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Abstract
The generalized Caputo fractional derivative is a name attributed to the Caputo
version of the generalized fractional derivative introduced in Jarad et al. (J. Nonlinear
Sci. Appl. 10:2607–2619, 2017). Depending on the value of ρ in the limiting case, the
generality of the derivative is that it gives birth to two different fractional derivatives.
However, the existence and uniqueness of solutions to fractional differential
equations with generalized Caputo fractional derivatives have not been proven. In
this paper, Cauchy problems for differential equations with the above derivative in the
space of continuously differentiable functions are studied. Nonlinear Volterra type
integral equations of the second kind corresponding to the Cauchy problem are
presented. Using Banach fixed point theorem, the existence and uniqueness of
solution to the considered Cauchy problem is proven based on the results obtained.

Keywords: Generalized Caputo fractional derivative; Existence and uniqueness;
Cauchy problem

1 Introduction
The fractional calculus is the branch of mathematics that studies the integration and dif-
ferentiation of real or complex orders. Even though this calculus is old, it has been gaining
astounding popularity for the recent decades only. This is due to its numerous seemingly
diverse applications [2–8]. The most interesting speciality of the fractional operators is
that there are many of these operators. This enables a researcher to choose the most suit-
able operator in order to describe the dynamics in a real world problem.

The fractional calculus was bounded up with fractional integrals obtained by iterating
an integral to get the nth order integral and then replacing n by any number, and then by
using the classical method the corresponding derivatives were defined (see, for example,
[1, 9–14]). However, for the sake of better description of real world phenomena, some sci-
entists discovered new fractional operators with nonlocal and nonsingular kernels using
the limiting process with the help of the Dirac delta function. For such operators, we refer
to [15–17]. Other types of new fractional derivatives can be found in [18–21].

On the other hand, the existence and uniqueness of solutions are among the most impor-
tant qualitative properties of differential equations. The existence and uniqueness of so-
lutions of differential equations involving the fractional derivatives were tackled by many
researchers (see [22–26] and the references therein).
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This paper studies fractional Cauchy problems with left generalized Caputo fractional
derivatives in the space of continuously differentiable functions and proves the existence
and uniqueness of solutions to these problems. We consider the following Cauchy prob-
lem:

(C
a Dα,ρx

)
(t) = h

[
t, x(t),

(C
a Dα1,ρx

)
(t), . . . ,

(C
a Dαm ,ρx

)
(t)

]
, (1)

subject to the initial conditions

(
γ kx

)
(a) = dk , dk ∈R (k = 0, 1, . . . , n – 1), (2)

where ρ ∈ R
+, n = [α] + 1, αj ∈ (j – 1, j], j = 1, 2, . . . , m < n; α0 = 0, γ = t1–ρ d

dt and C
a Dαj ,ρ

denotes the generalized Caputo fractional differential operator of order αj.
As part of the main work, nonlinear Volterra type integral equations of the second kind

corresponding to the Cauchy problems are shown and, subsequently, Banach fixed point
theorem is applied. But before we start, let us recall some definitions from the fractional
calculus [2–4].

The left Riemann–Liouville fractional integral of order α, �(α) > 0 is defined by

(
aIαf

)
(t) =

1
�(α)

∫ t

a
(t – u)α–1f (u) du. (3)

The right Riemann–Liouville fractional integral of order α, �(α) > 0 is defined by

(
Iα

b f
)
(t) =

1
�(α)

∫ b

t
(u – t)α–1f (u) du. (4)

The left Riemann–Liouville fractional derivative of order α, �(α) ≥ 0 is given as

(
aDαf

)
(t) =

dn

dtn

(
aIn–αf

)
(t) =

dn

dtn

�(n – α)

∫ t

a
(t – u)n–α–1f (u) du, n =

[�(α)
]

+ 1. (5)

The right Riemann–Liouville fractional derivative of order α, �(α) ≥ 0 reads as follows:

(
Dα

b f
)
(t) = (–1)n dn

dtn

(
In–α

b f
)
(t)

=
(–1)n dn

dtn

�(n – α)

∫ b

t
(u – t)n–α–1f (u) du, n =

[�(α)
]

+ 1. (6)

The left Caputo fractional derivative of order α, �(α) ≥ 0 has the form

(C
a Dαf

)
(t) =

(
aIn–αf (n))(t) =

1
�(n – α)

∫ t

a
(t – u)α–1f (n)(u) du, n =

[�(α)
]

+ 1. (7)

The right Caputo fractional derivative of order α, �(α) ≥ 0 reads as follows:

(CDα
b f

)
(t) =

(
In–α

b (–1)nf (n))(t)

=
(–1)n

�(n – α)

∫ b

t
(u – t)n–α–1f (n)(u) du, n =

[�(α)
]

+ 1. (8)
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The Hadamard type fractional integrals and derivatives were introduced in [9].
The left Hadamard fractional integral of order α, �(α) > 0 has the following form:

(
aJ αf

)
(t) =

1
�(α)

∫ t

a
(log t – log u)α–1f (u)

du
u

. (9)

The right Hadamard fractional integral of order α,�(α) > 0 is defined by

(
J α

b f
)
(t) =

1
�(α)

∫ b

t
(log u – log t)α–1f (u)

du
u

. (10)

The left Hadamard fractional derivative of order α, �(α) ≥ 0 is given by

(
aDαf

)
(t) =

(
t

d
dt

)n(
aJ n–αf

)
(t)

=
(t d

dt )n

�(α)

∫ t

a
(log t – log u)α–1f (u)

du
u

, n =
[�(α)

]
+ 1. (11)

The right Hadamard fractional derivative of order α, �(α) ≥ 0 reads as follows:

(
Dα

b f
)
(t) =

(
–t

d
dt

)n(
J n–α

b f
)
(t)

=
(–t d

dt )n

�(α)

∫ b

t
(log u – log t)α–1f (u)

du
u

, n =
[�(α)

]
+ 1. (12)

The left Caputo–Hadamard fractional derivative of order α, �(α) ≥ 0 is presented as
[12, 13]

(C
a Dαf

)
(t) = aDα

[

f (u) –
n–1∑

k=0

δkf (a)
k!

(
log

u
a

)k
]

(t), δ = t
d
dt

, (13)

and in the space ACn
δ [a, b] = {g : [a, b] →C : δn–1[g(t)] ∈ AC[a, b]} equivalently by

(C
a Dαf

)
(t) =

(

aJ n–α

(
t

d
dt

)n

f
)

(t), n =
[�(α)

]
+ 1. (14)

The right Caputo–Hadamard fractional derivative of order α, �(α) ≥ 0 > 0 is defined by
[12, 13]

(C
a Dαf

)
(t) = aDα

[

f (u) –
n–1∑

k=0

(–1)kδkf (b)
k!

(
log

b
u

)k
]

(t), (15)

and in the space ACn
δ [a, b] equivalently by

(CDα
b f

)
(t) =

(
J n–α

b

(
–t

d
dt

)n

f
)

(t). (16)

For a < b, c ∈ R, and 1 ≤ p < ∞, define the measurable Lebesgue function space

Xp
c (a, b) =

{
f : [a, b] →R : ‖f ‖Xp

c
=

(∫ b

a

∣
∣tcf (t)

∣
∣p dt

t

)1/p

< ∞
}

.



Gambo et al. Advances in Difference Equations  (2018) 2018:134 Page 4 of 13

For p = ∞, ‖f ‖Xp
c

= ess supa≤t≤b[tc|f (t)|]. The generalized left and right fractional integrals
of order α, �(α) > 0 are defined in [10] as

(
aIα,ρ f

)
(t) =

1
�(α)

∫ t

a

(
tρ – uρ

ρ

)α–1

f (u)
du

u1–ρ
(17)

and

(
Iα,ρ

b f
)
(t) =

1
�(α)

∫ b

t

(
uρ – tρ

ρ

)α–1

f (u)
du

u1–ρ
, (18)

respectively.
One can notice that when ρ = 1, the integrals in (17) and (18) reduce to the integrals in

(2) and (3), respectively. Moreover, when one takes the limits of the integrals in (17) and
(18) as ρ → 0, the Hadamard fractional integrals in (9) and (10) are obtained, respectively.

The left and right generalized fractional derivatives of order α, �(α) ≥ 0 are defined by
(see [11])

(
aDα,ρ f

)
(t) = γ n(

aIn–α,ρ f
)
(t) =

γ n

�(n – α)

∫ t

a

(
tρ – uρ

ρ

)n–α–1

f (u)
du

u1–ρ
(19)

and

(
Dα,ρ

b f
)
(x) = (–γ )n(

aIn–α,ρ f
)
(t) =

(–γ )n

�(n – α)

∫ b

t

(
uρ – tρ

ρ

)n–α–1

f (u)
du

u1–ρ
, (20)

respectively, where γ = t1–ρ d
dt . Putting ρ = 1 in (19) and (20), one gets the Riemann–

Liouville fractional derivatives (5) and (6); and letting ρ tend to 0, one gets the Hadamard
fractional derivatives (11) and (12).

For the functions in ACn
γ [a, b] = {f : [a, b] → C and γ n–1f ∈ AC[a, b],γ = t1–ρ d

dt } and
Cn

γ [a, b] = {f : [a, b] → C and γ n–1f ∈ C[a, b],γ = t1–ρ d
dt }, the left and right generalized

Caputo fractional derivatives of order α, �(α) > 0 are given respectively as in [1] as follows:

C
a Dα,ρ f (t) =

1
�(n – α)

∫ t

a

(
tρ – uρ

ρ

)n–α–1 (γ nf )(u) du
u1–ρ

= aIn–α,ρ(γ nf
)
(t) (21)

and

CDα,ρ
b f (t) =

1
�(n – α)

∫ b

t

(
uρ – tρ

ρ

)n–α–1 (–1)n(γ nf )(u) du
u1–ρ

= In–α,ρ
b

(
(–1)nγ nf

)
(t). (22)

It can be observed that (21) becomes the left Caputo derivative (7) when one replaces ρ by
1 and the left Caputo–Hadamard derivative (14) if one takes the limit as ρ approaches 0.
The same relation holds for (22) and (8), and (22) and (16).

This paper is organized as follows. In Sect. 2 we present definitions, notations, and lem-
mas that will be used in this work. In Sect. 3 we present the Cauchy type problem for which
the existence and uniqueness are considered.
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2 Auxiliary results
Let Cn([a, b],C) be the Banach space of all continuously differentiable functions from [a, b]
to C. We recall the space Cn

γ [a, b] and define the weighted spaces Cε,ρ[a, b], Cn
γ ,ε[a, b], and

Cα,r
γ [a, b] of a function f . For n – 1 < �(α) ≤ n, 0 ≤ �(ε) < 1, and ρ ∈R

+, we define

Cn
γ [a, b] =

{
f : [a, b] →C s.t. γ nf ∈ C[a, b]

}
. (23)

Cε,ρ[a, b] =
{

f :
(

tρ – aρ

ρ

)ε

f (x) ∈ C[a, b]
}

; C0,ρ[a, b] = C[a, b] for ρ 	= 0 (24)

endowed with the norm

‖f ‖Cε,ρ =
∥
∥∥
∥

(
tρ – aρ

ρ

)ε

f (t)
∥
∥∥
∥

C
= max

t∈[a,b]

∣
∣∣
∣

(
tρ – aρ

ρ

)ε

f (t)
∣
∣∣
∣. (25)

Cε,ρ[a, b] =
{

f :
(

log
x
a

)ε

f (x) ∈ C[a, b]
}

; C0,ρ[a, b] = C[a, b] for ρ = 0 (26)

endowed with the norm

‖f ‖Cε,ρ = ‖f ‖Cε,log =
∥
∥∥
∥

(
log

x
a

)ε

f (x)
∥
∥∥
∥

C
= max

x∈[a,b]

∣
∣∣
∣

(
log

x
a

)ε

f (x)
∣
∣∣
∣. (27)

The space Cn
γ ,ε[a, b] is defined by

Cn
γ ,ε[a, b] =

{
f : γ n–1f ∈ C[a, b] and γ nf ∈ Cε,ρ[a, b],ρ > 0

}
(28)

endowed with the norm

‖f ‖Cn
γ ,ε =

n–1∑

k=0

∥∥γ kf
∥∥

C +
∥∥γ nf

∥∥
Cε,ρ

,

(ε = 0 ⇒)‖f ‖Cn
γ

=
n∑

k=0

max
x∈[a,b]

∣∣γ kf (x)
∣∣, ρ > 0.

(29)

For 0 ≤ ε < 1, ε ≤ α, we define Cα,r
γ [a, b] by

Cα,r
γ ,ε[a, b] =

{
f ∈ Cr

γ [a, b] :
(C

a Dα,ρ f
) ∈ Cε,ρ[a, b], r ∈N

}
,

Cr,r
γ [a, b] = Cr

γ ,ε[a, b],
(30)

where we use Cα,0
γ ,ε [a, b] = Cα

γ ,ε[a, b] and C0,ρ[a, b] = C0
γ [a, b] = C[a, b]. The generalized

fractional integrals and generalized fractional derivatives satisfy the following semigroup
properties.

Lemma 2.1 ([10]) For a function f defined on [a, b], we have

(
aIα,ρ(

aIβ ,ρ f
))

(t) =
(

aIα+β ,ρ f
)
(t), �(α) > 0,�(β) > 0. (31)
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Lemma 2.2 ([1]) For a function f ∈ Xp
c (a, b), ρ ≥ c, we have

(
aDα,ρ(

aIβ ,ρ f
))

(t) =
(

aIβ–α,ρ f
)
(t), β > α > 0, (32)

holds almost everywhere on [a, b]. When α = β , we have (aDα,ρ(aIα,ρ f ))(t) = f (t) almost
everywhere.

Lemma 2.3 ([1]) Let �(α > 0), n = [�(α)] + 1, and �(β) > 0, then

C
a Dα,ρ

(
xρ – aρ

ρ

)β–1

=
�(β)

�(β – α)

(
xρ – aρ

ρ

)β–α–1

, �(β) > n. (33)

For k = 0, 1, . . . , n – 1,

C
a Dα,ρ

(
xρ – aρ

ρ

)k

= 0. (34)

Lemma 2.4 ([1]) Let α ∈C, n = [�(α)] + 1, f ∈ ACn
γ [a, b], or Cn

γ [a, b]. Then

(
aIα,ρ(C

a Dα,ρ f
))

(x) = f (x) –
n–1∑

k=0

(γ kf )(a)
k!

(
xρ – aρ

ρ

)k

. (35)

Lemma 2.5 ([1]) Assume ρ > 0. Then the space Cn
γ [a, b] consists of those and only those

functions f which are represented in the form

f (t) =
a

(n – 1)!

∫ t

a

(
tρ – uρ

ρ

)n–1 (γ nf )(u)
u1–ρ

du +
n–1∑

k=0

(γ kf )(a)
k!

(
tρ – aρ

ρ

)k

. (36)

Theorem 2.6 (Banach fixed point theorem) Let (X, d) be a nonempty complete metric
space, and let 0 ≤ λ < 1. If T : X → X is a mapping such that for every x, x̃ ∈ X, the relation

d(Tx, Tx̃) ≤ λd(x, x̃) (37)

holds, then the operator T has a unique defined fixed point x∗ ∈ X. Moreover, if Tk (k ∈ N)
is the sequence defined by

⎧
⎨

⎩
Tk = TTk–1, k ∈N\{1},
T1 = T ,

(38)

then, for any x0 ∈ X, {Tkx0}k=∞
k=1 converges to the above fixed point x∗.

Definition 2.1 Let m ∈ N, G ⊂ R
m, [a, b] ⊂ R and f : [a, b] × G → R be a function such

that, for any (x1, . . . , xm), (x̃1, . . . , x̃m) ∈ G, f satisfies the generalized Lipschitzian condition:

∣∣f [t, x1, . . . , xm] – f [t, x̃1, . . . , x̃m]
∣∣ ≤ A1|x1 – x̃1| + · · · + Am|xm – x̃m|,

Aj ≥ 0, j = 1, . . . , m. (39)
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In particular, f satisfies the Lipschitzian condition with respect to the second variable if,
for all t ∈ (a, b] and for any x, x̃ ∈ G, one has

∣∣f [t, x] – f [t, x̃]
∣∣ ≤ A|x – x̃|, A > 0. (40)

Lemma 2.7 ([27]) Let 0 < a < b < ∞, α > 0, and 0 ≤ ε < 1, then
(a) If 0 < α < ε, then aIα,ρ is bounded from Cε,ρ[a, b] into Cε–α,ρ[a, b]:

∥∥
aIα,ρ f

∥∥
Cε–α,ρ

≤
(

bρ – aρ

ρ

)α
�(1 – ε)

�(1 + α – ε)
‖f ‖Cε,ρ ; (41)

(b) If α ≥ ε, then aIα,ρ is bounded from Cε,ρ[a, b] into C[a, b]:

∥
∥

aIα,ρ f
∥
∥

C ≤
(

bρ – aρ

ρ

)α–ε
�(1 – ε)

�(1 + α – ε)
‖f ‖Cε,ρ ; (42)

(c) The fractional integral operator aIα,ρ represents a mapping from C[a, b] to C[a, b]
and

∥∥
aIα,ρ f

∥∥
C ≤ 1

�(α + 1)

(
bρ – aρ

ρ

)α

‖f ‖C . (43)

3 Cauchy type problem generalized with generalized Caputo fractional
derivative

We now present the existence and uniqueness of solutions to the Cauchy problem (1)–(2)
in the space Cα,r

γ [a, b] for a nonlinear fractional differential equation with generalized Ca-
puto fractional derivative. We denote h[t, x(t), (C

a Dα1,ρx)(t), . . . , (C
a Dαm ,ρx)(t)] by h[t,ψ(t, x)]

for the sake of simplicity.
The Volterra type integral equation corresponding to problem (1)–(2) can be written as

x(t) =
n–1∑

j=0

dj

j!

(
tρ – aρ

ρ

)j

+
1

�(α)

∫ x

a

(
tρ – τρ

ρ

)α–1

h
[
τ ,ψ(τ , x)

] dτ

τ 1–ρ
dt, t > a. (44)

Theorem 3.1 Let α > 0, n = [α] + 1, and αj ∈R(j = 0, . . . , m) such that

0 = α0 < α1 < · · · < αm < n – 1. (45)

Let G ∈ R
m+1 be open subsets, and let h : (a, b] × G → R be a function such that

h[t, x, x1, . . . , xm] ∈ Cε,ρ[a, b] for arbitrary x, x1, . . . , xm ∈ Cε,ρ[a, b], and the Lipschitz con-
dition (38) is satisfied.

(a) If x ∈ Cα,n–1
γ [a, b], then x satisfies relations (1)–(2) if and only if x satisfies equation

(44).
(b) If 0 < α < 1, then x ∈ Cα

γ [a, b] satisfies the relations

(C
a Dα,ρx

)
(t) = h

[
t,ψ(t, x)

]
, x(a) = d0, d0 ∈R (46)

if and only if x satisfies the equation

x(t) = d0 +
(

aIα,ρh
[
τ ,ψ(τ , x)

])
(t), t > a. (47)
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Proof Let α ∈ (n – 1, n) and suppose x ∈ Cn–1
γ [a, b] satisfies equations (1)–(2). According

to Definition 3.1 in [1],

(C
a Dα,ρx

)
(t) = aDα,ρ

[

x(τ ) –
n–1∑

k=0

(γ kx)(a)
k!

(
tρ – aρ

ρ

)k
]

(t).

Then we have that (C
a Dα,ρx)(t) ∈ Cε,ρ[a, b], which implies

γ n
aIn–α,ρ

[

x(τ ) –
n–1∑

k=0

(γ kx)(a)
k!

(
tρ – aρ

ρ

)k
]

(t) ∈ Cε,ρ[a, b].

Then, using (1), (2) and Lemma 2.4, we have

x(t) =
(

aIα,ρ(C
a Dα,ρx

))
(t) +

n–1∑

k=0

(γ kx)(a)
k!

(
tρ – aρ

ρ

)k

= aIα,ρh
[
τ ,ψ(τ , x)

]
(t) +

n–1∑

k=0

dk

k!

(
tρ – aρ

ρ

)k

, t > a.

This means x ∈ Cn–1
γ [a, b] satisfies (44).

To prove the sufficiency, let x ∈ Cn–1
γ [a, b] satisfy (44). Then

aIα,ρh
[
τ ,ψ(τ , x)

]
(t) = x(t) –

n–1∑

j=0

dj

j!

(
tρ – aρ

ρ

)j

.

Taking the generalized fractional derivative aDα,ρ of both sides of this relation and con-
sidering the conditions for h, we obtain

aDα,ρ
aIα,ρh

[
τ ,ψ(τ , x)

]
(t) = aDα,ρ

[

x(t) –
n–1∑

j=0

dj

j!

(
tρ – aρ

ρ

)j
]

=
(C

a Dα,ρx
)
(t),

where we have used Definition 3.1 in [1]. Thus, x ∈ Cn–1
γ [a, b] satisfies (1).

On the other hand, applying γ k , k = 0, 1, . . . , n – 1, to both sides of (44) gives

γ kx(t) =
n–1∑

j=k

dj

(j – k)!

(
tρ – aρ

ρ

)j–k

+ γ k
aIα,ρh

[
τ ,ψ(τ , x)

]
(t), t > a

=
n–1∑

j=k

dj

(j – k)!

(
tρ – aρ

ρ

)j–k

+ aDα,ρh
[
τ ,ψ(τ , x)

]
(t), t > a.

Since the fractional derivative at an end point is zero, i.e., (aDα,ρ f )(a) = 0, then letting
τ → a we obtain

(
γ kx

)
(a) = dk , k = 0, 1, . . . , n – 1.

Thus, if x satisfies (44), then it also satisfies the initial condition (2). Hence x ∈ Cn–1
γ [a, b]

satisfies the Cauchy problem (1)–(2).
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The second part of the theorem can be proven analogously. Note that since 0 < α < 1,
this implies n = 1, and therefore the term

∑n–1
k=0

(γ k x)(a)
k! ( tρ–aρ

ρ
)k reduces to x(a). �

Theorem 3.2 Let α ∈ R, n = [α] + 1, 0 ≤ ε < 1 such that ε ≤ α. Let αj > 0, j = 1, . . . , m,
satisfying (25). Suppose G is an open set in R

m+1 and h : (a, b] × G → R is a function such
that h[t, x, x1, . . . , xm] ∈ Cε,ρ[a, b] and the Lipschitz condition (39) is satisfied.

(a) If n – 1 < α < n, then there exists a unique solution x to problem (22)–(23) in the
space Cα,n–1

γ ,ε [a, b].
(b) If 0 < α < 1, then there exists a unique solution x ∈ Cα

γ ,ε[a, b] to problem (22) with the
condition x(a) = d0 ∈R.

Proof Theorem 3.1 gives us the sufficiency to establish the existence of a unique solution
x ∈ Cα,n–1

γ ,ε [a, b] to (44).
First step: We show the existence of a unique solution x ∈ Cn–1

γ [a, b].
(a) Choosing t1 ∈ [a, b], we prove the existence of a unique solution x ∈ Cn–1

γ [a, t1] satis-
fying the conditions

n–1∑

k=0

m∑

j=0

Aj

(
t1

ρ – aρ

ρ

)Re(α–αj)–k
�(1 – ε)

�(1 – ε + α – αj – k)
< 1, ε ≤ α.

We then apply Theorem 2.6 to prove that there is a unique solution x ∈ Cn–1
γ [a, t1] to (44).

Equation (44) can be rewritten in the form x(t) = (Tx)(t), where

(Tx)(t) =
n–1∑

j=0

dj

j!

(
tρ – aρ

ρ

)j

+
1

�(α)

∫ t

a

(
tρ – aρ

ρ

)α–1

h
[
τ ,ψ(τ , x)

] dτ

τ 1–ρ
.

Denoting x0(t) =
∑n–1

j=0
dj
j! ( tρ–aρ

ρ
)j, it follows that x0(t) ∈ Cn–1

γ [a, t1] since x0(t) can be ex-
pressed as a finite sum of functions in Cn–1

γ [a, t1]. Furthermore,

h
[
τ ,ψ(τ , x)

] ∈ Cε,ρ[a, b] 
⇒ h
[
τ ,ψ(τ , x)

] ∈ Cε,ρ[a, t1],

and using equation (42), we obtain

aIα,ρh
[
τ ,ψ(τ , x)

]
(t) ∈ C[a, t1] if ε ≤ α,

where α > 0 and 0 ≤ ε < 1.
Let x ∈ Cn–1

γ [a, t1], then using (43), it can be observed that the integral term on the right-
hand side of (44) belongs to Cn–1

γ [a, t1]. This means aIα,ρh[τ ,ψ(τ , x)](t) ∈ Cn–1
γ [a, t1]. Thus,

Tx ∈ Cn–1
γ [a, t1] and therefore we have proven that T is continuous on Cn–1

γ [a, t1]. Next we
show that T is a contraction by proving that given x1, x2 ∈ Cn–1

γ [a, t1], ∃u > 0 such that

‖Tx1 – Tx2‖Cn–1
γ [a,t1] ≤ u‖x1 – x2‖Cn–1

γ [a,t1].
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Using Lemma 2.1, Lemma 2.4, and (39), we obtain

∥∥(
aIα,ρ(h

[
τ , x1, C

a Dα1,ρx1, . . . , C
a Dαm ,ρx1

]
– h

[
τ , x2, C

a Dα1,ρx2, . . . , C
a Dαm ,ρx2

]))∥∥
Cn–1

γ [a,t1]

≤ aIα,ρ(∥∥h
[
τ , x1, C

a Dα1,ρx1, . . . , C
a Dαm ,ρx1

]

– h
[
τ , x2, C

a Dα1,ρx2, . . . , C
a Dαm ,ρx2

]∥∥
Cn–1

γ [a,t1]

)

≤
( m∑

j=0

Aj
∥∥(

aIα–αj ,ρ
)

aIαj ,ρ
(C

a Dαj ,ρ
)
(x1 – x2)

∥∥
Cn–1

γ [a,t1]

)

=

( m∑

j=0

AjaIα–αj ,ρ
∥∥aIαj ,ρ

(C
a Dαj ,ρ

)
(x1 – x2)

∥∥
Cn–1

γ [a,t1]

)

=

[( m∑

j=0

AjaIα–αj ,ρ‖x1 – x2‖Cn–1
γ [a,t1]

)

(τ ) –
nj–1∑

kj=0

γ kj (x1 – x2)(a)
kj!

(
tρ – aρ

ρ

)kj
]

.

Now, since x1, x2 ∈ Cn–1
γ [a, t1], it follows that γ kj x1(a) = γ kj x2(a), and therefore

∥
∥aIα,ρ(h

[
τ , x1, C

a Dα1,ρx1, . . . , C
a Dαm ,ρx1

]
– h

[
τ , x2, C

a Dα1,ρx2, . . . , C
a Dαm ,ρx2

])∥∥
Cn–1

γ [a,t1]

≤
m∑

j=0

Aj
(

aIα–αj ,ρ‖x1 – x2‖
)

or

∥∥aIα,ρ(h
[
τ ,ψ(τ , x1)

]
– h

[
τ ,ψ(τ , x2)

])
(t)

∥∥ ≤
m∑

j=0

Aj
(

aIα–αj ,ρ‖x1 – x2‖
)
(t). (48)

Then, according to the second part of Lemma 2.7 and equation (48), we have

∥
∥aIα,ρ(h

[
τ ,ψ(τ , x1)

]
– h

[
τ ,ψ(τ , x2)

])
(t)

∥
∥

Cn–1
γ [a,t1]

≤
∥
∥∥∥
∥

n–1∑

k=0
aIα–k,ρ(h

[
τ ,ψ(τ , x1)

]
– h

[
τ ,ψ(τ , x2)

])
(t)

∥
∥∥∥
∥

Cγ [a,t1]

≤
n–1∑

k=0

m∑

j=0

Aj

(
t1

ρ – aρ

ρ

)Re(α–αj)–k
�(1 – ε)

�(1 – ε + α – αj – k)
‖x1 – x2‖Cn–1

γ [a,t1].

Hence

‖Tx1 – Tx2‖Cn–1
γ [a,t1] ≤ u‖x1 – x2‖Cn–1

γ [a,t1] ∀x1, x2 ∈ Cn–1
γ [a, t1].

This tells us that there is a fixed point x∗
f ∈Cn–1

γ [a,t1] which is defined explicitly as a limit of
iterations of the mapping T . That is,

lim
p→∞

∥
∥xp(t) – x∗(t)

∥
∥

Cn–1
γ [a,b] = 0,
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where

xp(t) = Tpx∗
fi , x∗

fi (t) = xf (t), x∗(t) = x∗
i (t), i = 0, 1, . . . , M,

and

x∗
i (ti+1) = x∗

i+1(ti+1), [a, b] =
⋃

[ti, ti+1], a = t0 < · · · < tm = m.

Second step:
It should be noted that proving the unique solution x∗(t) belonging to Cα,n–1

γ ,ε [a, b] com-
pletes the proof. Then it suffices to show that (C

a Dα,ρx)(t) ∈ Cε,ρ[a, b].
From (48),

∥∥(C
a Dα,ρxp

)
(t) –

(C
a Dα,ρx∗)(t)

∥∥
Cε,ρ [a,b]

=
∥∥h

[
t,ψ(t, xp)

]
– h

[
t,ψ

(
t, x∗)]∥∥

Cε,ρ [a,b]

≤
m∑

j=0

Aj
∥
∥C

a Dα,ρ(xp(t) – x∗(t)
)∥∥

Cε,ρ [a,b]

≤
m∑

j=0

Aj
∥∥aIn–1–αj ,ργ n–1(xp(t) – x∗(t)

)∥∥
Cε,ρ [a,b]

≤
m∑

j=0

Aj

(
bρ – aρ

ρ

)ε∥∥aIn–1–αj ,ργ n–1(xp(t) – x∗(t)
)∥∥

C[a,b]

≤
m∑

j=0

Aj
( bρ–aρ

ρ
)ε

�(n – αj)
∥∥γ n–1(xp(t) – x∗(t)

)∥∥
C[a,b]

≤
m∑

j=0

Aj
( bρ–aρ

ρ
)ε

�(n – αj)
∥∥(

xp(t) – x∗(t)
)∥∥

Cn–1[a,b].

Taking limit as p → ∞ makes the right-hand side of the above inequality approach 0 in-
dependently. This implies

lim
p→∞

∥
∥(C

a Dα,ρxp
)
(t) –

(C
a Dα,ρx∗)(t)

∥
∥

Cε,ρ [a,b] = 0.

Hence, there exists a unique solution x∗ ∈ Cα,n–1
γ ,ε [a, b] to equation (44).

(b) In the same way, the second part of the theorem can be proven. �

Corollary 3.3 When ε = 0 and with the assumptions of Theorem 3.2, a unique solution
x∗(t) ∈ Cn–1

γ [a, b] to problem (1)–(2) exists.

Proof The proof is analogous to that of Theorem 3.2 where

∥∥aIα,ρ(h
[
τ ,ψ(τ , x1)

]
– h

[
τ ,ψ(τ , x2)

])
(t)

∥∥
C[ti ,ti+1]

≤
n–1∑

k=0

m∑

j=0

Aj
( ti+1ρ–tiρ

ρ
)(α–αj)–k

�(α – αj – k + 1)
× ∥

∥(
x1(t) – x2(t)

)∥∥
C[ti ,ti+1],
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i = 0, 1, . . . , M with t0 = a, tM = b and

∥∥(C
a Dα,ρxp

)
(t) –

(C
a Dα,ρx∗)(t)

∥∥
Cε,ρ [a,b]

≤
m∑

j=0

Aj
( bρ–aρ

ρ
)ε

�(n – αj)
× ∥∥(

xp(t) – x∗(t)
)∥∥

Cn–1[a,b]. �

Corollary 3.4 Let α > 0 with n = [α]+1 and 0 ≤ ε < 1 such that ε ≤ α. For positive non-zero
integer m, if f (t) ∈ Cε,ρ[a, b], dj(t) ∈ C[a, b], and αj > 0 (j = 1, . . . , m) satisfying (45), then
there exists a unique solution x(t) ∈ Cα,n–1

γ [a, b] to the Cauchy problem for the following
linear fractional differential equation of order α:

(C
a Dα,ρx

)
(t) +

m∑

j=1

dj(t)
(C

a Dαj ,ρx
)
(t) + d0(t)x(t) = f (t), t > a (49)

having initial conditions (2).

Proof The proof follows immediately from Theorem 3.2. �
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