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Abstract
In this paper, we consider a kind of time-varying bang–bang property of time optimal
boundary controls for the heat equation. The time-varying bang–bang property in
the interior domain has been considered in some papers, but regarding the time
optimal boundary control problem it is still unsolved. In this paper, we determine that
there exists at least one solution to the time optimal boundary control problem with
time-varying controls.
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1 Introduction
Let R+ = (0, +∞), and let � be a nonempty open bounded domain in R

N (N ≥ 1) with
smooth boundary ∂�. Let � ⊂ ∂� be a nonempty and open subset of ∂�. Consider the
following controlled system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ty – �y = 0 in � ×R+,

y = u on � ×R+,

y = 0 on (∂� – �) ×R+,

y(0) = y0 in �.

(1.1)

Here, y0 ∈ L2(�) is a given function, and u ∈ L∞(R+; L2(�)) is the control. We denote the
solution to (1.1) as y(·; y0, u).

In this paper, we let

L∞
+ (R+) �

{
v ∈ L∞(R+)

∣
∣ v(t) > 0 a.e. t ∈R+

}
.

Denote the norm and inner product of L2(�) or L2(�) as ‖ · ‖ and 〈·, ·〉, respectively, and
the open (or closed) ball of L2(�), with a center at 0 and a radius of r > 0, as B(0, r) (or
B̄(0, r)).

In industry and engineering, temperature control is a kind of important control, and
time optimal control of heat equation is a typical case for temperature control. There are
some optimal control problems: time optimal control problem and norm optimal control
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problem. They are important and interesting problems of optimal control theory. In [1],
these optimal control problems have been considered.

Time optimal control problems was discussed by Egorov in 1963 and he proved a bang–
bang property for his problem (see [2]), Fattorini discussed it independently in 1964 (see
[3]). Then Balakrishnan proved a maximal principle for the optimal control and which
can imply the bang–bang property (see [4]), Friedman discussed the time optimal control
problem on Banach spaces (see [5]), Fattorini proved that the maximal principle in 1974 for
some special Banach spaces. There are many other authors considering the time optimal
control problem (see, e.g., [1, 6–15]). Regarding stochastic cases, norm optimal control
problems were considered in [16, 17] for stochastic ordinary differential equations and in
[18] for stochastic heat equations.

The reader can also refer to [19–21] for the equivalence of three kinds of optimal control
problems. For some other interesting work, we refer the reader to [22–24]. The approxi-
mate controllability of system (1.1) has been studied in much work (see, e.g., [14, 25–28]).
It is clear that, for each ε > 0, we have ‖y(T ; y0, 0)‖ ≤ ε when T is large enough.

The bang–bang property has been studied in much work (see, e.g., [1, 11, 13, 14, 29–
32]). However, regarding the time-varying bang–bang property, particularly in infinite-
dimensional cases, there is only one paper [19] in which the authors considered a kind of
time optimal control problem that involves an interior subset.

In this paper, we consider the time-varying bang–bang property of the heat equation
that affects the boundary.

For a given function M(·) ∈ L∞
+ (R+), we define

UM(·) �
{

v ∈ L∞(
R+; L2(�)

) ∣
∣
∥
∥v(t)

∥
∥

L2(�) ≤ M(t) for a.e. t ∈R+
}

(1.2)

and

R(y0, T) �
{

y(T ; y0, u)
∣
∣ u ∈ UM(·)

}
for each T ∈R+.

The time optimal control problem considered is as follows:

T∗ � inf
T∈R+

{
T

∣
∣ y(T ; y0, u) ∈ B̄(0, ε), u ∈ UM(·)

}
, (1.3)

where ε > 0. In this problem, if u ∈ UM(·) and y(T ; y0, u) ∈ B̄(0, ε) for some t ∈ R+, we call
u an admissible control; if T∗ ∈ R+ and u∗ ∈ UM(·) satisfy y(T∗; y0, u∗) ∈ B̄(0, ε), we call T∗

and u∗ the optimal time and a time optimal control, respectively.
If y0 ∈ B̄(0, ε), taking the control u = 0, then it is obvious that the optimal time T∗ = 0,

this is trivial. Hence, throughout this paper, we assume that

y0 /∈ B̄(0, ε),

from which we see that if T∗ exists, then T∗ > 0.
The main result of this paper is in establishing the following time-varying bang–bang

property of problem (1.3).

Theorem 1.1 Assume that M(·) ∈ L∞
+ (R+) and ε > 0. Then the following two conclusions

are true:



Zhang Advances in Difference Equations  (2018) 2018:117 Page 3 of 10

(i) There exist at least one optimal time and time optimal control for problem (1.3);
(ii) Any time optimal control u∗ for problem (1.3) satisfies the following time-varying

bang–bang property:

∥
∥u∗(t)

∥
∥

L2(�) = M(t) for a.e. t ∈ (
0, T∗) (1.4)

and

∥
∥y

(
T∗; y0, u∗)∥∥

L2(�) = ε. (1.5)

We organize this paper as follows. In Sect. 2, we prove the existence of optimal controls
for problem (1.3) and discuss some properties of the optimal controls (see Lemma 2.1).
Then we prove Theorem 1.1.

2 Existence of optimal control for (1.3) and its properties
Lemma 2.1 For problem (1.3), the following two conclusions are true:

(i) There exists at least one optimal time T∗ and time optimal control u∗ for problem
(1.3).

(ii) Any time optimal control u∗ for problem (1.3) satisfies the following property:

∥
∥u∗(t)

∥
∥

L2(�) = M(t) for a.e. t ∈ (
0, T∗). (2.1)

Proof Let u = 0. Then, by the property of the heat equation, we have ‖e�T y0‖L2(�) → 0 as
T → ∞, which implies that T∗ < +∞ by the definition of T∗ (see (1.3)).

Let {Tn}∞n=1, with Tn ≥ Tn+1 for all n ∈N such that

Tn → T∗,

where T∗ is defined as (1.3). Then there exists a sequence {un}n≥1 ⊂ UM(·) such that

∥
∥y(Tn; y0, un)

∥
∥ ≤ ε as n → ∞. (2.2)

Denote

ũn(t) =

⎧
⎨

⎩

un(t) in (0, Tn),

0 in [Tn, T1].

Then

∥
∥y(t; y0, ũn)

∥
∥

L2(�) ≤ ε for all t ∈ [Tn, T1].

Since

∥
∥ũn(t)

∥
∥

L2(�) ≤ M(t) ≤ ‖M‖L∞(0,T1) for a.e. t ∈ (0, T1],
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there exists a subsequence of {ũn}n≥1, still denoted thus, and v∗ ∈ L∞(0, T1; L2(�)) such
that

ũn → ṽ∗ weakly star in L∞(
0, T1; L2(�)

)
. (2.3)

According to (2.3), there is a subsequence of {ũn}n≥1, still denoted thus, such that

y(·; y0, ũn) → y
(·; y0, ṽ∗) strongly in C

(
[0, T1]; L2(�)

)
, (2.4)

where y(·; y0, ṽ∗) is the solution to the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ty – �y = 0 in � × (0, T1),

y = ṽ∗ on � × (0, T1),

y = 0 on (∂� – �) × (0, T1),

y(0) = y0 in �.

It follows from (2.2) and (2.4) that

∥
∥y

(
Tn; y0, ṽ∗)∥∥

L2(�) ≤ ε. (2.5)

Letting n → ∞, we obtain

∥
∥y

(
T∗; y0, ṽ∗)∥∥

L2(�) ≤ ε,

which shows that v∗ = ṽ∗|(0,T∗) is an optimal control.
Next, we show that

∥
∥ṽ∗(t)

∥
∥

L2(�) ≤ M(t) a.e. t ∈ (
0, T∗). (2.6)

By contradiction, there exist δ0 > 0 and a measurable set E0 ⊂ (0, T∗), with |E0| > 0, such
that

∥
∥ṽ∗(t)

∥
∥

L2(�) > M(t) + δ0, ∀t ∈ E0, (2.7)

where |E0| is the Lebesgue measure of E0. Then we have

∫

E0

∥
∥v∗(t)

∥
∥

L2(�) dt ≥
∫

E0

M(t) dt + δ0|E0|. (2.8)

According to (2.7), we can set

ζ (t) �

⎧
⎨

⎩

0, t ∈ (0, T) \ E0,
v∗(t)

‖v∗(t)‖ , t ∈ E0.
(2.9)
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It is obvious that ζ ∈ L∞(0, T ; L2(�)). From (2.3), it is easily verified that

∫

E0

〈
un(t), ζ (t)

〉

L2(�) dt =
∫ T

0

〈
un(t),χE0 (t)ζ (t)

〉

L2(�) dt

→
∫ T

0

〈
χE0 (t)v∗(t), ζ (t)

〉

L2(�) dt. (2.10)

Since ‖un(t)‖L2(�) ≤ M(t) and ‖ζ (t)‖L2(�) ≤ 1 for a.e. t ∈ (0, T∗), it follows from (2.9) and
(2.10) that

∫

E0

∥
∥v∗(t)

∥
∥

L2(�) dt = lim
n→∞

∫

E0

〈
un(t), ζ (t)

〉

L2(�) dt ≤
∫

E0

M(t) dt,

which contradicts (2.8).
Finally, let u∗ � v∗. Then (i) of this lemma follows from (2.5) and (2.6).
(ii) Since y0 /∈ B̄(0, ε), we see that T∗ > 0. The proof is carried out in the following three

steps.
Step 1. We show that y(T∗; y0, u∗) ∈ ∂B(0, ε).
Otherwise, we have y(T∗; y0, u∗) ∈ B(0, ε), i.e., ‖y(T∗; y0, u∗)‖L2(�) < ε. For each δ > 0, we

have

∥
∥y

(
T∗ – δ; y0, u∗) – y

(
T∗; y0, u∗)∥∥

L2(�) =
∥
∥
∥
∥

[

e�(T∗–δ)y0 +
∫ T∗–δ

0
e�(T∗–δ–s)χ�u∗(s) ds

]

–
[

e�T∗
y0 +

∫ T∗

0
e�(T∗–s)χ�u∗(s) ds

]∥
∥
∥
∥

L2(�)

≤ ∥
∥e�(T∗–δ)(I – e�δ

)
y0

∥
∥

L2(�)

+
∥
∥
∥
∥

∫ T∗–δ

0

(
I – e�δ

)
e�(T∗–δ–s)χ�u(s) ds

∥
∥
∥
∥

L2(�)

+
∥
∥
∥
∥

∫ T∗

T∗–δ

e�(T∗–s)χ�u∗(s) ds
∥
∥
∥
∥

L2(�)
.

Noting that

∥
∥e�(T∗–δ)(I – e�δ

)
y0

∥
∥

L2(�) ≤ ∥
∥
(
I – e�δ

)
y0

∥
∥

L2(�) → 0

as δ → 0,

∥
∥
∥
∥

∫ T∗–δ

0

(
I – e�δ

)
e�(T∗–δ–s)χ�u(s) ds

∥
∥
∥
∥

L2(�)
=

∥
∥
∥
∥

(
I – e�δ

)
∫ T∗–δ

0
e�(T∗–δ–s)χ�u(s) ds

∥
∥
∥
∥

L2(�)

→ 0

as δ → 0 and

∥
∥
∥
∥

∫ T∗

T∗–δ

e�(T∗–s)χ�u∗(s) ds
∥
∥
∥
∥

L2(�)
≤ δ

∥
∥M(·)∥∥L∞(0,T∗) → 0
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as δ → 0, we obtain

∥
∥y

(
T∗ – δ; y0, u∗) – y

(
T∗; y0, u∗)∥∥

L2(�) → 0 as δ → 0.

This, together with y(T∗; y0, u∗) ∈ B(0, ε), implies that, for a sufficiently small δ > 0, we have

y
(
T∗ – δ; y0, u∗) ∈ B(0, ε).

This shows that T∗ – δ is also an optimal time in (1.3), which contradicts the definition
of T∗.

Step 2. We show that R(y0, T∗) ∩ B̄(0, ε) has only one point.
Otherwise, there exist u1, u2 ∈ UM(·) such that

∥
∥y

(
T∗; y0, u1

)∥
∥

L2(�) =
∥
∥y

(
T∗; y0, u2

)∥
∥

L2(�) = ε (2.11)

and

y
(
T∗; y0, u1

) �= y
(
T∗; y0, u2

)
. (2.12)

Denote

û(·) � u1(·) + u2(·)
2

and ŷ(·) � y1(·; y0, u1) + y(·; y0, u2)
2

. (2.13)

It is clear that û ∈ UM(·) and that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t ŷ – �ŷ = 0 in � × (0, T∗),

ŷ = û on � × (0, T∗)

ŷ = 0 on (∂� – �) × (0, T∗),

ŷ(0) = y0 in �.

(2.14)

Note that B̄(0, ε) is a strictly convex subset of L2(�). Based on (2.11), (2.12) and (2.13), we
have

∥
∥ŷ

(
T∗; y0, u∗)∥∥

L2(�) < ε (2.15)

since û ∈ UM(·) according to (2.14) and (2.15), which contradicts the optimality of ε.
Step 3. We prove that any time optimal control u∗ satisfies (2.1).
In fact, since R(y0, T∗) ∩ B̄(0, ε) has only one point, {y(T ; y0, u∗)} = R(y0, T∗) ∩ B̄(0, ε).

Since R(y0, T∗) and B̄(0, ε) are two convex sets, according to the Hahn–Banach theorem,
there exists η∗ ∈ L2(�) \ {0} such that

sup
y∈R(y0,T∗)

〈
y,η∗〉

L2(�) ≤ inf
z∈B̄(0,ε)

〈
z,η∗〉

L2(�) ≤ 〈
η∗, y

(
T∗; y0, u∗)〉

L2(�). (2.16)
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This shows that

sup
u∈U1

∫ T∗

0

〈
e�(T∗–σ )χ�M(σ )u(σ ),η∗〉

L2(�) dσ

≤
∫ T∗

0

〈
e�(T∗–σ )χ�M(σ )̃u∗(σ ),η∗〉

L2(�) dσ ,

i.e.,

sup
u∈U1

∫ T∗

0

〈
u(σ ),χ�M(σ )e�∗(T∗–σ )η∗〉

L2(�) dσ

≤
∫ T∗

0

〈
ũ∗(σ ),χ�M(σ )e�∗(T∗–σ )η∗〉

L2(�) dσ . (2.17)

Here,

ũ∗ ∈ U1 �
{

u ∈ L∞(
0, T∗; L2(�)

) ∣
∣
∥
∥u(t)

∥
∥

L2(�) ≤ 1 for a.e. t ∈ (
0, T∗)}

and

u∗(t) = M(t)̃u∗(t) for a.e. t ∈ (
0, T∗). (2.18)

Let E0 be the set of the Lebesgue points of ũ∗(·) and M(·) in (0, T∗). For each t0 ∈ E0, let

ũλ(t) �

⎧
⎨

⎩

ũ∗(t), t ∈ (0, T∗) \ (t0 – λ, t0 + λ),

ζ , t ∈ (t0 – λ, t0 + λ),

where ζ ∈ L2(�), with ‖ζ‖L2(�) ≤ 1, and λ ∈ (0, min{t0, T∗ – t0}). By (2.17), we have

∫ t0+λ

t0–λ

〈
ζ ,χ�M(σ )e�∗(T∗–σ )η∗〉

L2(�) dσ ≤
∫ t0+λ

t0–λ

〈
ũ∗(σ ),χ�M(σ )e�∗(T∗–σ )η∗〉

L2(�) dσ .

Letting λ → 0+, we obtain

〈
ζ ,χ�M(t0)e�∗(T∗–t0)η∗〉

L2(�) ≤ 〈
ũ∗(t0),χ�M(t0)e�∗(T∗–t0)η∗〉

L2(�).

This implies that

sup
‖ζ‖L2(�)≤1

〈
ζ ,χ�M(t0)e�∗(T–t0)η∗〉

L2(�) ≤ 〈
ũ∗(t0),χ�M(t0)e�∗(T–t0)η∗〉

L2(�),

from which we obtain

∥
∥χωM(t0)e�∗(T–t0)η∗∥∥

L2(�) ≤ ∥
∥̃u∗(t0)

∥
∥

L2(�)

∥
∥χωM(t0)e�∗(T–t0)η∗∥∥

L2(�). (2.19)

Noting that ũ∗ ∈ U1 and η∗ �= 0, according to (2.18) and (2.19), we obtain

∥
∥u∗(t)

∥
∥

L2(�) = M(t) for a.e. t ∈ (
0, T∗).
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This completes the proof of this lemma. �

Based on Lemma 2.1, we have the following result.

Corollary 2.2 Let and u∗
2 be two optimal controls for problem (1.3). Then u∗

1 = u∗
2.

Following from Lemma 2.1, we can now prove Theorem 1.1.

Proof of Theorem 1.1 From (i) and (ii) of Lemma 2.1, we obtain (i) and (ii) of Theorem 1.1.
Finally, we show that ‖y(T∗; y0, u∗)‖L2(�) = ε.
By contradiction, we suppose that y(T∗; y0, u∗) ∈ B(0, ε), i.e., ‖y(T∗; y0, u∗)‖L2(�) < ε. For

δ > 0, we obtain

∥
∥y

(
T∗ – δ; y0, u∗) – y

(
T∗; y0, u∗)∥∥

L2(�) =
∥
∥
∥
∥

[

e�(T∗–δ)y0 +
∫ T∗–δ

0
e�(T∗–δ–s)χ�u∗(s) ds

]

–
[

e�T∗
y0 +

∫ T∗

0
e�(T∗–s)χ�u∗(s) ds

]∥
∥
∥
∥

L2(�)

≤ ∥
∥e�(T∗–δ)(I – e�δ

)
y0

∥
∥

L2(�)

+
∥
∥
∥
∥

∫ T∗–δ

0

(
I – e�δ

)
e�(T∗–δ–s)χ�u(s) ds

∥
∥
∥
∥

L2(�)

+
∥
∥
∥
∥

∫ T∗

T∗–δ

e�(T∗–s)χ�u∗(s) ds
∥
∥
∥
∥

L2(�)
.

Noting that

∥
∥e�(T∗–δ)(I – e�δ

)
y0

∥
∥

L2(�) ≤ ∥
∥
(
I – e�δ

)
y0

∥
∥

L2(�) → 0

as δ → 0,

∥
∥
∥
∥

∫ T∗–δ

0

(
I – e�δ

)
e�(T∗–δ–s)χ�u(s) ds

∥
∥
∥
∥

L2(�)
=

∥
∥
∥
∥

(
I – e�δ

)
∫ T∗–δ

0
e�(T∗–δ–s)χ�u(s) ds

∥
∥
∥
∥

L2(�)

→ 0

as δ → 0 and

∥
∥
∥
∥

∫ T∗

T∗–δ

e�(T∗–s)χ�u∗(s) ds
∥
∥
∥
∥

L2(�)
≤ δ

∥
∥M(·)∥∥L∞(0,T∗) → 0

as δ → 0, we obtain

∥
∥y

(
T∗ – δ; y0, u∗) – y

(
T∗; y0, u∗)∥∥

L2(�) → 0 as δ → 0.

This, together with y(T∗; y0, u∗) ∈ B(0, ε), implies that, for a sufficiently small δ > 0, we have

y
(
T∗ – δ; y0, u∗) ∈ B(0, ε).
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This shows that T∗ – δ is also an optimal time in (1.3), which contradicts the definition
of T∗. Hence, ‖y(T∗; y0, u∗)‖L2(�) = ε. �
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