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Abstract
This paper is concerned with the two-point boundary value problems of a nonlinear
fractional q-difference equation with dependence on the first order q-derivative. We
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1 Introduction
The term “q-difference” actually refers to quantum difference. Quantum calculus, some-
times called calculus without limits, is equivalent to traditional infinitesimal calculus with-
out the notion of limits. It defines “q-calculus” and “h-calculus”, where h ostensibly stands
for Planck’s constant while q stands for quantum. The two parameters are related by the
formula q = eia = e2π ih, where h = a

2π
is the reduced Planck constant. The q-calculus, dat-

ing in a sense back to Euler and Jacobi [1–3], is only recently beginning to see more use-
fulness and a lot of applications in quantum mechanics, having an intimate connection
with commutativity relations. Based on this, there have been published a lot of papers
about fractional q-calculus and fractional q-differential equation theory. At the same time,
the topic of the fractional quantum difference equation has also attracted the attention of
many researchers in recent years (see [4–6] and the references therein). In recent years,
some boundary value problems with fractional q-differences have aroused heated discus-
sion among many authors [7–22]. They obtained many results as regards the existence
and multiplicity of nontrivial solutions, positive solutions, negative solutions and extremal
solutions by applying some well-known tools of fixed point theory such as the Banach
contraction principle, the Guo–Krasnosel’skii fixed point theorem on cones, monotone
iterative methods and Leray–Schauder degree theory.

But we find that the discussed nonlinear terms is only f (t, u(t)) in the literature above
(see, e.g., [7]), and there is little literature treating nonlinear terms with a first order
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q-derivative, which is our focus in the study. Based on this, in this paper, we will be in-
terested in the q-analog of the fractional differential problem given by

⎧
⎨

⎩

(Dα
q y)(t) = –f (t, y(t), Dqy(t)), 0 < t < 1,

y(0) = (Dqy)(0) = (Dqy)(1) = 0,
(1.1)

where 2 < α ≤ 3, f : [0, 1] × [0, +∞) × R → [0, +∞) is continuous. In Sect. 2, we will give
some necessary definitions of fractional q-calculus and deduce the new properties of the
Green function. In Sect. 3, by means of Schauder’s fixed point theorem and Krasnoselskii
fixed point theorem in a cone, some results on the existence of positive solutions of prob-
lem (1.1) are established. Finally, an example is given to illustrate the main results of this
paper.

2 Preliminaries
For convenience, we collect here the necessary definitions from the theory of fractional
q-calculus.

Let q ∈ (0, 1) and define

[a]q =
1 – qa

1 – q
, a ∈R.

The q-analog of the power function (a – b)n with n ∈N0 is

(a – b)0 = 1, (a – b)n =
n–1∏

k=0

(
a – bqk), n ∈ N, a, b ∈R.

More generally, if α ∈ R, then

(a – b)(α) = aα

∞∏

n=0

a – bqn

a – bqα+n .

If b = 0, then (a – b)(α) = a(α) = aα . It is easy to see that [a(t – s)](α) = aα(t – s)(α) and (a –
b)(α) = (a – bqα–1)(a – b)(α–1). There are two important results:

(1) If α > 0, a ≤ b ≤ t, then (t – a)(α) ≥ (t – b)(α).
(2) If α < 0, a ≤ b ≤ t, then (t – a)(α) ≤ (t – b)(α).
Result (1) comes from the Remark 2.1 of [8]. For result (2), since (t –a)(α) = tα

∏∞
n=0

t–aqn

t–aqα+n

and (t – b)(α) = tα
∏∞

n=0
t–bqn

t–bqα+n , it is sufficient to show that

(
t – aqn)(t – bqα+n) ≤ (

t – bqn)(t – aqα+n)

⇔ t2 – tbqα+n – taqn + abqα+2n ≤ t2 – taqα+n – taqn + abqα+2n

⇔ qn(a + bqα
) ≥ qn(b + aqα

)

⇔ a + bqα ≥ b + aqα

⇔ (b – a)qα ≥ b – a

⇔ qα ≥ 1.
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The final expression is obtained by α < 0, 0 < q < 1. This completes the proof of the re-
sult (2).

The q-gamma function is defined by

�q(x) =
(1 – q)(x–1)

(1 – q)x–1 , x ∈ R \ {0, –1, –2, . . .},

and satisfies �q(x + 1) = [x]q�q(x).
The expression

Dqf (x) =
f (qx) – f (x)

(q – 1)x

is called the q-derivative of the function f (x). Dq has the following properties:

Dq
(
af (x) + bg(x)

)
= aDqf (x) + bDqg(x),

Dq
(
f (x)g(x)

)
= f (x)Dqg(x) + g(qx)Dqf (x);

tDq(t – s)(α) = [α]q(t – s)(α–1),
(

xDq

∫ x

0
f (x, t) dqt

)

(x) =
∫ x

0
xDqf (x, t) dqt + f (qx, x).

The q-integral of a function f defined on the interval [0, b] is given by

Iqf (x) =
∫ x

0
f (t) dqt = x(1 – q)

∞∑

n=0

f
(
xqn)qn, x ∈ [0, b].

If a ∈ [0, b] and f is defined on the interval [0, b], its integral from a to b is defined by

∫ b

a
f (t) dqt =

∫ b

0
f (t) dqt –

∫ a

0
f (t) dqt.

Basic properties of the two operators can be found in [23]:

DqIqf (x) = f (x),

and if f is continuous at x = 0, then

IqDqf (x) = f (x) – f (0).

Definition 2.1 ([24]) Let α ≥ 0 and f be a function defined on [0, 1]. The fractional q-
integral of the Riemann–Liouville type is (I0

q f )(x) = f (x) and

(
Iα

q f
)
(x) =

1
�q(α)

∫ x

0
(x – qt)(α–1)f (t) dqt, α > 0, x ∈ [0, 1].

Definition 2.2 ([25]) The fractional q-derivative of the Riemann–Liouville type of order
α ≥ 0 is defined by

(
Dα

q f
)
(x) =

(
Dm

q Im–α
q f

)
(x), α > 0,

where m is the smallest integer greater than or equal to α.
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Lemma 2.1 ([24]) Let α,γ ≥ 0 and f be a function defined on [0, 1]. Then the next formulas
hold:

(
Iβ

q Iα
q f

)
(x) =

(
Iα+β

q f
)
(x),

(
Dα

q Iα
q f

)
(x) = f (x).

Definition 2.3 ([26]) Let α > 0 and p be a positive integer. Then the following equality
holds:

(
Iα

q Dp
qf

)
(x) =

(
Dp

qIα
q f

)
(x) –

p∑

k=0

xα–p+k

�q(α + k – p + 1)
(
Dk

qf
)
(0).

Lemma 2.2 ([7]) The unique solution of the q-analog of the fractional differential problem
(1.1) is given by

y(t) :=
∫ 1

0
G(t, qs)f

(
s, y(s), Dqy(s)

)
dqs,

where 2 < α ≤ 3, G(t, qs) is the Green function for the problem (1.1), which is given by

G(t, qs) =
1

�q(α)

⎧
⎨

⎩

tα–1(1 – qs)(α–2) – (t – qs)(α–1), 0 ≤ qs ≤ t ≤ 1,

tα–1(1 – qs)(α–2), 0 ≤ t ≤ qs ≤ 1.

Lemma 2.3 The Green function G(t, qs) defined as in the statement of Lemma 2.2 satisfies
the following conditions:

(1) G(t, qs) > 0 and G(t, qs) ≤ G(1, qs) for each (t, s) ∈ [0, 1] × [0, 1];
(2) G(t, qs) ≥ g(t)G(1, qs) for each (t, s) ∈ [0, 1] × [0, 1] with g(t) = tα–1;
(3) For s ∈ [0, 1], mint∈[ 1

4 , 3
4 ] G(t, qs) ≥ ( 1

4 )α–1G(1, qs).

Proof Proofs of (1) and (2) are given in [7].
(3) Let g1(t, qs) = tα–1(1 – qs)(α–2) – (t – qs)(α–1), 0 ≤ qs ≤ t ≤ 1, g2(t, qs) = tα–1(1 – qs)(α–2),

0 ≤ t ≤ qs ≤ 1. For 0 ≤ qs ≤ t ≤ 1,

tDqg1(t, qs) = [α – 1]qtα–2(1 – qs)(α–2) – [α – 1]q(t – qs)(α–2)

≥ [α – 1]qtα–2(1 – qs)(α–2) – [α – 1]q(t – tqs)(α–2)

= [α – 1]qtα–2(1 – qs)(α–2) – [α – 1]qtα–2(1 – qs)(α–2)

= 0,

so g1(t, qs) is increasing with respect to t. We have

min
1
4 ≤t≤ 3

4

g1(t, qs) ≥ 1
�q(α)

[

(1 – qs)(α–2)
(

1
4

)α–1

–
(

1
4

– qs
)(α–1)]

≥ 1
�q(α)

[

(1 – qs)(α–2)
(

1
4

)α–1

–
(

1
4

–
1
4

qs
)(α–1)]
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=
1

�q(α)4α–1

[
(1 – qs)(α–2) – (1 – qs)(α–1)]

=
1

�q(α)4α–1

[
(1 – qs)(α–2) –

(
1 – qsqα–2)(1 – qs)(α–2)]

=
1

�q(α)4α–1 (1 – qs)(α–2)sqα–1

=
(

1
4

)α–1

G(1, qs).

It is easy to see that g2(t, qs) is increasing with respect to t. We have

min
1
4 ≤t≤ 3

4

g2(t, qs) ≥ 1
�q(α)

(1 – qs)(α–2)
(

1
4

)α–1

≥
(

1
4

)α–1

G(1, qs).

Obviously, min 1
4 ≤t≤ 3

4
G(t, qs) ≥ ( 1

4 )α–1G(1, qs). �

Definition 2.4 Let E be a real Banach space. A nonempty convex closed set P is called a
cone provided that: (1) au ∈ P, for all u ∈ P; a ≥ 0; (2) u, –u ∈ P implies u = 0.

Let X be a Banach space and P ⊂ X a cone. Suppose α,β : X → R
+ are two continuous

convex functions satisfying

α(λu) = |λ|α(u), β(λu) = |λ|β(u),

for u ∈ X,λ ∈R, and

‖u‖ ≤ κ max
{
α(u),β(u)

}
,

for u ∈ X, and α(u1) ≥ α(u2) for u1, u2 ∈ P, u1 ≤ u2, where κ > 0 is a constant.

Lemma 2.4 ([27]) Let r2 > r1 > 0, L > 0 be constants and 	i = {u ∈ X : α(u) < ri,β(u) <
L}, i = 1, 2 be two bounded open sets in X. Set Di = {u ∈ X : α(u) = ri}. Assume T : P → P is
a completely continuous operator satisfying

(C1) α(Tu) < r1, u ∈ D1 ∩ P;α(Tu) > r2, u ∈ D2 ∩ P;
(C2) β(Tu) < L, u ∈ P;
(C3) there is a p ∈ (	2 ∩ P) \ {0} such that α(p) �= 0 and α(u + λp) ≥ α(u) for all u ∈ P and

λ ≥ 0.
Then T has at least one fixed point in (	2 \ 	̄1) ∩ P.

3 Main results and proofs
Consider the Banach space

X =
{

y : y(t) ∈ C[0, 1] ∩ C1[0, 1]
}

with the norm

‖y‖ =
[‖y‖2

0 + ‖Dqy‖2
0
] 1

2 ,
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where ‖y‖0 = max0≤t≤1 |y(t)|,‖Dqy‖0 = max0≤t≤1 |Dqy(t)|. Define the cone on X: P = {y ∈
X : y(t) ≥ 0} and functionals α(y) = max0≤t≤1 |y(t)|,β(y) = max0≤t≤1 |Dqy(t)|, then we ob-
tain α(λy) = |λ|α(y),β(λy) = |λ|β(y), for y ∈ X,λ ∈ R, α(y1) ≥ α(y2) for y1, y2 ∈ P, y1 ≤ y2.
For all y(t) ∈ C[0, 1] ∩ C1[0, 1], define

Ty(t) :=
∫ 1

0
G(t, qs)f

(
s, y(s), Dqy(s)

)
dqs.

For convenience, we introduce the following notations:

N =
∫ 1

0
G(1, qs) dqs, Q =

∫ 1

0
G(1, qs)a(s) dqs,

R =
1

16

∫ 3
4

1
4

G(1, qs) dqs, W = 2
∫ 1

0

(1 – qs)(α–2)

�q(α – 1)
dqs,

τ = max
0≤t≤1

(∫ t

0

(t – qs)(α–2)

�q(α – 1)
dqs +

∫ t

0

(t – qs)(α–2)

�q(α – 1)
dqs

)

+
∫ 1

0

(1 – qs)(α–2)tα–2

�q(α – 1)
a(s) dqs

+
∫ 1

0

(1 – qs)(α–2)tα–2

�q(α – 1)
a(s) dqs.

In this section, we will give the existence results of a positive solution to the boundary
value problem (1.1) on the basis of Lemma 3.1 and make the following assumptions:

(H0) There exists a nonnegative function a(t) ∈ L(0, 1) ∩ C[0, 1] such that

∣
∣f (t, u, v)

∣
∣ ≤ a(t) + κ1|u|σ1 + κ2|v|σ2 , κi > 0, 0 < σi < 1, i = 1, 2.

We also suppose that there exist L > b > 1
16 b > c > 0 such that f (t, u, v) satisfies the fol-

lowing conditions:
(H1) f (t, u, v) < c/N for (t, u, v) ∈ [0, 1] × [0, c] × [–L, L];
(H2) f (t, u, v) ≥ b/R for (t, u, v) ∈ [0, 1] × [ 1

16 b, b] × [–L, L];
(H3) f (t, u, v) < L/W for (t, u, v) ∈ [0, 1] × [0, b] × [–L, L].

Lemma 3.1 Suppose that f (t, y, Dqy) is continuous on [0, 1] × [0, +∞) ×R. Then the map-
ping T : P → P is completely continuous.

Proof In view of the expression of G(t, qs), it is clear that Ty ∈ C[0, 1] ∩ C1[0, 1], Ty(t) ≥ 0,
and Ty(t) is continuous. Hence T : P → P.

Next, we show that T is uniformly bounded. Let D ⊂ P be bounded, i.e. there exists a
real number L > 0 such that ‖y‖ ≤ L, for all y ∈ D. Let M = max0≤t≤1,0≤y≤L,0≤Dqy≤L |f (t, y,
Dqy)| + 1, then, for y ∈ D, from Lemma 2.3, on the one hand, one has

∣
∣Ty(t)

∣
∣ ≤

∫ 1

0

∣
∣G(t, qs)f

(
s, y(s), Dqy(s)

)∣
∣dqs

≤ M
∫ 1

0
G(1, qs) dqs

≤ 2M
∫ 1

0

(1 – qs)(α–2)

�q(α – 1)
dqs.
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On the other hand,

∣
∣tDq(Ty)(t)

∣
∣ =

∣
∣
∣
∣

∫ 1

0

(1 – qs)(α–2)tα–2

�q(α – 1)
f
(
s, y(s), Dqy(s)

)
dqs

–
∫ t

0

(t – qs)(α–2)

�q(α – 1)
f
(
s, y(s), Dqy(s)

)
dqs

∣
∣
∣
∣

≤ M
[∫ 1

0

(1 – qs)(α–2)tα–2

�q(α – 1)
dqs +

∫ t

0

(t – qs)(α–2)

�q(α – 1)
dqs

]

≤ 2M
∫ 1

0

(1 – qs)(α–2)

�q(α – 1)
dqs.

Then we see that T(D) is bounded.
Finally, we show that T is equi-continuous. For all ε > 0,∃δ = min{ 1

2 , ε�(α–1)
2M } > 0, let

t1, t2 ∈ [0, 1], t1 < t2, y ∈ D, for 0 < t2 – t1 < δ, we have

∣
∣Ty(t2) – Ty(t1)

∣
∣ ≤

∫ 1

0

∣
∣G(t2, qs) – G(t1, qs)

∣
∣
∣
∣f

(
s, y(s), Dqy(s)

)∣
∣dqs

≤ M
[∫ t1

0

(1 – qs)(α–2)(tα–1
2 – tα–1

1 ) + (t1 – qs)(α–1) – (t2 – qs)(α–1)

�q(α)
dqs

+
∫ t2

t1

(1 – qs)(α–2)(tα–1
2 – tα–1

1 ) – (t2 – qs)(α–1)

�q(α)
dqs

+
∫ 1

t2

(1 – qs)(α–2)(tα–1
1 – tα–1

2 )
�q(α)

dqs
]

≤ M
[

tα–1
2 – tα–1

1
�q(α)

∫ 1

0
(1 – qs)(α–2) dqs –

∫ t2

0

(t2 – qs)(α–1)

�q(α)
dqs

+
∫ t1

0

(t1 – qs)(α–1)

�q(α)
dqs

]

.

Let ϕ(t) =
∫ t

0 (t –qs)(α–1) dqs, since tDqϕ(t) =
∫ t

0 [α –1]q(t –qs)(α–2) dqs ≥ 0, we have ϕ(t1) ≤
ϕ(t2). So we have

∣
∣Ty(t2) – Ty(t1)

∣
∣ ≤ M

�q(α)
(
tα–1
2 – tα–1

1
)
.

Since

tDq
(

tDq
(
Ty(t)

))

= tDq

(∫ 1

0

(1 – qs)(α–2)tα–2

�q(α – 1)
f
(
s, y(s), Dqy(s)

)
dqs

–
∫ t

0

(t – qs)(α–2)

�q(α – 1)
f
(
s, y(s), Dqy(s)

)
dqs

)

=
∫ 1

0

(1 – qs)(α–2)tα–3

�q(α – 2)
f
(
s, y(s), Dqy(s)

)
dqs –

∫ t

0

(t – qs)(α–3)

�q(α – 2)
f
(
s, y(s), Dqy(s)

)
dqs

≤
∫ 1

0

(1 – qs)(α–2)tα–3

�q(α – 2)
f
(
s, y(s), Dqy(s)

)
dqs –

∫ t

0

(t – tqs)(α–3)

�q(α – 2)
f
(
s, y(s), Dqy(s)

)
dqs

≤ 0,
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we have

∣
∣tDq(Ty)(t2) – tDq(Ty)(t1)

∣
∣

=
∫ 1

0

(1 – qs)(α–2)tα–2
1

�q(α – 1)
f
(
s, y(s), Dqy(s)

)
dqs –

∫ t1

0

(t1 – qs)(α–2)

�q(α – 1)
f
(
s, y(s), Dqy(s)

)
dqs

–
∫ 1

0

(1 – qs)(α–2)tα–2
2

�q(α – 1)
f
(
s, y(s), Dqy(s)

)
dqs

+
∫ t2

0

(t2 – qs)(α–2)

�q(α – 1)
f
(
s, y(s), Dqy(s)

)
dqs|

≤ M
[

tα–2
1 – tα–2

2
�q(α – 1)

∫ 1

0
(1 – qs)(α–2) dqs –

∫ t1

0

(t1 – qs)(α–2)

�q(α – 1)
dqs

+
∫ t2

0

(t2 – qs)(α–2)

�q(α – 1)
dqs

]

=
M

�q(α – 1)

[
(
tα–2
1 – tα–2

2
)
(1 – q)

∞∑

n=0

(
1 – qn+1)(α–2)qn

– t1(1 – q)
∞∑

n=0

(
t1 – t1qn+1)(α–2)qn + t2(1 – q)

∞∑

n=0

(
t2 – t2qn+1)(α–2)qn

]

=
M

�q(α – 1)
[(

t(α–1)
2 – t(α–1)

1
)

–
(
t(α–2)
2 – t(α–2)

1
)]

(1 – q)
∞∑

n=0

(
1 – qn+1)(α–2)qn

≤ M
�q(α – 1)

[(
t(α–1)
2 – t(α–1)

1
)

–
(
t(α–2)
2 – t(α–2)

1
)]

≤ M
�q(α – 1)

(
t(α–1)
2 – t(α–1)

1
)
.

Case 1: for 0 ≤ t1 < δ, δ ≤ t2 < 2δ, tα–1
2 – tα–1

1 ≤ tα–1
2 < (2δ)α–1 < 2δ.

Case 2: for 0 ≤ t1 < t2 ≤ δ, tα–1
2 – tα–1

1 ≤ tα–1
2 < δα–1 = δ · δα–2 < 2δ.

Case 3: for δ ≤ t1 < t2 ≤ 1, by means of differential mean value theorem, we get tα–1
2 –

tα–1
1 ≤ (α – 1)(t2 – t1) ≤ 2δ.

Hence, we obtain

∣
∣Ty(t2) – Ty(t1)

∣
∣ <

2Mδ

�q(α)
< ε,

∣
∣tDq(Ty)(t2) – tDq(Ty)(t1)

∣
∣ <

2Mδ

�q(α – 1)
< ε.

In view of the Arzela–Ascoli theorem, it is easy to see that T : P → P is completely con-
tinuous. �

Theorem 3.1 Suppose f : [0, 1] × [0, +∞) × R → [0, +∞) is continuous, and f satisfies
(H0). Then problem (1.1) has one positive solution.
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Proof Let Pa = {u : u ∈ P,‖u‖ ≤ a}, where a ≥ max{(8κ1τ )
1

1–σ1 , (8κ1N)
1

1–σ1 , (8κ2τ )
1

1–σ2 ,
(8κ2N)

1
1–σ2 , 4τ , 4Q}. In the following, we show that T : Pa → Pa. If y ∈ Pa, it follows that

0 ≤ y(t) ≤ max
0≤t≤1

∣
∣y(t)

∣
∣ ≤ ‖y‖ ≤ a,

0 ≤ Dqy(t) ≤ max
0≤t≤1

∣
∣Dqy(t)

∣
∣ ≤ ‖y‖ ≤ a.

Thus

∣
∣f (t, y, Dqy)

∣
∣ ≤ a(t) + κ1|a|σ1 + κ2|a|σ2 , κi > 0, 0 < σi < 1, i = 1, 2.

Further, we have

∣
∣Ty(t)

∣
∣ ≤

∫ 1

0

∣
∣G(t, qs)f

(
s, y(s), Dqy(s)

)∣
∣dqs

≤ (
κ1|a|σ1 + κ2|a|σ2

)
∫ 1

0
G(1, qs) dqs +

∫ 1

0
G(1, qs)a(s) dqs

and

∣
∣tDq(Ty)(t)

∣
∣ =

∣
∣
∣
∣

∫ 1

0

(1 – qs)(α–2)tα–2

�q(α – 1)
f
(
s, y(s), Dqy(s)

)
dqs

–
∫ t

0

(t – qs)(α–2)

�q(α – 1)
f
(
s, y(s), Dqy(s)

)
dqs

∣
∣
∣
∣

≤ (
κ1|a|σ1 + κ2|a|σ2

)
(∫ 1

0

(1 – qs)(α–2)tα–2

�q(α – 1)
dqs +

∫ t

0

(t – qs)(α–2)

�q(α – 1)
dqs

)

+
∫ 1

0

(1 – qs)(α–2)tα–2

�q(α – 1)
a(s) dqs +

∫ t

0

(t – qs)(α–2)

�q(α – 1)
a(s) dqs.

Furthermore,

‖Ty‖ =
[‖Ty‖2

0 +
∥
∥Dq(Ty)

∥
∥2

0

] 1
2 ≤ max

0≤t≤1

∣
∣y(t)

∣
∣ + max

0≤t≤1

∣
∣Dqy(t)

∣
∣

≤ (
κ1|a|σ1 + κ2|a|σ2

)
(τ + N) + τ + Q

≤ a
2

+
a
4

+
a
4

= a.

Therefore, T : Pa → Pa. By Lemma 3.1, T : Pa → Pa is completely continuous. According
to Schauder’s fixed point theorem, problem (1.1) has one solution.

In the following theorem, we need to note that

f̂ (t, u, v) =

⎧
⎨

⎩

f (t, u, v), (t, u, v) ∈ [0, 1] × [0, b] × (–∞,∞);

f (t, b, v), (t, u, v) ∈ [0, 1] × (b, +∞) × (–∞,∞),

f ∗(t, u, v) =

⎧
⎪⎪⎨

⎪⎪⎩

f̂ (t, u, v), (t, u, v) ∈ [0, 1] × [0, +∞) × [–L, L];

f̂ (t, u, –L), (t, u, v) ∈ [0, 1] × [0, +∞) × (–∞, –L]);

f̂ (t, u, L), (t, u, v) ∈ [0, 1] × [0, +∞) × [L, +∞).
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Then f ∗ ∈ C([0, 1] × [0, +∞| ×R,R+)). Define

(Ty)(t) =
∫ 1

0
G(t, qs)f ∗(s, y(s), Dqu(s)

)
dqs. �

Theorem 3.2 Suppose f is continuous on [0, 1] × [0, +∞) × R and satisfies (H1)–(H3).
Then problem (1.1) has at least one positive solution y(t) satisfying

c < α(y) < b,
∣
∣Dqy(t)

∣
∣ < L.

Proof Let 	1 = {y ∈ X : |y(t)| < c, |Dqy(t)| < L},	2 = {y ∈ X : |y(t)| < b, |Dqy(t)| < L} and
D1 = {y ∈ X : α(y) = c}, D2 = {y ∈ X : α(y) = b}. By Lemma 3.1, we have proved T : P → P is
completely continuous. Furthermore, we will show (C1)–(C3) of Lemma 2.4.

At first, by means of (H1) and y ∈ D1 ∩ P, we obtain

α(Ty) = max
0≤t≤1

∣
∣
∣
∣

∫ 1

0
G(t, qs)f ∗(s, y(s), Dqu(s)

)
dqs

∣
∣
∣
∣ ≤ c

N

∫ 1

0
G(1, qs) dqs = c;

by means of (H2) and y ∈ D1 ∩ P, we obtain

α(Ty) = max
0≤t≤1

∣
∣
∣
∣

∫ 1

0
G(t, qs)f ∗(s, y(s), Dqu(s)

)
dqs

∣
∣
∣
∣

> max
0≤t≤1

∣
∣
∣
∣

∫ 3
4

1
4

G(t, qs)
b
R

dqs
∣
∣
∣
∣

≥
(

1
4

)α–1 ∫ 3
4

1
4

G(1, qs)
b
R

dqs

≥ 1
16

∫ 3
4

1
4

G(1, qs)
b
R

dqs = b.

Secondly, by means of (H3) and y ∈ 	2 ∩ P, we obtain

β(Ty) = max
0≤t≤1

∣
∣
∣
∣

∫ 1

0

(1 – qs)(α–2)tα–2

�q(α – 1)
f ∗(s, y(s), Dqy(s)

)
dqs

–
∫ t

0

(t – qs)(α–2)

�q(α – 1)
f ∗(s, y(s), Dqy(s)

)
dqs

∣
∣
∣
∣

< 2
∫ 1

0

(1 – qs)(α–2)

�q(α – 1)
L

W
dqs = L.

Finally, it is easy to see that there exists a nonnegative function p ∈ (	2 ∩ P) \ {0} such
that α(y + λp) ≥ α(y) for any y ∈ P and λ ≥ 0.

As a result, by Lemma 2.4, we find that T has a fixed point y in (	2 \ 	̄1) ∩ P, that is,
problem (1.1) has at least one positive solution y(t) satisfying

c < α(y) < b,
∣
∣Dqy(t)

∣
∣ < L. �
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4 Example
Example 4.1 Consider the following boundary value problem:

⎧
⎨

⎩

–(D
5
2
1
4

y)(t) = t2 + (y(t) + D 1
4

y(t)) 1
2 , 0 < t < 1,

y(0) = (D 1
4

y)(0) = (D 1
4

y)(1) = 0.
(4.1)

By Theorem 3.1, it is easy to see that problem (4.1) has one positive solution.

Example 4.2 Consider the following boundary value problem:

⎧
⎨

⎩

–(D
5
2
1
4

y)(t) = sin t + y(t) + (D 1
4

y(t)) 1
2 , 0 < t < 1,

y(0) = (D 1
4

y)(0) = (D 1
4

y)(1) = 0.
(4.2)

Let f (t, y(t), D 1
4

y(t)) = sin t + y(t) + (D 1
4

y(t)) 1
2 . If f (t, y(t), D 1

4
y(t)) satisfies the following

conditions:
(H1) f (t, y(t), D 1

4
y(t)) < 1/4N for (t, y(t), D 1

4
y(t)) ∈ [0, 1] × [0, 1

4 ] × [–103, 103];
(H2) f (t, y(t), D 1

4
y(t)) ≥ 160/R for (t, y(t), D 1

4
y(t)) ∈ [0, 1] × [10, 160] × [–103, 103];

(H3) f (t, y(t), D 1
4

y(t)) < 103/W for (t, y(t), D 1
4

y(t)) ∈ [0, 1] × [0, 160] × [–103, 103],
where

G
(

1,
1
4

s
)

=
(1 – 1

4 s)( 1
2 ) – (1 – 1

4 s)( 3
2 )

� 1
4

( 5
2 )

, N =
∫ 1

0
G

(

1,
1
4

s
)

d 1
4

s,

R =
1

16

∫ 3
4

1
4

G
(

1,
1
4

s
)

d 1
4

s, W = 2
∫ 1

0

(1 – 1
4 s)(α–2)

� 1
4

(α – 1)
d 1

4
s,

then problem (4.2) has one positive solutions y(t) satisfying

1
4

< α(y) < 160,
∣
∣Dqy(t)

∣
∣ < 103

by Theorem 3.2.
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