 2, 3,

B(X, Y ) =
3∑

j,k=1

∂2Fi(ξ )
∂ξj ∂ξk

∣
∣
∣
∣
ξ=0

XjYk ,

C(X, Y , Z) =
3∑

j,k,l=1

∂3Fi(ξ )
∂ξj ∂ξk ∂ξl

∣
∣
∣
∣
ξ=0

XjYkZl.

Assume that A has one pair of complex eigenvalues on the imaginary axis: λ2,3 = ±w0 (w0 >
0), and these eigenvalues are the only eigenvalues with Reλ = 0. Let Tc be the generalized
eigenvalues of A corresponding to λ2,3. Let p, q ∈ C3 be vectors such that

Aq = iw0q, AT p = –iw0p, 〈p, q〉 = 1, (33)
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where AT is the transpose of the matrix A. Any vector y ∈ Tc can be expressed as y = wq +
wq̄, where w = 〈p, y〉 ∈ C. The two-dimensional center manifold related to the eigenvalues
λ2,3 can be parameterized by w and w, by way of an immersion of the form X = H(w, w),
where H : C2 → R3 has a Taylor expansion of the following form:

H(w, w) = wq + wq̄

+
∑

2≤j+k≤3

1
j!k!

hjkwjwk + O
(|w|4), (34)

with hjk ∈ C3 and hjk = h̄kj. Taking this expression into (34), we get the following differential
equation:

Hww′ + Hww′ = F
(
H(w, w)

)
,

where F is given by (32). The complex vectors hij are obtained by the coefficients of (34).
Considering the coefficients of F , system (30) can be written as the following form on the
chart w for a central manifold:

ẇ = iw0w +
1
2

G21w|w|2 + O
(|w|4),

with G21 ∈ C. The first Lyapunov coefficient can be presented as

l1 =
1
2

Re G21,

where

G21 =
〈
p, C(q, q, q̄) + B(q̄, h20) + 2B(q, h11)

〉
.

If the Jacobian matrix A of an equilibrium point has only a pair of purely imaginary
eigenvalues ±iw0 (w0 > 0), and the other eigenvalue with nonzero real part, then the equi-
librium point is called a Hopf bifurcation point (X0,μ0). It is clear that a two-dimensional
center manifold is well defined at a Hopf point. Also, it is invariant and can continue any
higher-order derivative to nearby parameter values.

If the parameter-dependent complex eigenvalues cross the imaginary axis with nonzero
derivative, the Hopf point is called transversal. In the neighborhood of transverse Hopf
points with l1 �= 0, the dynamic behavior of system (30) is reduced to a family of parameter-
dependent continuations of the center manifold, which is topologically equivalent to the
following complex standard form in orbit:

w′ = (η + iw)w + l1w|w|2,

where w ∈ C, η, w, and l1 are real functions with any higher-order derivative, which are
continuations of 0, w0, and the first Lyapunov coefficient at the Hopf point [46]. In this
manifold family, we find one family of stable (unstable) periodic orbits as l1 < 0 (l1 > 0),
narrowing to a point of equilibrium at the Hopf point.
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In the remainder of this part, we apply the three-dimensional Hopf bifurcation method,
and symbolic calculations are used to analyze the parameter changes regarding dynamic
bifurcations. We consider the bifurcation of system (2) at O(0, 0, 0) (system (2) at E0).

Theorem 4.3 Take the two-parameter family of system (2) into account. The first Lyapunov
coefficient related to the equilibrium point O is presented by

l1 =
1

2(αb + γ + 1)((4α + 3)γ + 5α2b2(γ + 1) + 2αb((γ + 1)2 – 2α) + γ 3 + 3γ 2 + 1)

× (
144α(γ + 1)4K1(αb + 1)2(αb2(γ + 1) – αb + γ

)

× (
α(bγ + b – 1) + γ (γ + 1)

)4(3K3 – 2c2K2
))

,

where Ki (i = 1, 2, 3) can be found in the Appendix. If l1 > 0, then the Hopf point at equi-
librium O is unstable(weak repelling focus), and for each b > b0 = a2

3–a , but near b0, there
is an unstable limit cycle around the asymptotically stable equilibrium point O. If l1 < 0,
the Hopf point at the equilibrium point O is asymptotically stable (weak attractor focus),
and for each b > b0 = a2

3–a , but close to b0, there is a stable limit cycle around the unstable
equilibrium point O.

Proof Under these circumstances (28), the transversality condition (29) is also satisfied.
Consequently, the Hopf bifurcation at equilibrium point O happens. The value of the first
Lyapunov coefficient l1 determines the stability of the equilibrium point O and it can also
exhibit the stability of the equilibrium point and the previous section. The multilinear
symmetric functions can be presented as

B(x, y) = (–2cx1y1, 0, 0),

C(x, y, z) = (–6x1y1z1, 0, 0).

Furthermore, we can also obtain

p =
1
�

(

i
√

(–γ – 1)(αb2(γ + 1) – αb + γ )
α

– b(γ + 1) + 1,

γ +
1
i

√
α(αb2(γ + 1) – αb + γ )

–γ – 1
, 1

)

,

q =
(√

α(γ + 1)((–
√

α)(bγ + b – 1) – i
√

(–γ – 1)(αb2(γ + 1) – αb + γ ))
(αb + 1)(α(bγ + b – 1) + γ (γ + 1))

,

–i
√

α(–γ – 1)(αb2(γ + 1) – αb + γ ) + γ 2 + γ

(αb + 1)(α(bγ + b – 1) + γ (γ + 1))
, 1

)

and

h11 =
(

2αc(γ + 1)2(αb2(γ + 1) + b((γ + 1)2 – α) – 1)
(αb + 1)2(α(bγ + b – 1) + γ (γ + 1))(α2b3(γ + 1) + αb2((γ + 1)2 – α) – αb + γ (γ + 1))

,

–
2cγ (γ + 1)3

(αb + 1)2(α(bγ + b – 1) + γ (γ + 1))(α2b3(γ + 1) + αb2((γ + 1)2 – α) – αb + γ (γ + 1))
,
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–
2c(γ + 1)2

(αb + 1)(α2b3(γ + 1) + αb2((γ + 1)2 – α) – αb + γ (γ + 1))

)

,

h20 = (
1

3(αb + 1)2(αb2(γ + 1) – αb + γ )(α(bγ + b – 1) + γ (γ + 1))2K4

× 2
√

αc(–γ – 1)5/2(
√

(–γ – 1)
(
αb2(γ + 1) – αb + γ

)
– i

√
α(bγ + b – 1)

)2

× (
2i(–γ – 1)3/2

√
αb2(γ + 1) – αb + γ + 3α3/2b(bγ + b – 1)

+
√

α
(
–b(γ + 1)2 + 4γ + 1

))
,

–
1

3(αb + 1)2(αb2(γ + 1) – αb + γ )(α(bγ + b – 1) + γ (γ + 1))2K4

× 2c(γ + 1)3(γ
√

–γ – 1 + 2i
√

α
(
αb2(γ + 1) – αb + γ

))

× (√
α(bγ + b – 1) + i

√

(–γ – 1)
(
αb2(γ + 1) – αb + γ

))2,

× 2c(–γ – 1)5/2(
√

(–γ – 1)(αb2(γ + 1) – αb + γ ) – i
√

α(bγ + b – 1))2

3(αb + 1)(αb2(γ + 1) – αb + γ )(α(bγ + b – 1) + γ (γ + 1))K4
),

G21 =
2
√

α(γ + 1)(α(bγ + b – 1) + γ (γ + 1))K6

K5
,

where � and Kii = 4, 5, 6 can be found in the Appendix.
Therefore, we obtain the first Lyapunov coefficient

l1 =
1

2(αb + γ + 1)((4α + 3)γ + 5α2b2(γ + 1) + 2αb((γ + 1)2 – 2α) + γ 3 + 3γ 2 + 1)

× (
144α(γ + 1)4K1(αb + 1)2(αb2(γ + 1) – αb + γ

)

× (
α(bγ + b – 1) + γ (γ + 1)

)4(3K3 – 2c2K2
))

.

Therefore, Theorem 4.3 is proved. �

5 Conclusion
In this paper, Chua’s system with a smooth nonlinearity, described by a cubic polynomial,
has been presented. Two kinds of bifurcations of the modified smooth Chua system have
been studied theoretically. We explored the distribution of the equilibrium points and
researched the limit cycles bifurcating from zero-Hopf equilibrium points of the modified
Chua system by using the averaging theory. Moreover, the existence of periodic solutions
in the modified Chua system by the classical Hopf bifurcation was derived. In fact, there
are many other rich dynamic properties of Chua’s system that are not fully exploited. We
hope to propose more new things about Chua’s system in later research.

Appendix

A1 =
√

(1 + γ )4(1 + 2γ )2
(
γ + 3γ 2 + 3γ 3 + γ 4 – γω2 – ω2

(
1 + ω2

))2,

A2 = –γ
5
2 ω2 – 4γ

7
2 ω2 – 4γ

9
2 ω2 –

√
γω4 – 4γ

3
2 ω4 – 4γ

5
2 ω4,

A3 =
(
3γ 5 + γ 6 – γ 2ω2(–2 + ω2) – ω4(1 + ω2) + γ 4(3 + ω2)



Li et al. Advances in Difference Equations  (2018) 2018:141 Page 13 of 17

+ γ 3(1 + 2ω2) + γ
(
ω2 – ω4))2,

A4 = 132γ 14 + 24γ 15 + 2γ 16 + 3ω4 – 4ω6 – 4ω8 – 6γ 13(–76 + ω2)

+ γ 10(3256 – 992ω2 – 210ω4)

+ γ 11(2164 – 302ω2 – 54ω4) – 6γ 12(–189 + 10ω2 + ω4)

+ 4γ 9(976 – 569ω2 – 114ω4 + 3ω6)

+ 6γ 8(621 – 638ω2 – 90ω4 + 14ω6 + ω8)

+ 6γ 7(464 – 810ω2 – 22ω4 + 47ω6 + 6ω8)

+ 2γ 6(787 – 2314ω2 + 340ω4 + 276ω6 + 42ω8)

+ γ 5(640 – 3190ω2 + 1300ω4 + 638ω6 + 74ω8 – 6ω10)

– 2γω2(3 – 21ω2 + 13ω4 + 17ω6 + 3ω8 + ω10)

– 2γ 4(–87 + 756ω2 – 621ω4 – 200ω6 + 17ω8 + 12ω10 + ω12)

– 2γ 2(–1 + 40ω2 – 118ω4 + 20ω6 + 50ω8 + 12ω10 + 3ω12)

– 2γ 3(–14 + 230ω2 – 353ω4 – 43ω6 + 62ω8 + 18ω10 + 3ω12),

B1 = –β – 2βγ + γ 3 + γω2,

B2 = γ 4 – βγ (1 + 2γ ) – ω4,

B3 = ω

(

γ (1 + γ ) + α(–1 + b + bγ ) –
β(γ + γ 2 – ω2)

γ 2 + ω2

)

,

B4 = ω
(
1 + 3γ + 2γ 2),

B5 = (1 + γ )
(
γ + γ 2 – ω2),

B6 = γ
(
1 + 2γ + γ 2 + ω2),

B7 = ω + 3γω + 2γ 2ω,

B8 = γ 2(1 + 2γ )
(
γ 2 + ω2)2,

B9 =
β(γ + γ 2 – ω2)

γ 2 + ω2 ,

B10 =
γ (γ + γ 2 – ω2) + α(–1 – 2γ + b(1 + 2γ + γ 2 + ω2))

1 + 2γ
,

B11 =
γ 3 + γ 4 – ω2 – 3γω2 – 3γ 2ω2 + α(2(–1 + b)γ 2 + bγ 3 – bω2 + γ (–1 + b – bω2))

1 + 2γ
,

B12 =
(β(1 + γ ) – γ (γ (1 + γ ) + α(–1 + b + bγ )))ω

γ
,

B13 = β(1 + 3γ + 2γ 2) – (1 + γ )(γ 3 – ω2 – γω2) + α(γ – 2(–1 + b)γ 2 – bγ 3 + bω2 + bγ (–1 + ω2))
1 + 2γ

,

B14 =
β(1 + 3γ + 2γ 2) – γ ((1 + γ )(γ 2 + ω2) + α(–1 – 2γ + b(1 + 2γ + γ 2 + ω2)))

1 + 2γ
,

C1 = ω
(
γ 2 + ω2),

C2 = β + 2βγ – γ
(
γ 2 + ω2),
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C3 = –γ 4 + βγ (1 + 2γ ) + ω4,

C4 = 1 + 2γ + γ 2 + ω2,

C5 = 1 + 2γ ,

C6 = γ 2 + ω2,

C7 = γ + γ 2 – ω2,

C8 = 1 + 3γ + 2γ 2,

D1 = C2
5ω

3C6,

D2 = cγ 2(1 + γ )2C3
4 ,

D3 = γ 2(C2
5C7 + (1 + γ )C6

(
2 + 5γ 4 + γ 5 + 2ω2 + ω4 + γ

(
3 + ω2)2

+ 2γ 3(5 + ω2) + 2γ 2(7 + 3ω2))),

D4 = c(1 + γ )4C2
5ω

2C4,

D5 = (1 + γ )C6
(
10γ 4 + 5γ 5 + γ 6 – γ 3(–14 + ω2) – ω2(1 + ω2) + γ

(
2 – 3ω2 – 2ω4)

– γ 2(–9 + 3ω2 + ω4)),

D6 = γ
(
C5C7 + (1 + γ )C6

(
2 + 4γ 3 + γ 4 + ω2 + 2γ

(
3 + ω2) + γ 2(6 + ω2))),

D7 = 2c(1 + γ )4C7C4,

D8 = 2cγ (1 + γ )3C2
4 ,

D9 = 1 + 4γ 4 + γ 5 + 4γ 2(2 + ω2) + 2γ 3(3 + ω2) + γ
(
5 + 2ω2 + ω4),

D10 = c(1 + γ )2C2
5ω

2C4,

D11 = 1 + 6γ 3 + 4γ 4 + γ 5 – ω2 – ω4 – γ 2(–8 + ω2) – γ
(
–5 + 2ω2 + ω4),

D12 = c(1 + γ )2C2
7C4,

D13 = C6
(
1 + 3γ 3 + γ 4 + γ

(
3 + ω2) + γ 2(3 + ω2)),

D14 = 2c(1 + γ )2C7C4,

D15 = 2cγ (1 + γ )C2
4 ,

K1 = α2(2b2(γ + 1)3 – 2b(γ + 1)2 + γ
)

+ α(γ + 1)
(
2b2(γ + 1)4 – b(5γ + 3)(γ + 1)2 + 6γ 2 + 6γ + 1

)

+ α3b(bγ + b – 1) + γ (γ + 1)4,

K2 = 8α2γ – 7αγ 3 – 15αγ 2 – 9αγ – α + 6α4b5(γ + 1)3

+ α3b4(γ + 1)2(5(γ + 1)2 – 23α
)

– α2b3(γ + 1)
(
–25α2 + α

(
6γ 2 + 32γ + 26

)
+ 5(γ + 1)4)

– αb2(8α3 + α2(10γ 2 – 19γ – 29
)

– α(15γ + 2)(γ + 1)3 + 5(γ + 1)6)

+ b
(
8α3(γ – 1) – α2(11γ 3 + 33γ 2 + 19γ – 3

)
+ 6α(γ + 1)5 – (γ + 1)7)

+ γ 5 + 5γ 4 + 10γ 3 + 10γ 2 + 5γ + 1,

K3 = –γ (γ + 1)
(
4α2γ – α(5γ + 1)(γ + 1)2 + (γ + 1)5) + 6α5b6(γ + 1)3
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+ α4b5(γ + 1)2(5(γ + 1)2 – 17α
)

– α3b4(γ + 1)
(
–15α2 + 2α

(
2γ 2 + 11γ + 9

)
+ 5(γ + 1)4)

– α2b3(4α3 + α2(6γ 2 – 11γ – 17
)

– α(21γ + 4)(γ + 1)3 + 5(γ + 1)6)

+ αb2(4α3(γ – 1) – α2(20γ 3 + 47γ 2 + 26γ – 1
)

+ α(5γ + 6)(γ + 1)4 – (γ + 1)7)

+ αb
(
4α2γ (γ + 2) + α

(
6γ 2 – 7γ – 1

)
(γ + 1)2 – (4γ – 1)(γ + 1)5),

K4 = 2i
√

α
(
αb2(γ + 1) – αb + γ

)
+ (αb + γ + 1)

√
–γ – 1,

K5 = 3(αb + 1)2(α(bγ + b – 1) + γ (γ + 1)
)2(

α2b2(γ + 1)

+ γ
(
α – 2i

√

α(–γ – 1)
(
αb2(γ + 1) – αb + γ

)
+ γ 2 + γ

)

+ (γ + 1)
(√

α(bγ + b – 1)

+ i
√

(–γ – 1)
(
αb2(γ + 1) – αb + γ

))2

+ α2(–b) + (αb + 1)
(
α(bγ + b – 1) + γ (γ + 1)

))
,

K6 = 9
√

α(γ + 1)2(√α(bγ + b – 1) + i
√

(–γ – 1)
(
αb2(γ + 1) – αb + γ

))2

–
12

√
αc2(γ + 1)2(

√
α(bγ + b – 1) + i

√
(–γ – 1)(αb2(γ + 1) – αb + γ ))2(αb2(γ + 1) + b((γ + 1)2 – α) – 1)

α2b3(γ + 1) + αb2((γ + 1)2 – α) – αb + γ (γ + 1)

+
1

(αb2(γ + 1) – αb + γ )K4
2c2(–γ – 1)5/2

× (√

(–γ – 1)
(
αb2(γ + 1) – αb + γ

)
– i

√
α(bγ + b – 1)

)2

× 2i(–γ – 1)3/2
√

αb2(γ + 1) – αb + γ + 3α3/2b(bγ + b – 1)

+
√

α
(
–b(γ + 1)2 + 4γ + 1

)
,

� =
(γ – i

√
α(αb2(γ +1)–αb+γ )

–γ –1 )(i
√

α(–γ – 1)(αb2(γ + 1) – αb + γ ) + γ 2 + γ )

(αb + 1)(α(bγ + b – 1) + γ (γ + 1))

+
(γ + 1)(

√
α(bγ + b – 1) – i

√
(–γ – 1)(αb2(γ + 1) – αb + γ ))2

(αb + 1)(α(bγ + b – 1) + γ (γ + 1))
+ 1.
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