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Abstract
In this paper, a three-species delayed food chain system with mutual interference and
impulses is established. By utilizing the continuation theorem, the comparison
theorem, some analysis techniques, and constructing a suitable Lyapunov functional,
some sufficient conditions for the existence of positive periodic solutions,
permanence, and global attractivity of the system are obtained. The conditions
obtained are related to the mutual interference constantm, prey refuge constant θ ,
delays, and impulses. An example is given to show the feasibility of the results.
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1 Introduction
Impulsive differential equations are used for the mathematical simulation of processes
which are subject to impulses during their evolution. Such processes can be observed in
numerous fields of science and technology: control theory, population dynamics, biotech-
nologies, industrial robotics, etc. [1]. In population dynamics, many evolution processes
in nature are characterized by the fact that, at certain moments of time, they experience
some abrupt changes of state. Examples include annual harvesting and stocking of species
as well as annual immigration. The theory of impulsive and delay differential equations is
emerging as an important area of investigation [1–10]. For instance, Wang et al. [4] studied
a delayed prey–predator system with mutual interference and impulses as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x′(t) = x(t)(a1(t) – b1(t)x(t – τ1)) – c1(t)x(t)ym(t),

y′(t) = y(t)(–a2(t) – b2(t)y(t – τ2)) + c2(t)x(t)ym(t),

⎫
⎬

⎭
t �= tk , k ∈ Z+,

�x(tk) = d1kx(t),

�y(tk) = d2ky(t),

⎫
⎬

⎭
t = tk , k ∈ Z+.

(1.1)

In 1971, Hassell [11] proposed the concept of mutual interference of predator species
and introduced the mutual interference constant m (0 < m ≤ 1). In recent years, mutual
interference of predator has been studied extensively by some researchers [11–13]. Wang
[12] and He [13] studied several kinds of predator–prey systems with mutual interference
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and obtained some sufficient conditions which guaranteed the permanence and globally
asymptotic stability of the systems.

However, in the real world, prey species often make use of refuges to decrease pre-
dation risk. Here refuges mean some places or situations where predation risk is some-
how reduced. Examples include spatial refuges, temporal refuges, and so on. During the
last decade, numerous works have been published and much essential progress has been
pushed on this direction [14–16]. González-Olivares and Ramos-Jiliberto [15] proposed
a predator–prey system with Holling type II functional response and a prey refuge. They
showed that there was a trend from limit cycles through non-zero stable points up to
predator extinction and prey stabilizing at high densities. In reference [16], Ma et al. were
interested in the interplay between the stabilizing effects of mutual interference and the
destabilizing effects of prey refuge:

⎧
⎨

⎩

x′ = x(a – bx) – c1(1 – θ )xym,

y′ = –dy + c2(1 – θ )xym,

where m (0 < m ≤ 1) is a constant of mutual interference. θ (0 < θ ≤ 1) is a constant num-
ber of prey using refuges.

Furthermore, there are three rudimentary and important ecological systems that are
predator–prey system, competitive system, and cooperative system in mathematical bi-
ology. The predator–prey model, such as three-species predator–prey system and food-
chain system, is the most popular population model and has extremely rich dynamics [8–
10, 12–14]. Recently, the dynamic behaviors of predator–prey system with different kinds
of functional responses have been extensively investigated [9, 10, 12–19]. For example, the
authors [18] gave the following non-linear functional response:

fi(x, y) =
cixy

α + βx + γ y
,

where ci is the rate of a predator searching for the prey x, α is a positive constant, β = h1c1,
γ = h2c2, hi represents the expected handling time spent with the prey x to y. Obviously,
if β or γ tends to zero, it will be Holling type-II functional response [19]. For example, Do
proposed and studied a constant periodic releasing for top predator or periodic impulsive
immigration for top predator—a three-species food chain system with impulsive control
and Beddington–DeAngelis functional response [9].

Motivated by these facts, in this paper, we are concerned with the following delayed
three-species Beddington-type food chain system with mutual interference and impulsive
control methods. The model is described by the following differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′(t) = x(t)(a1(t) – b1(t)x(t – τ1)) – c1(1–θ (t))x(t)ym(t)
α1(t)+β1(t)x(t)+γ1(t)y(t) ,

y′(t) = y(t)(–a2(t) – b2(t)y(t – τ2)) + c2(1–θ (t))x(t)ym(t)
α1(t)+β1(t)x(t)+γ1(t)y(t)

– c3(t)(1–θ (t))y(t)zm(t)
α2(t)+β2(t)y(t)+γ2(t)z(t) ,

z′(t) = z(t)(–a3(t) – b3(t)z(t – τ3)) + c4(t)(1–θ (t))y(t)zm(t)
α2(t)+β2(t)y(t)+γ2(t)z(t) ,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t �= tk , k ∈ Z+,

x(t+
k ) = (1 + d1k)x(tk),

y(t+
k ) = (1 + d2k)y(tk),

z(t+
k ) = (1 + d3k)z(tk),

⎫
⎪⎪⎬

⎪⎪⎭

t = tk , k ∈ Z+

(1.2)
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with the initial conditions

(
x(s), y(s), z(s)

)
=
(
φ1(s),φ2(s),φ3(s)

) ∈ C
(
[–τ , 0], R3

+
)
, φi(s) > 0,

where x(t), y(t), z(t) represent the densities of prey and mid-level predator and top preda-
tor, respectively. �x(tk) = x(t+

k ) – x(tk), �y(tk) = y(t+
k ) – y(tk) and �z(tk) = z(t+

k ) – z(tk) rep-
resent the regular harvest or death from spraying pesticide of the populations x(t), y(t),
and z(t) at time tk , respectively. Z+ = {1, 2, . . .} and 0 ≤ t0 < t1 < t2 < · · · < tk < · · · are fixed
points with tk → +∞ as k → +∞.

For the sake of generality and convenience, we assume that the following conditions
hold.

(I) ai(t), bi(t), i = 1, 2, 3, di(t), i = 1, 2, ci(t), i = 1, 2, 3, 4, are all positive, continuous, and
ω-periodic functions, and τ1, τ2, and τ3 are non-negative constants.

(II) –1 < d1k ≤ 0, –1 < d2k ≤ 0, –1 < d3k ≤ 0 are constants for k ∈ Z+ and there exists
a positive integer q such that tk+q = tk + ω, d1,(k+q) = d1k , d2,(k+q) = d2k , d3,(k+q) = d3k , and
tk – τ1, tk – τ2, tk – τ3 �= tm.

Without loss of generality, we assume that tk �= 0, ω, and [0,ω] ∩ {tk} = {t1, t2, . . . , tq}, and
let

f L = min
t∈[0,T]

f (t), f U = max
t∈[0,T]

f (t), [f ] =
1
ω

∫ T

0
f (s) ds,


d1 =
∏

tk <t
(1 + d1k), 
d2 =

∏

tk <t
(1 + d2k), 
d3 =

∏

tk <t
(1 + d3k),

B1(t) = b1(t)
∏

tk <t–τ1

(1 + d1k), B2(t) = b2(t)
∏

tk <t–τ2

(1 + d2k),

B3(t) = b3(t)
∏

tk <t–τ3

(1 + d3k), C1(t) = c1(t)
∏

tk<t
(1 + d2k)m,

C2(t) = c2(t)
∏

tk <t

(1 + d1k)
(1 + d2k)1–m , C3(t) = c3(t)

∏

tk <t
(1 + d3k)m,

C4(t) = c4(t)
∏

tk <t

(1 + d2k)
(1 + d3k)1–m .

The rest of this article is organized as follows. In Sect. 2, we present the result on the
existence of positive periodic solutions of system (1.2). In Sect. 3, we study the permanence
of system (1.2). In Sect. 4, we investigate the global attractivity of system (1.2). In Sect. 5,
an example is given to show the feasibility of our results by means of simulation. In the
last section, we conclude this paper.

2 Existence of periodic solution
In order to prove the existence of positive solutions of system (1.2), we first introduce the
following coincidence degree theorem.

Let X, Y be real Banach spaces, L : Dom L ⊂ X → Y be a linear operator. The operator L
will be called a Fredholm operator of index zero if dim Ker L = co dim Im L < +∞ and Im L
is closed in Y . If L is a Fredholm operator of index zero, there exist continuous projectors
P : X → X and Q : Y → Y such that Im P = Ker L, Ker Q = Im L = Im(I – Q). It follows that
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L|Dom L∩Ker P : (I – P)X → Im L is invertible. We denote the inverse of that operator by KP . If
� is an open bounded subset of X and N : �̄ → Y is a continuous operator, the operator N
will be called L-compact on �̄ if QN(�̄) is bounded and KP(I – Q)N : �̄ → X is compact.
Since Im Q is isomorphic to Ker L, there exists isomorphism � : Im Q → Ker L.

Lemma 2.1 (see [20]) Let � ⊂ X be an open bounded set, let L be a Fredholm operator of
index zero and N be L-compact on �̄. Suppose that

(i) for each λ ∈ (0, 1), every solution x of Lx = λNx is such that x /∈ ∂�;
(ii) QNx �= 0 for each x ∈ ∂� ∩ Ker L;

(iii) deg(�QN ,� ∩ Ker L, 0) �= 0.
Then the equation Lx = Nx has at least one solution in �̄ ∩ Dom L.

Theorem 2.1 If
∫ T

0 a1(t) dt +
∑q

k=1 ln(1 + d1k) > 0 and the following algebraic equation

⎧
⎪⎪⎨

⎪⎪⎩

[a1] + 1
ω

∑q
k=1 ln(1 + d1k) – [b1]eu – [ c1(1–θ )

α1+β1eu+γ1ev ]emv = 0,

[a2] – 1
ω

∑q
k=1 ln(1 + d2k) + [b2]ev – [ c2(1–θ )

α1+β1eu+γ1ev ]eu+(m–1)v + [ c3(1–θ )
α2+β2ev+γ2ew ]emw = 0,

[a3] – 1
ω

∑q
k=1 ln(1 + d3k) + [b3]ew – [ c4(1–θ )

α2+β2ev+γ2ew ]ev+(m–1)w = 0

has finite solutions (u∗, v∗, w∗), then system (2.1) has at least one positive ω-periodic solu-
tion.

Proof Let (x(t), y(t), z(t)) ∈ R3 be an arbitrary positive ω-periodic solution of system (1.2).
Set x(t) = eu(t), y(t) = ev(t), z(t) = ew(t), then it follows from system (1.2) that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′(t) = a1(t) – b1(t)eu(t–τ1) – c1(t)(1–θ )emv(t)

α1(t)+β1(t)eu(t)+γ1(t)ev(t) ,

v′(t) = –a2(t) – b2(t)ev(t–τ2) + c2(t)(1–θ )eu(t)+(m–1)v(t)

α1(t)+β1(t)eu(t)+γ1(t)ev(t)

– c3(t)(1–θ )emw(t)

α2(t)+β2(t)ev(t)+γ2(t)ew(t) ,

w′(t) = –a3(t) – b3(t)ew(t–τ3) + c4(t)(1–θ )ev(t)+(m–1)w(t)

α2(t)+β2(t)ev(t)+γ2(t)ew(t) ,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

t �= tk , k ∈ Z+,

�u(tk) = ln(1 + d1k),

�v(tk) = ln(1 + d2k),

�w(tk) = ln(1 + d3k),

⎫
⎪⎪⎬

⎪⎪⎭

t = tk , k ∈ Z+.

(2.1)

Let S = {x(t) ∈ PC1([0,ω], R)|x(ω) = x(0)}, where PC1([0,ω], R) = {x ∈ PC([0,ω], R)|
x(t) is continuous, differentiable at t �= tk , x′(t+

k ), x′(t–
k ) exist, and x′(t–

k ) = x′(tk), k = 1, 2, . . . ,
q}; PC([0,ω], R) = {x : [0,ω] → R|x(t) is continuous at t �= tk , x(t+

k ), x(t–
k ) exist, and x(t–

k ) =
x(t+

k ), k = 1, 2, . . . , q}. Let X = S × S × S. For ξ (t) = (u(t), v(t), w(t)) ∈ X, we define

‖ξ‖X =

√
(

max
t∈[0,ω]

∣
∣u(t)

∣
∣
)2

+
(

max
t∈[0,ω]

∣
∣v(t)

∣
∣
)2

+
(

max
t∈[0,ω]

∣
∣w(t)

∣
∣
)2

.

Let Y = X × Rq × Rq × Rq. For h = (ξ , e1, e2, e3) ∈ Y , ξ ∈ X, e1 ∈ Rq, e2 ∈ Rq, e3 ∈ Rq, we
define ‖h‖Y = ‖ξ‖X + ‖e1‖ + ‖e2‖ + ‖e3‖, then X and Y are Banach spaces.
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For convenience, we denote

F1(t) = a1(t) – b1(t)eu(t–τ1) –
c1(t)(1 – θ )emv(t)

α1(t) + β1(t)eu(t) + γ1(t)ev(t) ,

F2(t) = –a2(t) – b2(t)ev(t–τ2) +
c2(t)(1 – θ )eu(t)+(m–1)v(t)

α1(t) + β1(t)eu(t) + γ1(t)ev(t)

–
c3(t)(1 – θ )emw(t)

α2(t) + β2(t)ev(t) + γ2(t)ew(t) ,

F3(t) = –a3(t) – b3(t)ew(t–τ3) +
c4(t)(1 – θ )ev(t)+(m–1)w(t)

α2(t) + β2(t)ev(t) + γ2(t)ew(t) .

Let Dom L = X, L : Dom L → Y ,

⎛

⎜
⎝

u
v
w

⎞

⎟
⎠→

⎛

⎜
⎜
⎝

⎛

⎜
⎝

u′

v′

w′

⎞

⎟
⎠ ,

⎛

⎜
⎜
⎝

�u(t1)
...

�u(tq)

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

�v(t1)
...

�v(tq)

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

�w(t1)
...

�w(tq)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ .

Let N : X → Y ,

N

⎛

⎜
⎝

u
v
w

⎞

⎟
⎠ =

⎛

⎜
⎜
⎝

⎛

⎜
⎝

F1(t)
F2(t)
F3(t)

⎞

⎟
⎠ ,

⎛

⎜
⎜
⎝

ln(1 + d11)
...

ln(1 + d1q)

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

ln(1 + d21)
...

ln(1 + d2q)

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

ln(1 + d31)
...

ln(1 + d3q)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ ,

then

Ker L =

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

u
v
w

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

⎛

⎜
⎝

u
v
w

⎞

⎟
⎠ =

⎛

⎜
⎝

r1

r2

r3

⎞

⎟
⎠ ∈ R3 is constant vector, t ∈ [0,ω]

⎫
⎪⎬

⎪⎭
,

Im L =

⎧
⎪⎪⎨

⎪⎪⎩

h =

⎛

⎜
⎜
⎝

⎛

⎜
⎝

f1

f2

f3

⎞

⎟
⎠ ,

⎛

⎜
⎜
⎝

D11
...

D1q

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

D21
...

D2q

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

D31
...

D3q

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ ∈ Y

∣
∣
∣
∣
∣
∣
∣
∣

⎛

⎜
⎝

∫ ω

0 f1(t) dt +
∑q

k=1 D1k = 0
∫ ω

0 f2(t) dt +
∑q

k=1 D2k = 0
∫ ω

0 f3(t) dt +
∑q

k=1 D3k = 0

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
,

Im L is closed in Y , dim Ker L = co dim Im L = 3. So L is a Fredholm operator of index zero.
Let

P

⎛

⎜
⎝

u
v
w

⎞

⎟
⎠ =

1
ω

⎛

⎜
⎝

∫ ω

0 u(t) dt
∫ ω

0 v(t) dt
∫ ω

0 w(t) dt

⎞

⎟
⎠ ,
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Qh = Q

⎛

⎜
⎜
⎝

⎛

⎜
⎝

f1

f2

f3

⎞

⎟
⎠ ,

⎛

⎜
⎜
⎝

D11
...

D1q

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

D21
...

D2q

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

D31
...

D3q

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

1
ω

⎛

⎜
⎝

∫ ω

0 f1(t) dt +
∑q

k=1 D1k = 0
∫ ω

0 f2(t) dt +
∑q

k=1 D2k = 0
∫ ω

0 f3(t) dt +
∑q

k=1 D3k = 0

⎞

⎟
⎠ ,

⎛

⎜
⎜
⎝

0
...
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
...
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
...
0

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ .

It is easy to know that P, Q are continuous projectors and Im P = Ker L, Ker Q = Im L =
Im(I – Q).

Therefore, the inverse KP exists and it has the following form: KP : Im L → Ker P∩Dom L,

KP(h) =

⎛

⎜
⎝

∫ t
0 f1(s) ds +

∑
0<tk<t D1k – 1

ω

∫ ω

0
∫ t

0 f1(s) ds dt –
∑q

k=1 D1k
∫ t

0 f2(s) ds +
∑

0<tk<t D2k – 1
ω

∫ ω

0
∫ t

0 f2(s) ds dt –
∑q

k=1 D2k
∫ t

0 f3(s) ds +
∑

0<tk<t D3k – 1
ω

∫ ω

0
∫ t

0 f3(s) ds dt –
∑q

k=1 D3k

⎞

⎟
⎠ ,

QN

⎛

⎜
⎝

u
v
w

⎞

⎟
⎠ =

⎛

⎜
⎜
⎝

⎛

⎜
⎝

1
ω

∫ T
0 F1(t) dt + 1

ω

∑q
k=1 ln(1 + d1k)

1
ω

∫ T
0 F2(t) dt + 1

ω

∑q
k=1 ln(1 + d2k)

1
ω

∫ T
0 F3(t) dt + 1

ω

∑q
k=1 ln(1 + d3k)

⎞

⎟
⎠ ,

⎛

⎜
⎜
⎝

0
...
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
...
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
...
0

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ .

KP(I – Q)N

⎛

⎜
⎝

u
v
w

⎞

⎟
⎠ =

⎛

⎜
⎝

∫ t
0 F1(s) ds +

∑
0<tk<t ln(1 + d1k)

∫ t
0 F2(s) ds +

∑
0<tk<t ln(1 + d2k)

∫ t
0 F3(s) ds +

∑
0<tk<t ln(1 + d3k)

⎞

⎟
⎠

–

⎛

⎜
⎝

1
ω

∫ ω

0
∫ t

0 F1(s) ds dt +
∑q

k=1 ln(1 + d1k)
1
ω

∫ ω

0
∫ t

0 F2(s) ds dt +
∑q

k=1 ln(1 + d2k)
1
ω

∫ ω

0
∫ t

0 F3(s) ds dt +
∑q

k=1 ln(1 + d3k)

⎞

⎟
⎠

–

⎛

⎜
⎝

( t
ω

– 1
2 )
∫ ω

0 F1(s) ds +
∑q

k=1 ln(1 + d1k)
( t
ω

– 1
2 )
∫ ω

0 F2(s) ds +
∑q

k=1 ln(1 + d2k)
( t
ω

– 1
2 )
∫ ω

0 F3(s) ds +
∑q

k=1 ln(1 + d3k)

⎞

⎟
⎠ .

Clearly, QN and KP(I – Q)N are continuous. Let � be any open bounded set in X. It
is easy to verify that QN(�) is uniformly bounded, KP(I – Q)N(�̄) is equicontinuous and
uniformly bounded. By Ascoli–Arzela theorem we know that KP(I –Q)N is compact on �̄.
Thus, N is L-compact on �̄.

Now, it needs to show that there exists a domain � that satisfies all the requirements
given in Lemma 2.1. Corresponding to operator equation Lξ = λNξ , λ ∈ (0, 1). Assume
that ξ (t) = (u(t), v(t), w(t)) ∈ X is a solution of this operator equation, then we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′(t) = λF1(t),

v′(t) = λF2(t),

w′(t) = λF3(t),

⎫
⎪⎪⎬

⎪⎪⎭

t �= tk ,

�u(tk) = λ ln(1 + d1k),

�v(tk) = λ ln(1 + d2k),

�w(tk) = λ ln(1 + d3k),

⎫
⎪⎪⎬

⎪⎪⎭

t = tk .

(2.2)
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Integrating (2.2) over [0,ω], we get

∫ ω

0
a1(t) dt +

q∑

k=1

ln(1 + d1k)

=
∫ ω

0
b1(t)eu(t–τ1) dt +

∫ ω

0

c1(t)(1 – θ )emv(t)

α1(t) + β1(t)eu(t) + γ1(t)ev(t) dt, (2.3)

∫ ω

0
a2(t) dt –

q∑

k=1

ln(1 + d2k) +
∫ ω

0
b2(t)ev(t–τ2) dt

+
∫ ω

0

c3(t)(1 – θ )emw(t)

α2(t) + β2(t)ev(t) + γ2(t)ew(t) dt

=
∫ ω

0

c2(t)(1 – θ )eu(t)+(m–1)v(t)

α1(t) + β1(t)eu(t) + γ1(t)ev(t) dt, (2.4)

∫ ω

0
a3(t) dt –

q∑

k=1

ln(1 + d3k) +
∫ ω

0
b3(t)ew(t–τ3) dt

=
∫ ω

0

c4(t)(1 – θ )ev(t)+(m–1)w(t)

α2(t) + β2(t)ev(t) + γ2(t)ew(t) dt. (2.5)

From (2.2), (2.3), we get

∫ ω

0

∣
∣u′(t)

∣
∣dt ≤

∫ ω

0
a1(t) dt +

∫ ω

0
b1(t)eu(t–τ1) dt +

∫ ω

0

c1(t)(1 – θ )emv(t)

α1(t) + β1(t)eu(t) + γ1(t)ev(t) dt

= 2
∫ ω

0
a1(t) dt +

q∑

k=1

ln(1 + d1k).

From (2.2), (2.4), we get

∫ ω

0

∣
∣v′(t)

∣
∣dt

≤
∫ ω

0
a2(t) dt +

∫ ω

0
b2(t)ev(t–τ2) dt +

∫ ω

0

c3(t)(1 – θ )emw(t)

α2(t) + β2(t)ev(t) + γ2(t)ew(t) dt

+
∫ ω

0

c2(t)(1 – θ )eu(t)+(m–1)v(t)

α1(t) + β1(t)eu(t) + γ1(t)ev(t) dt

= 2
(∫ ω

0
a2(t) dt +

∫ T

0
b2(t)ev(t–τ2) dt +

∫ ω

0

c3(t)(1 – θ )emw(t)

α2(t) + β2(t)ev(t) + γ2(t)ew(t) dt
)

–
q∑

k=1

ln(1 + d2k).

From (2.2), (2.5), we get

∫ ω

0

∣
∣w′(t)

∣
∣dt ≤

∫ ω

0
a3(t) dt +

∫ ω

0
b3(t)ew(t–τ3) dt +

∫ ω

0

c4(t)(1 – θ )ev(t)+(m–1)w(t)

α2(t) + β2(t)ev(t) + γ2(t)ew(t) dt

= 2
(∫ ω

0
a3(t) dt +

∫ ω

0
b3(t)ew(t–τ3) dt

)

–
q∑

k=1

ln(1 + d3k).
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Since ξ (t) = (u(t), v(t), w(t)) ∈ X, there exist ξ1, ξ2, ξ3 ∈ [0,ω] such that mint∈[0,ω] u(t) =
u(ξ1), mint∈[0,ω] v(t) = v(ξ2), mint∈[0,ω] w(t) = w(ξ3).

It follows from (2.3) that

∫ ω

0
a1(t) dt +

q∑

k=1

ln(1 + d1k) ≥
∫ ω

0
b1(t)eu(t–τ1) dt ≥

∫ ω

0
b1(t)eu(ξ1) dt,

eu(ξ1) ≤
∫ ω

0 a1(t) dt +
∑q

k=1 ln(1 + d1k)
∫ ω

0 b1(t) dt
=

ω[a1] +
∑q

k=1 ln(1 + d1k)
ω[b1]

.

Thus

u(t) ≤ u(ξ1 – τ1) +
∫ ω

0

∣
∣u′(t)

∣
∣dt +

q∑

k=1

∣
∣ln(1 + d1k)

∣
∣

≤ 2ω[a1] +
q∑

k=1

ln(1 + d1k) +
q∑

k=1

∣
∣ln(1 + d1k)

∣
∣ + ln

{
ω[a1] +

∑q
k=1 ln(1 + d1k)

ω[b1]

}

= M1.

Similarly, it follows from (2.4) that

∫ ω

0
a2(t) dt –

q∑

k=1

ln(1 + d2k)

≤
∫ ω

0

c2(t)(1 – θ (t))eu(t)+(m–1)v(t)

γ1(t)ev(t) dt =
eM1

ev(ξ2) ω

[
c2(1 – θ )

γ1

]

,

ev(ξ2) ≤ eM1ω[ c2(1–θ )
γ1

]

ω[a2] –
∑q

k=1 ln(1 + d2k)
.

Thus

v(t) ≤ v(ξ2) +
∫ ω

0

∣
∣v′(t)

∣
∣dt +

q∑

k=1

∣
∣ln(1 + d2k)

∣
∣

≤ 2ω[a2] –
q∑

k=1

ln(1 + d2k) +
q∑

k=1

∣
∣ln(1 + d2k)

∣
∣ + ln

{ eM1ω[ c2(1–θ )
γ1

]

ω[a2] –
∑q

k=1 ln(1 + d2k)

}

= M2.

It follows from (2.5) that

∫ ω

0
a3(t) dt –

q∑

k=1

ln(1 + d3k) ≤ eM2

ew(ξ3) ω

[
c4(1 – θ )

γ2

]

,

ew(ξ3) ≤ eM2ω[ c4(1–θ )
γ2(t) ]

ω[a3] –
∑q

k=1 ln(1 + d3k)
.



Zhou et al. Advances in Difference Equations  (2018) 2018:137 Page 9 of 26

Thus

w(t) ≤ w(ξ2) +
∫ ω

0

∣
∣w′(t)

∣
∣dt +

q∑

k=1

∣
∣ln(1 + d3k)

∣
∣

≤ 2ω[a3] –
q∑

k=1

ln(1 + d3k) +
q∑

k=1

∣
∣ln(1 + d3k)

∣
∣ + ln

{ eM2ω[ c4(1–θ )
γ2

]

ω[a3] –
∑q

k=1 ln(1 + d3k)

}

= M3.

On the other hand, from the fact of ξ (t) = (u(t), v(t), w(t)) ∈ X, we know that supt∈[0,ω] u(t)
exists, and there exists η1 ∈ [0,ω] such that u(η+

1 ) = supt∈[0,ω] u(t) (u(η+
1 ) = u(η1) for η1 �= tk ;

u(η+
1 ) = u(t+

k ) for η1 = tk).
Hence, from (2.3) we get

∫ ω

0
a1(t) dt +

q∑

k=1

ln(1 + d1k) ≤
∫ ω

0
b1(t)eu(η+

1 ) dt +
∫ ω

0

c1(t)(1 – θ (t))emv(t)

α1(t)
dt

= ω[b1]eu(η+
1 ) +

[
c1(1 – θ )

α1

]

emM2 ,

eu(η+
1 ) ≥ ω[a1] +

∑q
k=1 ln(1 + d1k) – [ c1(1–θ )

γ1
]emM2

ω[b1]
,

u(t) ≥ u
(
η+

1
)

–
∫ ω

0

∣
∣u′(t)

∣
∣dt –

q∑

k=1

∣
∣ln(1 + d1k)

∣
∣

≥ ln

{
ω[a1] +

∑q
k=1 ln(1 + d1k) – [ c1(1–θ )

γ1
]emM2

ω[b1]

}

– 2ω[a1] –
q∑

k=1

ln(1 + d1k) –
q∑

k=1

∣
∣ln(1 + d1k)

∣
∣

= M4.

Similarly, there exist η2,η3 ∈ [0,ω], v(η+
2 ) = supt∈[0,ω] v(t), w(η+

3 ) = supt∈[0,ω] w(t). From
(2.4) we can get

∫ ω

0
a2(t) dt –

q∑

k=1

ln(1 + d2k) +
∫ ω

0
b2(t)eM2 dt +

∫ ω

0

c3(t)(1 – θ )
γ2(t)

dt

≥
∫ ω

0

c2(t)(1 – θ )eM4+(m–1)v(η+
2 )

α1(t) + β1(t)eM1 + γ1(t)eM2
dt,

∫ ω

0
ev(η+

2 ) dt ≥
(

ω
(
α1(t) + β1(t)eM1 + γ1(t)eM2

)

×
(∫ ω

0
a2(t) dt –

q∑

k=1

ln(1 + d2k)

+
∫ ω

0
b2(t)eM2 dt +

∫ ω

0

c3(t)(1 – θ )
γ2(t)

dt

)

/(∫ ω

0
c2(t)(1 – θ )eM4 dt

))1/(m–1)

.
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Thus,

v(t) ≥ v
(
η+

1
)

–
∫ ω

0

∣
∣v′(t)

∣
∣dt –

q∑

k=1

∣
∣ln(1 + d2k)

∣
∣

≥ ln

{(

ω
(
α1(t) + β1(t)eM1 + γ1(t)eM2

)

×
(∫ ω

0
a2(t) dt –

q∑

k=1

ln(1 + d2k) +
∫ ω

0
b2(t)eM2 dt +

∫ ω

0

c3(t)(1 – θ )
γ2(t)

dt

)

/(∫ ω

0
c2(t)(1 – θ )eM4 dt

))1/(m–1)}

– 2ω[a2] +
q∑

k=1

ln(1 + d2k) –
q∑

k=1

∣
∣ln(1 + d2k)

∣
∣

= M5.

From (2.5) we can get

∫ ω

0
a3(t) dt –

q∑

k=1

ln(1 + d3k) +
∫ ω

0
b3(t)eM3 dt ≥

∫ ω

0

c4(t)(1 – θ )eM5+(m–1)w(η+
3 )

α2(t) + β2(t)eM2 + γ2(t)eM3
dt,

∫ ω

0
ew(η+

3 ) dt ≥
(((∫ ω

0
a3(t) dt –

q∑

k=1

ln(1 + d3k) +
∫ ω

0
b3(t)eM3 dt

)

× ω
(
α2(t) + β2(t)eM2 + γ2(t)eM3

)
)

/(
ω
[
c4(1 – θ )eM5

])
)1/(m–1)

.

Thus,

w(t) ≥ w
(
η+

1
)

–
∫ ω

0

∣
∣w′(t)

∣
∣dt –

q∑

k=1

∣
∣ln(1 + d2k)

∣
∣

≥ ln

{(((∫ ω

0
a3(t) dt –

q∑

k=1

ln(1 + d3k) +
∫ ω

0
b3(t)eM3 dt

)

× ω
(
α2(t) + β2(t)eM2 + γ2(t)eM3

)
)

/(
ω
[
c4(1 – θ )eM5

])
)1/(m–1)}

– 2ω[a3] +
q∑

k=1

ln(1 + d3k) –
q∑

k=1

∣
∣ln(1 + d3k)

∣
∣

= M6.
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Hence,

max
t∈[0,T]

∣
∣u(t)

∣
∣≤ max

{|M1|, |M4|
}

= H1,

max
t∈[0,T]

∣
∣v(t)

∣
∣≤ max

{|M2|, |M5|
}

= H2,

max
t∈[0,T]

∣
∣w(t)

∣
∣≤ max

{|M3|, |M6|
}

= H3.

This implies that any solution ξ (t) of the operator equation Lξ = λNξ satisfies ‖ξ‖ ≤√

H2
1 + H2

2 + H2
3 = H .

Now we consider the system of algebraic equations with respect to u, v, w ((u, v, w) ∈ R3

is a constant vector):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ ω

0 a1(t) – b1(t)eu(t–τ1) – μ
c1(t)(1–θ )emv(t)

α1(t)+β1(t)eu(t)+γ1(t)ev(t) dt +
∑q

k=1 ln(1 + d1k) = 0,
∫ ω

0 –a2(t) – b2(t)ev(t–τ2) + μ
c2(t)(1–θ )eu(t)+(m–1)v(t)

α1(t)+β1(t)eu(t)+γ1(t)ev(t) – μ
c3(t)(1–θ )emw(t)

α2(t)+β2(t)ev(t)+γ2(t)ew(t) dt

+
∑q

k=1 ln(1 + d2k) = 0,
∫ ω

0 –a3(t) – b3(t)ew(t–τ3) + μ
c4(t)(1–θ )ev(t)+(m–1)w(t)

α2(t)+β2(t)ev(t)+γ2(t)ew(t) dt +
∑q

k=1 ln(1 + d3k) = 0,

(2.6)

where μ ∈ [0, 1]. By the above similar deduction steps, we know

M4 ≤ u ≤ M1, M5 ≤ v ≤ M2, M6 ≤ w ≤ M3,

|u| ≤ max
{|M1|, |M4|

}
= H1, |v| ≤ max

{|M2|, |M5|
}

= H2,

|w| ≤ max
{|M3|, |M6|

}
= H3.

This implies that any constant solution (u, v, w) of (2.6) always satisfies√
u2 + v2 + w2 ≤ H . (It is independent of μ).
We know that system (2.6) can be changed into the following system (2.7):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[a1] – [b1]eu(t–τ1) – μ 1
ω

∫ ω

0
c1(t)(1–θ )emv(t)

α1(t)+β1(t)eu(t)+γ1(t)ev(t) dt + 1
ω

∑q
k=1 ln(1 + d1k) = 0,

–[a2] – [b2]ev(t–τ2) + μ 1
ω

∫ ω

0
c2(t)(1–θ )eu(t)+(m–1)v(t)

α1(t)+β1(t)eu(t)+γ1(t)ev(t) dt

– μ 1
ω

∫ ω

0
c3(t)(1–θ )emw(t)

α2(t)+β2(t)ev(t)+γ2(t)ew(t) dt + 1
ω

∑q
k=1 ln(1 + d2k) = 0,

–[a3] – [b3]ew(t–τ3) + μ 1
ω

∫ T
0

c4(t)(1–θ )ev(t)+(m–1)w(t)

α2(t)+β2(t)ev(t)+γ2(t)ew(t) dt + 1
ω

∑q
k=1 ln(1 + d3k) = 0.

(2.7)

For any μ ∈ [0, 1], any solution (u, v, w) of (2.7) always satisfies√
u2 + v2 + w2 ≤ H .
Let μ = 1, then any solution (u, v, w) of the following system (2.8) satisfies√
u2 + v2 + w2 ≤ H .

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[a1] – [b1]eu(t–τ1) – 1
ω

∫ T
0

c1(t)(1–θ )emv(t)

α1(t)+β1(t)eu(t)+γ1(t)ev(t) dt + 1
ω

∑q
k=1 ln(1 + d1k) = 0,

–[a2] – [b2]ev(t–τ2) + 1
ω

∫ T
0

c2(t)(1–θ )eu(t)+(m–1)v(t)

α1(t)+β1(t)eu(t)+γ1(t)ev(t) dt

– 1
ω

∫ T
0

c3(t)(1–θ )emw(t)

α2(t)+β2(t)ev(t)+γ2(t)ew(t) dt + 1
ω

∑q
k=1 ln(1 + d2k) = 0,

–[a3] – [b3]ew(t–τ3) + 1
ω

∫ T
0

c4(t)(1–θ )ev(t)+(m–1)w(t)

α2(t)+β2(t)ev(t)+γ2(t)ew(t) dt + 1
ω

∑q
k=1 ln(1 + d3k) = 0.

(2.8)
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Let M∗ = H + δ (δ > 0, δ is sufficiently large). Let � = {ξ = (u(t), v(t), w(t)) ∈ X|‖ξ‖ < M∗},
then condition (i) of Lemma 2.1 is satisfied.

For any constant vector ξ0 = (u0, v0, w0) ∈ ∂�,
√

u2
0 + v2

0 + w2
0 = M∗.

QNξ0

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
ω

∫ ω

0 (a1(t) – b1(t)eu(t–τ1) – c1(t)(1–θ )emv(t)

α1(t)+β1(t)eu(t)+γ1(t)ev(t) ) dt
+
∑q

k=1 ln(1 + d1k)
1
ω

∫ ω

0 (–a2(t) – b2(t)ev(t–τ2) + c2(t)(1–θ )eu(t)+(m–1)v(t)

α1(t)+β1(t)eu(t)+γ1(t)ev(t)

– c3(t)(1–θ )emw(t)

α2(t)+β2(t)ev(t)+γ2(t)ew(t) ) dt +
∑q

k=1 ln(1 + d2k)
1
ω

∫ ω

0 (–a3(t) – b3(t)ew(t–τ3) + c4(t)(1–θ )ev(t)+(m–1)w(t)

α2(t)+β2(t)ev(t)+γ2(t)ew(t) ) dt
+
∑q

k=1 ln(1 + d3k)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎝

0
...
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
...
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
...
0

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[a1] – [b1]eu(t–τ1) – 1
ω

∫ ω

0
c1(t)(1–θ )emv(t)

α1(t)+β1(t)eu(t)+γ1(t)ev(t) dt
+ 1

ω

∑q
k=1 ln(1 + d1k)

–[a2] – [b2]ev(t–τ2) + 1
ω

∫ ω

0
c2(t)(1–θ )eu(t)+(m–1)v(t)

α1(t)+β1(t)eu(t)+γ1(t)ev(t) dt

– 1
ω

∫ ω

0
c3(t)(1–θ )emw(t)

α2(t)+β2(t)ev(t)+γ2(t)ew(t) dt + 1
ω

∑q
k=1 ln(1 + d2k)

–[a3] – [b3]ew(t–τ3) + 1
ω

∫ ω

0
c4(t)(1–θ )ev(t)+(m–1)w(t)

α2(t)+β2(t)ev(t)+γ2(t)ew(t) dt
+ 1

ω

∑q
k=1 ln(1 + d3k)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎝

0
...
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
...
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
...
0

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

�= 0.

Hence, condition (ii) of Lemma 2.1 is satisfied.
Let � : Im Q → Ker L,
⎛

⎜
⎜
⎝

⎛

⎜
⎝

h1

h2

h3

⎞

⎟
⎠ ,

⎛

⎜
⎜
⎝

0
...
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
...
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
...
0

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠→

⎛

⎜
⎝

h1

h2

h3

⎞

⎟
⎠ .

Let F(ξ ,μ) = μ�QNξ + (1 – μ)�Gξ , where μ ∈ [0, 1], ξ = (u, v, w) ∈ R3,

Gξ =

⎛

⎜
⎜
⎝

⎛

⎜
⎝

[a1] – [b1]eu(t–τ1) + 1
ω

∑q
k=1 ln(1 + d1k)

–[a2] – [b2]ev(t–τ2) + 1
ω

∑q
k=1 ln(1 + d2k)

–[a3] – [b3]ew(t–τ3) + 1
ω

∑q
k=1 ln(1 + d3k)

⎞

⎟
⎠ ,

⎛

⎜
⎜
⎝

0
...
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
...
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
...
0

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ ,

�Gξ =

⎛

⎜
⎝

[a1] – [b1]eu(t–τ1) + 1
ω

∑q
k=1 ln(1 + d1k)

–[a2] – [b2]ev(t–τ2) + 1
ω

∑q
k=1 ln(1 + d2k)

–[a3] – [b3]ew(t–τ3) + 1
ω

∑q
k=1 ln(1 + d3k)

⎞

⎟
⎠ ,

�QNξ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

[a1] – [b1]eu(t–τ1) – 1
ω

∫ T
0

c1(t)(1–θ )emv(t)

α1(t)+β1(t)eu(t)+γ1(t)ev(t) dt + 1
ω

∑q
k=1 ln(1 + d1k),

–[a2] – [b2]ev(t–τ2) + 1
ω

∫ T
0

c2(t)(1–θ )eu(t)+(m–1)v(t)

α1(t)+β1(t)eu(t)+γ1(t)ev(t) dt

– 1
ω

∫ T
0

c3(t)(1–θ )emw(t)

α2(t)+β2(t)ev(t)+γ2(t)ew(t) dt + 1
ω

∑q
k=1 ln(1 + d2k),

–[a3] – [b3]ew(t–τ3) + 1
ω

∫ T
0

c4(t)(1–θ )ev(t)+(m–1)w(t)

α2(t)+β2(t)ev(t)+γ2(t)ew(t) dt + 1
ω

∑q
k=1 ln(1 + d3k)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For ξ ∈ ∂� ∩ Ker L, ξ = (u, v, w) is a constant vector, and
√

u2 + v2 + w2 = M∗.
From (2.7) we know F(ξ ,μ) �= 0 (ξ ∈ ∂� ∩ Ker L).
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It is easy to verify that the following system of equations has a unique solution ξ ∗ =
(u∗, v∗, w∗).

⎧
⎪⎪⎨

⎪⎪⎩

[a1] – [b1]eu(t–τ1) + 1
ω

∑q
k=1 ln(1 + d1k) = 0,

–[a2] – [b2]ev(t–τ2) + 1
ω

∑q
k=1 ln(1 + d2k) = 0,

–[a3] – [b3]ew(t–τ3) + 1
ω

∑q
k=1 ln(1 + d3k) = 0.

Thus,

deg(�QN ,� ∩ Ker L, 0) = deg(�G,� ∩ Ker L, 0) = sgn J�G
(
ξ ∗)

= sgn
{

–[b1]eu(t–τ1) · [b2]ev(t–τ2) · [b3]ew(t–τ3)} �= 0

(where J�G is the Jacobian determinant of �G). Hence condition (iii) of Lemma 2.1 is
satisfied.

Thus, by Lemma 2.1, we know that the operator equation Lξ = Nξ has at least
one solution in �̄ ∩ Dom L. Therefore system (2.1) has at least one-periodic solution
(u∗(t), v∗(t), w∗(t)). So system (1.2) has at least one ω-periodic solution (x∗(t), y∗(t), z∗(t)) =
(eu∗(t), ev∗(t), ew∗(t)). The proof of Theorem 2.1 is completed. �

From Theorem 2.1, if we let θ = 0, αi = 1, βi = 0, γi = 0 (i = 1, 2), z(t) = 0, then we can get
the following corollary.

Corollary 2.1 If
∫ T

0 a1(t) dt +
∑q

k=1 ln(1 + d1k) > 0 and the following algebraic equation set

⎧
⎨

⎩

[a1] + 1
ω

∑q
k=1 ln(1 + d1k) – [b1]eu – c1emv = 0,

[a2] – 1
ω

∑q
k=1 ln(1 + d2k) + [b2]ev – c2eu+(m–1)v = 0

has finite solutions (u∗, v∗), then system (2.1) has at least one positive ω-periodic solution.

Remark 2.1 Corollary 2.1 is the same as Theorem 2.1 of [4]. Their model is the special
case of (1.2). In this sense, we generalize or improve their results.

3 Permanence
Definition 3.1 System (1.2) is said to be permanent if there exist positive constants T , Gi,
gi, i = 1, 2, 3, such that any solution (x(t), y(t), z(t))T of system (1.2) satisfies g1 ≤ x(t) ≤ G1,
g2 ≤ y(t) ≤ G2, g3 ≤ z(t) ≤ G3 for t ≥ T .

Lemma 3.1 (see [20]) If a > 0, b > 0, and ξ (t) ≥ (≤)b – aξ (t) for t ≥ 0, z(0) > 0, then ξ (t) ≥
(≤) b

a + [ξ (0) – b
a ] exp{–at}.

Lemma 3.2 (see [4, 21]) If a > 0, b > 0, τ ≥ 0, then:
(1) If y′(t) ≤ y(t)[b – ay(t – τ )], then there exists a constant T > 0 such that

y(t) ≤ a
b exp{bτ } for t ≥ T .

(2) If y′(t) ≥ y(t)[b – ay(t – τ )], and there exist positive constants T and G such that
y(t) < G for t ≥ T , then for any small constant ε > 0 there exists a constant T∗ > T
such that y(t) ≥ min{ b

a exp{(b – aM)τ }, b
a – ε} for t ≥ T∗. In [21], the value of the

above ε is b/2a.
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Consider the following non-impulsive functional differential system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′(t) = u(t)(a1(t) – B1(t)u(t – τ1) – C1(t)(1–θ (t))vm(t)
α1(t)+β1(t)u(t)+γ1(t)v(t) ),

v′(t) = v(t)(–a2(t) – B2(t)v(t – τ2) + C2(t)(1–θ (t))u(t)vm–1(t)
α1(t)+β1(t)u(t)+γ1(t)v(t)

– C3(t)(1–θ (t))wm(t)
α2(t)+β2(t)v(t)+γ2(t)w(t) ),

w′(t) = w(t)(–a3(t) – B3(t)w(t – τ3) + C4(t)(1–θ (t))v(t)wm–1(t)
α2(t)+β2(t)v(t)+γ2(t)w(t) ),

(3.1)

(
x(s), y(s), z(s)

)
=
(
φ1(s),φ2(s),φ3(s)

) ∈ C
(
[–τ , 0], R3

+
)
, φi(s) > 0. (3.2)

Lemma 3.3 If (x(t), y(t), z(t)) is a solution of system (1.2) on [0, +∞), then (u(t), v(t), w(t)) =
(
–1

d1
x(t),
–1

d2
y(t),
–1

d3
z(t)) is a solution of system (3.1) on [0, +∞).

Lemma 3.4 If (u(t), v(t), w(t)) is a solution of system (3.1) on [0, +∞), then (x(t), y(t), z(t)) =
(
d1 u(t),
d2 v(t),
d3 w(t)) is a solution of system (1.2) on [0, +∞).

The proofs of the above two lemmas are similar to that of Theorem 1 in [6], so we omit
them here.

Lemma 3.5 There exists a positive constant T0 such that the solution (u(t), v(t), w(t)) of
system (3.1) satisfies 0 < u(t) ≤ G1, 0 < v(t) ≤ G2, and 0 < w(t) ≤ G3 for t ≥ T0, where

G1 =
aU

1

BL
1

exp
{

aU
1 τ
}

,

G2 =
[
G1CU

2
(
1 – θL)/αL

1
(
aL

2 + ε
)] 1

1–m ,

G3 =
[
G2CU

4
(
1 – θL)/αL

2
(
aL

3 + ε
)] 1

1–m .

Proof It follows from system (3.1) that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′(t) ≤ u(t)(aU
1 – BL

1u(t – τ1)),

v′(t) ≤ vm(t)(–aL
2v1–m(t) + CU

2 (1–θL)u(t)
αL

1
),

w′(t) ≤ wm(t)(–aL
3w1–m(t) + CU

4 (1–θL)v(t)
αL

2
).

(3.3)

The first inequality of (3.3) and Lemma 3.2 yield that there exists a positive constant T1

such that

u(t) ≤ aU
1

BL
1

exp
{

aU
1 τ1

}
= G1 for t ≥ T1,

which, together with the second inequality of (3.3), yields

d(v1–m(t))
dt

≤ (1 – m)
[

G1
CU

2 (1 – θL)
αL

1
– aL

2v1–m(t)
]

for t ≥ T1,

and the third inequality of (3.3) yields

d(w1–m(t))
dt

≤ (1 – m)
[

G2
CU

4 (1 – θL)
αL

2
– aL

3w1–m(t)
]

for t ≥ T1.
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Thus from Lemma 3.1 we know that, for any small positive constant ε, there exists a
positive constant T0 ≥ T1 such that v(t) ≤ G2, w(t) ≤ G3 for t ≥ T0. �

Lemma 3.6 If �1 > 0, �2 > 0, and �3 > 0, then there exists a positive constant T∗ such that
the solution (u(t), v(t), w(t)) of system (3.1) satisfies

u(t) ≥ g1, v(t) ≥ g2 and w(t) ≥ g3 for t ≥ T∗,

where ε is a small enough positive constant, and

�1 =
[

a1 –
C1(1 – θ )

α1
Gm

2

]L

, �2 =
[

C2(1 – θ )g1

α1
–

C3(1 – θ )Gm
3

α2
– B2G2–m

2

]L

,

�3 =
[

C4(1 – θ )g2

α2
– B3G2–m

3

]L

,

g1 = min

{
�1

BU
1

exp
{[

�1 – G1BU
1
]
τ
}

,
�1

BU
1

– ε

}

, g2 = �2/aL
2 – ε, g3 = �3/aL

3 – ε.

Proof It follows from Lemma 3.5 and system (3.1) that, for t ≥ T0,

⎧
⎪⎪⎨

⎪⎪⎩

u′(t) ≥ u(t)(�1 – BU
1 u(t – τ1)),

v′(t) ≥ v(t)(–a2(t)v1–m(t) – B2M2–m
2 + C2(t)(1–θ )u(t)

α1(t) – C3(t)(1–θ )wm(t)
α2(t) ),

w′(t) ≥ w(t)(–a3(t)w1–m(t) – B3M2–m
3 + C4(t)(1–θ )v(t)

α2(t) ),

which, together with Lemmas 3.1 and 3.2, implies that there exists a positive constant
T∗ ≥ T0 such that u(t) ≥ g1, v(t) ≥ g2, and w(t) ≥ g3 for t ≥ T∗. �

From Lemmas 3.5 and 3.6 we can get the following result on the permanence of system
(3.1), which, together with Lemmas 3.3 and 3.4, yields the permanence of system (1.2).

Theorem 3.1 If �1 > 0, �2 > 0, and �3 > 0, then system (1.2) is permanent and enters
eventually into the region

D =
{

x(t), y(t), z(t)|

d1 g1 ≤ x(t) ≤ 
d1 G1,
d2 g2 ≤ x(t) ≤ 
d2 G2,
d3 g3 ≤ x(t) ≤ 
d3 G3

}
.

From Theorem 3.1, if we let θ = 0, αi = 1 (i = 1, 2), z(t) = 0, then we can get the following
corollary.

Corollary 3.1 If �1 > 0 and �2 > 0, then system (1.2) is permanent and enters eventually
into the region

D =
{

x(t), y(t), z(t)|
d1 g1 ≤ x(t) ≤ 
d1 G1,
d2 g2 ≤ x(t) ≤ 
d2 G2
}

.

Remark 3.1 Corollary 3.1 is the same as Theorem 3.1 of [4]. Their model is the special
case of (1.2). In this sense, we generalize or improve their results.
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4 Stability
Definition 4.1 System (1.2) is called globally attractive if

lim
t→+∞

(∣
∣x(t) – x̂(t)

∣
∣ +
∣
∣y(t) – ŷ(t)

∣
∣ +
∣
∣z(t) – ẑ(t)

∣
∣
)

= 0

for any three positive solutions (x(t), y(t), z(t)) and (x̂(t), ŷ(t), ẑ(t)) of system (1.2).

Theorem 4.1 If �1 > 0, �2 > 0, and �3 > 0 and

lim inf
t→+∞

{
�(t),�(t), E(t)

}
> 0,

then system (1.2) is globally attractive, where

�(t) = �1(t) – �2(t)mgm–1
2 +

C2(t)
α1(t)

(1 – m)g1Gm–2
2 ,

�(t) =
(

κB1(t) –
C2(t)
α1(t)

gm–1
2

)

– κB̃τ11 (t)
[

a1(t) + G1B1(t) + Gm
2

C1(t)
α1(t)

]

– κB̃τ12 (t)G1B1(t + τ1) – B̃τ21 (t)Gm
2

C2(t)
α1(t)

,

E(t) = E1(t) +
C4(t)
α2(t)

g2(1 – m)Gm–2
3 – E2(t)mgm–1

3 ,

�1(t) = B2(t) – B̃τ31 (t)Gm
3

C4(t)
α2(t)

– B̃τ22 (t)G2B2(t + τ2)

– B̃τ21 (t)
[

a2(t) + G2B2(t) – Gm
3

C3(t)
α2(t)

]

–
C4(t)
α2(t)

gm–1
3 ,

�2(t) = κ
C1(t)
α1(t)

(
1 + B̃τ11 (t)G1

)
+ B̃τ21 (t)G1

C2(t)
α1(t)

,

E1(t) = B3(t) – B̃τ31 (t)
[
a3(t) + G3B3(t)

]
– B̃τ32 (t)G3B3(t + τ3),

E2(t) =
(
1 + B̃τ21 (t)G2

)C3(t)
α2(t)

+ B̃τ31 (t)G2
C4(t)
α2(t)

,

B̃τ11 (t) =
∫ t+τ1

t
B1(σ ) dσ , B̃τ21 (t) =

∫ t+τ2

t
B2(σ ) dσ ,

B̃τ31 (t) =
∫ t+τ3

t
B3(σ ) dσ , B̃τ12 (t) =

∫ t+2τ1

t+τ1

B1(σ ) dσ ,

B̃τ22 (t) =
∫ t+2τ2

t+τ1

B2(σ ) dσ , B̃τ32 (t) =
∫ t+2τ3

t+τ1

B3(σ ) dσ .

Proof Let (x̂(t), ŷ(t), ẑ(t)) and (x(t), y(t), z(t)) be any two positive solutions of system (1.2);
then (û(t), v̂(t), ŵ(t)) = (
–1

d1
x̂(t), ŷ–1

d2
(t), ẑ–1

d3
(t)) and (u(t), v(t), w(t)) = (
–1

d1
x(t), y–1

d2
(t), z–1

d3
(t))

are positive solutions of system (3.1). It follows from Lemmas 3.5 and 3.6 that there exist
positive constants gi, Gi, and T∗ (defined in Lemma 3.5 and Lemma 3.6, respectively) such
that

g1 ≤ u(t), û(t) ≤ G1, g2 ≤ v(t), v̂(t) ≤ G2, g3 ≤ w(t), ŵ(t) ≤ G3 for t ≥ T∗.
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Define a function

V1(t) = κ
∣
∣ln u(t) – ln û(t)

∣
∣ +
∣
∣ln v(t) – ln v̂(t)

∣
∣ +
∣
∣ln w(t) – ln ŵ(t)

∣
∣ for t ≥ T∗.

By calculating its upper right derivative along the solution of system (3.1), we get

D+V1(t) = κ sgn
(
u(t) – û(t)

)
[

u′(t)
u(t)

–
û′(t)
û(t)

]

+ sgn
(
v(t) – v̂(t)

)
[

v′(t)
v(t)

–
v̂′(t)
v̂(t)

]

+ sgn
(
w(t) – ŵ(t)

)
[

w′(t)
w(t)

–
ŵ′(t)
w(t)

]

= κ sgn
(
u(t) – û(t)

)
{

B1(t)
[
û(t – τ1) – u(t – τ1)

]

+
C1(t)(1 – θ (t))

α1(t)
[
v̂m(t) – vm(t)

]
}

+ sgn
(
v(t) – v̂(t)

)
{

B2(t)
[
v̂(t – τ2) – v(t – τ2)

]

–
C2(t)(1 – θ (t))

α1(t)

[
u(t)

v1–m(t)
–

û(t)
v̂1–m(t)

]

+
C3(t)(1 – θ (t))

α2(t)
[
ŵm(t) – wm(t)

]
}

+ sgn
(
w(t) – ŵ(t)

)
{

B3(t)
[
ŵ(t – τ1) – w(t – τ1)

]

+
C4(t)(1 – θ (t))

α2(t)

[
v(t)

w1–m(t)
–

v̂(t)
ŵ1–m(t)

]}

≤ –κB1(t)
∣
∣u(t) – û(t)

∣
∣ – B2(t)

∣
∣v(t) – v̂(t)

∣
∣ – B3(t)

∣
∣w(t) – ŵ(t)

∣
∣

+ κ
C1(t)(1 – θ (t))

α1(t)
∣
∣v̂m(t) – vm(t)

∣
∣

–
C2(t)(1 – θ (t))

α1(t)
sgn

(
v(t) – v̂(t)

)
[

u(t)
v1–m(t)

–
û(t)

v̂1–m(t)

]

+
C3(t)(1 – θ (t))

α2(t)
∣
∣ŵm(t) – wm(t)

∣
∣

+
C4(t)(1 – θ (t))

α2(t)
sgn

(
w(t) – ŵ(t)

)
[

v(t)
w1–m(t)

–
v̂(t)

ŵ1–m(t)

]

+ κB1(t)
∫ t

t–τ1

∣
∣u′(s) – û′(s)

∣
∣ds + B2(t)

∫ t

t–τ2

∣
∣v′(s) – v̂′(s)

∣
∣ds

+ B3(t)
∫ t

t–τ3

∣
∣w′(s) – ŵ′(s)

∣
∣ds

which, together with

sgn
(
v(t) – v̂(t)

)
[

u(t)
v1–m(t)

–
û(t)

v̂1–m(t)

]

≤ –g1
∣
∣vm–1(t) – v̂m–1(t)

∣
∣ + gm–1

2
∣
∣u(t) – û(t)

∣
∣,

sgn
(
w(t) – ŵ(t)

)
[

v(t)
w1–m(t)

–
v̂(t)

ŵ1–m(t)

]

≤ –g2
∣
∣wm–1(t) – ŵm–1(t)

∣
∣ + gm–1

3
∣
∣v(t) – v̂(t)

∣
∣,
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∫ t

t–τ1

∣
∣u′(s) – û′(s)

∣
∣ds ≤

∫ t

t–τ1

[

a1(s) + G1B1(s) + Gm
2

C1(s)(1 – θ (s))
α1(s)

]
∣
∣u(s) – û(s)

∣
∣ds

+ G1

∫ t

t–τ1

B1(s)
∣
∣u(s – τ1) – û(s – τ1)

∣
∣ds

+ G1

∫ t

t–τ1

C1(s)(1 – θ (s))
α1(s)

∣
∣vm(s) – v̂m(s)

∣
∣ds

and

∫ t

t–τ2

∣
∣v′(s) – v̂′(s)

∣
∣ds ≤

∫ t

t–τ2

[
a2(s) + G2B2(s)

]∣
∣v(s) – v̂(s)

∣
∣ds

+ G2

∫ t

t–τ2

B2(s)
∣
∣v(s – τ2) – v̂(s – τ2)

∣
∣ds

+ Gm
2

∫ t

t–τ2

C2(s)(1 – θ (s))
α1(s)

∣
∣u(s) – û(s)

∣
∣ds

+ Gm
3

∫ t

t–τ2

C3(s)(1 – θ (s))
α2(s)

∣
∣v(s) – v̂(s)

∣
∣ds

+ G1

∫ t

t–τ2

C2(s)(1 – θ (s))
α1(s)

∣
∣vm(s) – v̂m(s)

∣
∣ds

+ G2

∫ t

t–τ2

C3(s)(1 – θ (s))
α2(s)

∣
∣wm(s) – ŵm(s)

∣
∣ds

and

∫ t

t–τ1

∣
∣w′(s) – ŵ′(s)

∣
∣ds ≤

∫ t

t–τ3

[
a3(s) + G3B3(s)

]∣
∣w(s) – ŵ(s)

∣
∣ds

+ Gm
3

∫ t

t–τ2

C4(s)(1 – θ (s))
α2(s)

∣
∣v(s) – v̂(s)

∣
∣ds

+ G3

∫ t

t–τ3

B3(s)
∣
∣w(s – τ3) – ŵ(s – τ3)

∣
∣ds

+ G2

∫ t

t–τ1

C4(s)(1 – θ (s))
α2(s)

∣
∣wm(s) – ŵm(s)

∣
∣ds,

yields

D+V1(t) ≤
(

–κB1(t) +
C2(t)(1 – θ (s))

α1(t)
gm–1

2

)
∣
∣u(t) – û(t)

∣
∣ – B2(t)

∣
∣v(t) – v̂(t)

∣
∣

– B3(t)
∣
∣w(t) – ŵ(t)

∣
∣ + α

C1(t)(1 – θ (s))
α1(t)

∣
∣v̂m(t) – vm(t)

∣
∣

–
C2(t)(1 – θ (s))

α1(t)
g1
∣
∣vm–1(t) – v̂m–1(t)

∣
∣ +

C3(t)(1 – θ (s))
α2(t)

∣
∣ŵm(t) – wm(t)

∣
∣

–
C4(t)(1 – θ (s))

α2(t)
g2
∣
∣wm–1(t) – ŵm–1(t)

∣
∣ +

C4(t)(1 – θ (s))
α2(t)

gm–1
3

∣
∣v(t) – v̂(t)

∣
∣

+ κB1(t)
(∫ t

t–τ1

[

a1(s) + G1B1(s) + Gm
2

C1(s)(1 – θ (s))
α1(s)

]
∣
∣u(s) – û(s)

∣
∣ds
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+ G1

∫ t

t–τ1

B1(s)
∣
∣u(s – τ1) – û(s – τ1)

∣
∣ds

+ G1

∫ t

t–τ1

C1(s)(1 – θ (s))
α1(s)

∣
∣vm(s) – v̂m(s)

∣
∣ds
)

+ B2(t)
(∫ t

t–τ2

[
a2(s) + G2B2(s)

]∣
∣v(s) – v̂(s)

∣
∣ds

+ G2

∫ t

t–τ2

B2(s)
∣
∣v(s – τ2) – v̂(s – τ2)

∣
∣ds

+ Gm
2

∫ t

t–τ2

C2(s)(1 – θ (s))
α1(s)

∣
∣u(s) – û(s)

∣
∣ds

+ Gm
3

∫ t

t–τ2

C3(s)(1 – θ (s))
α2(s)

∣
∣v(s) – v̂(s)

∣
∣ds

+ G1

∫ t

t–τ2

C2(s)(1 – θ (s))
α1(s)

∣
∣vm(s) – v̂m(s)

∣
∣ds

+ G2

∫ t

t–τ2

C3(s)(1 – θ (s))
α2(s)

∣
∣wm(s) – ŵm(s)

∣
∣ds
)

+ B3(t)
(∫ t

t–τ3

[
a3(s) + G3B3(s)

]∣
∣w(s) – ŵ(s)

∣
∣ds

+ Gm
3

∫ t

t–τ2

C4(s)(1 – θ (s))
α2(s)

∣
∣v(s) – v̂(s)

∣
∣ds

+ G3

∫ t

t–τ3

B3(s)
∣
∣w(s – τ3) – ŵ(s – τ3)

∣
∣ds

+ G2

∫ t

t–τ1

C4(s)(1 – θ (s))
α2(s)

∣
∣wm(s) – ŵm(s)

∣
∣ds
)

.

Define further

V2(t) =
∫ t+τ1

t

∫ t

σ–τ1

B1(σ )
[

a1(s) + G1B1(s) + Gm
2

C1(s)(1 – θ (s))
α1(s)

]
∣
∣u(s) – û(s)

∣
∣ds dσ

+ G1

∫ t+τ1

t

∫ t

σ–τ1

B1(σ )B1(s)
∣
∣u(s – τ1) – û(s – τ1)

∣
∣ds dσ

+ G1

∫ t+τ1

t

∫ t

σ–τ1

B1(σ )
C1(s)(1 – θ (s))

α1(s)
∣
∣vm(s) – v̂m(s)

∣
∣ds dσ ,

V3(t) =
∫ t+τ2

t

∫ t

σ–τ2

B2(σ )
[
a2(s) + G2B2(s)

]∣
∣v(s) – v̂(s)

∣
∣ds dσ

+ G2

∫ t+τ2

t

∫ t

σ–τ2

B2(σ )B2(s)
∣
∣v(s – τ2) – v̂(s – τ2)

∣
∣ds dσ

+ Gm
2

∫ t+τ2

t

∫ t

σ–τ2

B2(σ )
C2(s)(1 – θ (s))

α1(s)
∣
∣u(s) – û(s)

∣
∣ds dσ

+ Gm
3

∫ t+τ2

t

∫ t

σ–τ2

B2(σ )
C3(s)(1 – θ (s))

α2(s)
∣
∣v(s) – v̂(s)

∣
∣ds dσ
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+ G1

∫ t+τ2

t

∫ t

σ–τ2

B2(σ )
C2(s)(1 – θ (s))

α1(s)
∣
∣vm(s) – v̂m(s)

∣
∣ds dσ

+ G2

∫ t+τ2

t

∫ t

σ–τ2

B2(σ )
C3(s)(1 – θ (s))

α2(s)
∣
∣wm(s) – ŵm(s)

∣
∣ds dσ ,

V4 =
∫ t+τ3

t

∫ t

σ–τ3

[
a3(s) + G3B3(s)

]∣
∣w(s) – ŵ(s)

∣
∣ds dσ

+ Gm
3

∫ t+τ3

t

∫ t

σ–τ2

C4(s)(1 – θ (s))
α2(s)

∣
∣v(s) – v̂(s)

∣
∣ds dσ

+ G3

∫ t+τ3

t

∫ t

σ–τ3

B3(s)
∣
∣w(s – τ3) – ŵ(s – τ3)

∣
∣ds dσ

+ G2

∫ t+τ3

t

∫ t

σ–τ1

C4(s)(1 – θ (s))
α2(s)

∣
∣wm(s) – ŵm(s)

∣
∣ds dσ

and

V5 = κG1

∫ t+τ1

t

∫ s+τ1

s
B1(σ )B1(s)

∣
∣u(s – τ1) – û(s – τ1)

∣
∣dσ ds

+ G2

∫ t+τ2

t

∫ s+τ2

s
B2(σ )B2(s)

∣
∣v(s – τ2) – v̂(s – τ2)

∣
∣dσ ds

+ G3

∫ t+τ3

t

∫ s+τ3

s
B3(σ )B3(s)

∣
∣w(s – τ3) – ŵ(s – τ3)

∣
∣dσ ds.

We choose the Lyapunov functional as follows: V (t) = V1(t) +κV2(t) + V3(t) + V4(t) + V5(t).
Thus, for t ≥ T∗,

D+V (t) = D+V1(t) + κV ′
2(t) + V ′

3(t) + V ′
4(t) + V ′

5(t)

≤ –
(

κB1(t) –
C2(t)(1 – θ (s))

α1(t)
gm–1

2

)
∣
∣u(t) – û(t)

∣
∣ – B2(t)

∣
∣v(t) – v̂(t)

∣
∣

– B3(t)
∣
∣w(t) – ŵ(t)

∣
∣ + α

C1(t)(1 – θ (s))
α1(t)

∣
∣v̂m(t) – vm(t)

∣
∣

–
C2(t)(1 – θ (s))

α1(t)
g1
∣
∣vm–1(t) – v̂m–1(t)

∣
∣ +

C3(t)(1 – θ (s))
α2(t)

∣
∣ŵm(t) – wm(t)

∣
∣

–
C4(t)(1 – θ (s))

α2(t)
g2
∣
∣wm–1(t) – ŵm–1(t)

∣
∣ +

C4(t)(1 – θ (s))
α2(t)

gm–1
3

∣
∣v(t) – v̂(t)

∣
∣

+ κB̃τ11 (t)
[

a1(t) + G1B1(t) + Gm
2

C1(t)(1 – θ (s))
α1(t)

]
∣
∣u(t) – û(t)

∣
∣

+ κB̃τ11 (t)G1
C1(t)(1 – θ (s))

α1(t)
∣
∣vm(t) – v̂m(t)

∣
∣

+ κB̃τ12 (t)G1B1(t + τ1)
∣
∣u(t) – û(t)

∣
∣

+ B̃τ21 (t)
[

a2(t) + M2B2(t) + Gm
3

C3(t)(1 – θ (s))
α2(t)

]
∣
∣v(t) – v̂(t)

∣
∣

+ B̃τ21 (t)Gm
2

C2(t)(1 – θ (s))
α1(t)

∣
∣u(t) – û(t)

∣
∣ + B̃τ22 (t)G2B2(t + τ2)

∣
∣v(t) – v̂(t)

∣
∣

+ B̃τ21 (t)G1
C2(t)(1 – θ (s))

α1(t)
∣
∣vm(t) – v̂m(t)

∣
∣
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+ B̃τ21 (t)G2
C3(t)(1 – θ (s))

α2(t)
∣
∣wm(t) – ŵm(t)

∣
∣

+ B̃τ31 (t)
[
a3(t) + G3B3(t)

]∣
∣w(t) – ŵ(t)

∣
∣

+ B̃τ31 (t)Gm
3

C4(t)(1 – θ (s))
α2(t)

∣
∣v(t) – v̂(t)

∣
∣

+ B̃τ32 (t)G3B3(t + τ3)
∣
∣w(t) – ŵ(t)

∣
∣

+ B̃τ31 (t)G2
C4(t)(1 – θ (s))

α2(t)
∣
∣wm(t) – ŵm(t)

∣
∣

≤ –�(t)
∣
∣u(t) – û(t)

∣
∣ – �(t)

∣
∣v(t) – v̂(t)

∣
∣ – E(t)

∣
∣w(t) – ŵ(t)

∣
∣.

It follows from �L > 0, �L > 0, and EL > 0 that

D+V (t) ≤ –�L(t)
∣
∣u(t) – û(t)

∣
∣ – �L(t)

∣
∣v(t) – v̂(t)

∣
∣ – EL(t)

∣
∣w(t) – ŵ(t)

∣
∣ for t ≥ T∗.

Integrating both sides of the above inequality gives

V (t) + �L
∫ t

T∗

∣
∣u(s) – û(s)

∣
∣ds + �L

∫ t

T∗

∣
∣v(s) – v̂(s)

∣
∣ds – EL

∫ t

T∗

∣
∣w(s) – ŵ(s)

∣
∣ds

≤ V
(
T∗) < +∞

which, together with the boundedness of u′(t), v′(t), and w′(t), yields that |u(s) – û(s)|,
|v(s) – v̂(s)|, and |w(s) – ŵ(s)| are uniformly continuous on [T∗, +∞). By Barbalat’s lemma
[22], we have

lim
t→+∞

∣
∣u(s) – û(s)

∣
∣ = lim

t→+∞�–1
d1

∣
∣x(s) – x̂(s)

∣
∣ = 0,

lim
t→+∞

∣
∣v(s) – v̂(s)

∣
∣ = lim

t→+∞�–1
d2

∣
∣y(s) – ŷ(s)

∣
∣ = 0,

lim
t→+∞

∣
∣w(s) – ŵ(s)

∣
∣ = lim

t→+∞�–1
d3

∣
∣z(s) – ẑ(s)

∣
∣ = 0,

which yields limt→+∞(|x(s) – x̂(s)| + |y(s) – ŷ(s)| + |z(s) – ẑ(s)|) = 0. The proof is now fin-
ished. �

From Theorem 3.1, if we let θ = 0, αi = 1 (i = 1, 2), z(t) = 0, then we can get the following
corollary.

Corollary 4.1 If �1 > 0 and �2 > 0,

lim inf
t→+∞

{
�(t),�(t)

}
> 0,

then system (1.2) is globally attractive, where

�(t) = �1(t) – �2(t)mgm–1
2 + C2(t)(1 – m)g1Gm–2

2 ,

�(t) =
(
κB1(t) – C2(t)gm–1

2
)

– κB̃τ11 (t)
[
a1(t) + G1B1(t) + Gm

2 C1(t)
]

– κB̃τ12 (t)G1B1(t + τ1) – B̃τ21 (t)Gm
2 C2(t),
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�1(t) = B2(t) – B̃τ22 (t)G2B2(t + τ2) – B̃τ21 (t)
[
a2(t) + G2B2(t)

]
,

�2(t) = κC1(t)
(
1 + B̃τ11 (t)G1

)
+ B̃τ21 (t)G1C2(t),

B̃τ11 (t) =
∫ t+τ1

t
B1(σ ) dσ , B̃τ21 (t) =

∫ t+τ2

t
B2(σ ) dσ ,

B̃τ12 (t) =
∫ t+2τ1

t+τ1

B1(σ ) dσ , B̃τ22 (t) =
∫ t+2τ2

t+τ1

B2(σ ) dσ .

Remark 4.1 Corollary 4.1 is the same as Theorem 4.1 of [4]. Their model is the special
case of (1.2). In this sense, we generalize or improve their results.

5 Examples and simulation
In this section, we give some examples and numerical simulations to verify the feasibility
of our theoretical results, and further study the complexity and variety of system (1.2).

In order to verify the feasibility of our results, we consider the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′(t) = x(t)(10 + 0.1 sin(t) – 10x(t – τ1) – (1+0.29 sin(t))(1–θ (t))y0.1(t)
1.1+x(t)+y(t) ),

y′(t) = y(t)(–2.3 + 0.1 sin(t) – 0.4(t)y(t – τ2) + (2+0.1 sin(t))(1–θ (t))x(t)y–0.9(t)
1.1+x(t)+y(t)

– (0.1+0.29 sin(t))(1–θ (t))z0.1(t)
1.1+y(t)+z(t) ),

z′(t) = z(t)(–2 + 0.1 sin(t) – 0.1z(t – τ3) + (3+0.1 sin(t))(1–θ (t))y(t)z–0.9(t)
1.1+y(t)+z(t) ).

(5.1)

We take, corresponding to system (3.1), a1 = 10 + 0.1 sin(t), a2 = 2.3 – 0.1 sin(t), a3 =
2 – 0.1 sin(t), B1(t) = 10, B2(t) = 0.4, B3(t) = 0.1, C1(t) = 1 + 0.29 sin(t), C2(t) = 2 + 0.1 sin(t),
C3(t) = 0.1 + 0.29 sin(t), C4(t) = 3 + 0.1 sin(t), α1(t) = α2(t) = 1.1, β1(t) = β2(t) = 1, γ1(t) =
γ2(t) = 1, τ1 = τ2 = τ3 = 0.002, T = 1, d1k = 0.15, d2k = 0.005, d3k = 0.001, m = 0.1, θ = 0.4,
and let

∑q
k=1 ln(1+d1k) ≥ –10. By direct computation we have

∫ T
0 a1(t) dt ≈ 10.045969769,

�1 = 9.2434 > 0, �2 = 0.2053 > 0, �3 = 0.0748 > 0, limt→+∞ inf{�(t),�(t), E(t)} ≈
0.1936 > 0. By verification, these parameters satisfy the conditions of Theorems 2.1, 3.1,
4.1 that system (1.2) is permanent and has positive T-periodic solution, which is glob-
ally attractive. In order to see these dynamic properties clearly, we drew the figures for
the evolution of the solutions of system (1.2) by using the function dde23 in Matlab; see
Figs. 1(a)–1(b). If we change the mutual interference of the predator m and the prey refuge
constant θ , the other parameters are the same as in Fig. 1, then we get another dynamic
portrait that is very different from Fig. 1. We give examples for m = 0.8 and θ = 0.7, see
Fig. 1(c) and Fig. 1(d), respectively. Figure 1(c) and Fig. 1 (d) show that the mutual inter-
ference of the predator m and the prey refuge constant θ affects the dynamic behaviors of
system (1.2).

In order to show the complex dynamic behaviors of system (1.2), we choose another set
of parameters as a1 = 1, a2 = 0.1, a3 = 0.1, b1(t) = 0.35, b2(t) = 0.1, b3(t) = 0.45, c1(t) = 1,
c2(t) = 0.8, c3(t) = 1, c4(t) = 0.8, α1(t) = α2(t) = 1, β1(t) = β2(t) = 0.5, γ1(t) = γ2(t) = 0.5,
τ1 = τ2 = τ3 = 0.01, d1k = 0.05, d2k = 0.05, d3k = 0.05, m = 0.9, θ = 0.1. The bifurcation dia-
grams of x(t), y(t), and z(t) with respect to parameter T in range [0, 6] are shown in Fig. 2.
Figure 2(a)–(c) are bifurcation diagrams of x(t), y(t), and z(t), respectively. From these di-
agrams, we can see that impulsive period T heavily affects the dynamic behaviors. For
example, Fig. 2(a) shows the complex dynamic behaviors of x. Figure 3 shows the mag-
nified parts of Fig. 2(a). From Fig. 3(a) we can see, when impulsive period T < 0.43, it is
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Figure 1 The dynamic behavior of system (1.2) with initial values of x(0) = 1, y(0) = 1, z(0) = 1, (a) time series
of x(t), y(t), z(t), which are simulated 100 cycles in the interval [0, 200]. (b) phase portrait of x(t), y(t), z(t), the
solution goes gradually into the stable state from the initial point [1, 1, 1]. (c) dynamic behavior of system (1.2)
with the mutual interference of the predatorm = 0.8 and the prey refuge θ = 0.7, (d) phase portrait of x(t), y(t),
z(t), other parameters are the same as in Fig. 1(a)

Figure 2 Bifurcation diagrams of system (1.2) with x(0) = 0.5, y(0) = 0.9, z(0) = 0.7. The system exhibits stable
solution, periodic doubling bifurcation, and chaotic phenomenon corresponding with different T . (a) is the
bifurcation diagram of population x(t). (b) is the bifurcation diagram of population y(t). (c) is the bifurcation
diagram of population z(t)
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Figure 3 The magnified parts of Fig. 2(a) of dynamic behavior of x

stable; if T ∈ [2.62, 3.31], we found that system (1.2) exhibits stable solutions, chaos, bifur-
cations, stable periodic solutions, and so on (see Fig. 3(c)); it seems more chaotic on the
interval (see Figs. 3(a), 3(b), and 3(d)) when T ∈ [043, 2.62] ∪ [3.31, 6]; when T > 5.35, it
is stable. These phenomena support strongly that system (1.2) has rich and complicated
behavior.

6 Conclusion
In this paper, the dynamic behaviors of a delayed impulsive food chain system with prey
refuge and mutual inference of predator are investigated and numerical simulations are
given. Conditions for the existence and globally asymptotic stability of periodic solution
of system (1.2) are obtained in Theorem 2.1 and Theorem 3.1, respectively. Theorem 4.1
gives the sufficient conditions of the permanence of this system (1.2). By computer simu-
lation, the abundant dynamic behaviors of system (1.2) are exhibited.

Theorem 2.1, Theorem 3.1, Theorem 4.1, and simulations show that dynamic properties
of (1.2) depend on the mutual interference of the predator m, the prey refuge θ , delays τi

(i = 1, 2, 3), and the parameter di (i = 1, 2, 3) of pests or predator which represent the reg-
ular harvest or deaths from spraying pesticide. Figure 1(c)–(d) imply that different values
of mutual interference of predator m and the prey refuge θ bring different dynamic prop-
erties for system (1.2). Figure 2 and Fig. 3 show that impulsive period T heavily affects
the dynamic behavior of system (1.2). As T changes, periodic behaviors, bifurcations, and
chaotic phenomenon appear, respectively. Hence, we can choose a moderate value of T
for some different control strategies.

In addition, model (1.2) generalizes the model of reference [4]. In reference [4], Wang
did not consider the prey refuge θ , the Beddington–DeAngelis functional response, and
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the case that a predator (y(t)) also has a natural enemy (z(t)) for understanding and investi-
gating more complex food-chain system. In reference [9], Do studied a three-species food
chain system with impulsive control and Beddington–DeAngelis functional response, but
he did not consider the prey refuge θ , mutual inference of predator m, and he considered
the periodic pulse system. In reference [10], the author studied the existence and global
asymptotic stability of positive periodic solutions of periodic n-species Lotka–Volterra
impulsive systems with several deviating arguments. In part 4.4 of reference [1], the au-
thors investigated the existence of almost periodic solutions of the impulsive n-species
Lotka–Volterra type system. But they did not study the persistence and numerical simula-
tion of the system. However, this paper makes a comprehensive study of the above factors.
Our main results generalize or improve their corresponding results in this sense. All above
results show that the dynamic behaviors of system (1.2) become more complex than those
of system (1.1).
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