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Abstract
In this paper, we consider the space-fractional reaction–advection–diffusion equation
with fractional diffusion and integer advection terms. By treating the first-order
integer derivative as the composition of two Riemann–Liouville fractional derivative
operators, we construct a fully discrete scheme by Legendre spectral method in a
spatial and Crank–Nicolson scheme in temporal discretizations. Using thee right
Riemann–Liouville fractional derivative, a novel duality argument is established, the
optimal error estimate is proved to be O(τ 2 + N–m) in L2-norm. Numerical tests are
carried out to support the theoretical results, and the coefficient matrix with respect
to first-order derivative obtained here is compared with that of traditional Legendre
spectral method.
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1 Introduction
Fractional differential equations (FDEs), in which standard temporal and/or spatial deriva-
tive are replaced by fractional derivative operators, are widely used as a modeling tool and
have a long history in many scientific and engineering fields, such as physics [1–3], finance
[4–7], bioengineering [8–10], hydrology [11–14], and so on, for their cumulative memory
effect.

There are several analytical methods to solve the FDEs, such as homotopy analysis
method [15]. But in most cases, analytical methods do not work well on most of FDEs, so
it is natural to resort to numerical methods. Up to now, there have been several numerical
techniques to solve FDEs, such as finite difference method (FDM) [16–21], finite element
method (FEM) [22–25], boundary elements method [26], spectral methods (SM) [27–36],
etc. As far as we know, Lubich [20, 21] first introduced the idea of FDM to discretized
fractional calculus. In [24], Roop introduced several equivalent fractional Sobolev spaces,
and developed a theoretical framework for the Galerkin finite element approximation to
steady-state and time-dependent fractional advection dispersion equations with Dirichlet
boundary conditions.
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The fractional derivative is essentially a global differential operator, whereas FDM and
FEM are inherently local methods that lack the capability to deal with the fractional deriva-
tive effectively. Therefore, it is natural to consider a global method. Spectral method is
well known for its global feature and high order accuracy. To compute the fractional dif-
ferential equation accurately, spectral method is a suitable choice for its nature. Lin and
Xu [35] proposed a finite difference scheme in time and Legendre collocation spectral
method in space for the time-fractional diffusion equation in Caputo sense. In [33, 34],
Li and Xu developed a time-space spectral method for the time-fractional diffusion equa-
tion, and spectral accuracy was received both in time and space. Li et al. [32] proposed
the spectral collocation method to solve the fractional initial value problems and bound-
ary value problems. Bueno-Orovio et al. [27] introduced Fourier spectral methods for
the space fractional reaction-diffusion equations described by the fractional Laplacian in
bounded domain. In [36], Nie et al. considered the backward Euler scheme in time and
Galerkin-Legendre spectral method in space for spatial-fractional diffusion equations on
a bounded interval, the convergence order was O(τ + Nα–m) in L2-norm. Huang et al. [31]
combined the second order finite difference method in time and the spectral Galerkin
method in space for space-fractional diffusion equations, the convergence order of the
proposed method was proved to be O(τ 2 + Nα–m) in L2-norm.

The model problem considered in this paper is the space-fractional reaction–advection–
diffusion equation (SFRADE):

ut – K1–1D2α
x u + K2ux + K3u = f (x, t), (x, t) ∈D = Ω × I, (1)

subject to the following initial and boundary conditions:

{
u(x, 0) = u0(x), x ∈ Ω , (2)

u(±1, t) = 0, t ∈ I, (3)

where Ω = (–1, 1), I = (0, T], α ∈ (1/2, 1]. K1 > 0, Ki ≥ 0 (i = 2, 3) are diffusion, advec-
tion, and reaction coefficients, respectively. K1 – Cp(K2 + K3) > 0, Cp is a positive constant
(see below). The fractional order operator –1D2α

x is the left Riemann–Liouville fractional
derivative of order 2α with respect to x, commonly referred to as an anomalous diffu-
sion operator. If we take α = 1 in (1), it is the integer diffusion operator, and the classical
reaction–advection–diffusion equation is obtained. The key difference between the frac-
tional operator and the usual one is that the former is nonlocal.

Definition 1 (Riemann–Liouville (R–L) fractional integral [37, 38]) Let v be a function
defined on (a, b), and σ > 0.

Then the left Riemann–Liouville fractional integral of order σ is defined to be

aD–σ
x v(x) =

1
Γ (σ )

∫ x

a
(x – ξ )σ–1v(ξ ) dξ , x > a.

The right Riemann–Liouville fractional integral of order σ is defined to be

xD–σ
b v(x) =

1
Γ (σ )

∫ b

x
(ξ – x)σ–1v(ξ ) dξ , x < b.
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Definition 2 (Riemann–Liouville (R–L) fractional derivative [37, 38]) Let v be a function
defined on (a, b), β > 0, n be the smallest integer greater than β (n – 1 ≤ β < n), and σ =
n – β .

Then the left fractional derivative of order β is defined to be

aDβ
x v(x) = Dn

aD–σ
x v(x) =

1
Γ (σ )

dn

dxn

∫ x

a
(x – ξ )σ–1v(ξ ) dξ , x ∈ (a, b).

The right fractional derivative of order β is defined to be

xDβ

b v(x) = (–D)n
xD–σ

b v(x) =
(–1)n

Γ (σ )
dn

dxn

∫ b

x
(ξ – x)σ–1v(ξ ) dξ , x ∈ (a, b).

In this paper, we consider the first order derivative as composition of two 1/2-order left
R–L derivatives for the advection term of (1)–(3) according to the property of R–L frac-
tional derivative as that in [39]. We also establish a duality argument by using the right R–L
fractional derivative, the purpose is to construct an efficient approach by applying the Leg-
endre spectral method in spatial and Crank–Nicolson scheme in temporal discretizations
such that it can be implemented efficiently and has an optimal convergence rate.

The organization of the paper is as follows. We commence by reviewing some prelimi-
naries of fractional order functional spaces endowed with inner products and norms, and
the weak formulation for the space-fractional reaction–advection–diffusion equation is
given in the next section. The fully discrete spectral scheme by applying Legendre spec-
tral method to the spatial component and Crank–Nicolson difference scheme to time
derivative is constructed, and the existence and uniqueness of the fully discrete scheme
are proved by the Lax–Milgram theorem in Sect. 3. In Sect. 4, by constructing a fractional
duality argument, we carry out the stability and optimal convergence analysis of the fully
discrete scheme, respectively. In Sect. 5, we present some numerical experiments, which
support the theoretical estimates. We conclude by summary and discussion of our method
for fractional differential equation in the last section.

2 Preliminaries
In this section, we introduce some definitions and notations of fractional derivative spaces
endowed with inner products and norms, then give some basic properties of fractional
derivative, which will be used in the context.

The L2(Ω) inner product is denoted by (·, ·) and the Lp(Ω) norm by ‖ · ‖Lp with the
special case of L2(Ω) and L∞(Ω) norms being written as ‖ · ‖ and ‖ · ‖∞, respectively. For
k ∈ N, we denote the semi-norm and the norm associated with the Sobolev space Hk(Ω)
by | · |k and ‖ · ‖k , respectively. For nonnegative real number r ∈ R

+\Z+, we use Hr(Ω) to
denote the fractional Sobolev spaces, the semi-norm | · |r and the norm ‖ · ‖r as defined
below.

Definition 3 (see [24, 40]) Let r > 0. Define the semi-norm

|u|r =
∥∥|ω|rû

∥∥
L2(R) =

(∫
R

|ω|2r|û|2 dω

) 1
2

,
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and the norm

‖u‖r =
(‖u‖2 + |u|2r

) 1
2 ,

where û =
∫
R

u(x)e–iωx dx denotes the Fourier transform of u, the transform variable ω is
a real number. Define Hr

0(Ω) as the closure of C∞
0 (Ω) in Hr(Ω) with respect to the norm

‖ · ‖r , and use H–r(Ω) to denote the dual space of Hr
0(Ω), with the norm denoted by ‖ · ‖–r .

Remark 1 (see [24]) Let ũ be the expansion of u by zero outside of Ω , then |u|r = |ũ|Hr (R).

Throughout the paper, we use C to denote a generic nonnegative constant whose actual
value may change from line to line.

Next, we introduce some useful fractional derivative spaces and related properties,
which are used in the formulation of the numerical analysis, one can refer to [24, 40] for
more details.

Definition 4 (see [24, 40]) Let μ > 0. Define the semi-norm

|u|JμL (Ω) =
∥∥–1Dμ

x u
∥∥,

and the norm

‖u‖JμL (Ω) =
(‖u‖2 + |u|2JμL (Ω)

) 1
2 .

Denote Jμ
L,0(Ω) as the closure of C∞

0 (Ω) with respect to the norm ‖ · ‖JμL (Ω).

Definition 5 (see [24, 40]) Let μ > 0. Define the semi-norm

|u|JμR (Ω) =
∥∥xDμ

1 u
∥∥,

and the norm

‖u‖JμR (Ω) =
(‖u‖2 + |u|2JμR (Ω)

) 1
2 .

Denote Jμ
R,0(Ω) as the closure of C∞

0 (Ω) with respect to the norm ‖ · ‖JμR (Ω).

Definition 6 (see [24, 40]) Let μ > 0, μ �= n – 1
2 , n ∈N. Define the semi-norm

|u|JμS (Ω) =
∣∣(–1Dμ

x u,x Dμ
1 u

)∣∣ 1
2 ,

and the norm

‖u‖JμS (Ω) =
(‖u‖2 + |u|2JμS (Ω)

) 1
2 .

Define Jμ
S,0(Ω) as the closure of C∞

0 (Ω) with respect to the norm ‖ · ‖JμS (Ω).



Chen et al. Advances in Difference Equations  (2018) 2018:140 Page 5 of 22

Lemma 1 (see [24, 40]) Let μ > 0, μ �= n – 1/2, n ∈N. Then spaces Jμ
L,0(Ω), Jμ

R,0(Ω), Jμ
S,0(Ω),

and Hμ
0 (Ω) are equal, with equivalent semi-norms and norms.

Remark 2 If the domain Ω in Definitions 4–6 is replaced by the entire line R, the corre-
sponding semi-norms should be denoted, respectively, by

⎧⎪⎪⎨
⎪⎪⎩

|u|JμL (R) = ‖–∞Dμ
x u‖L2(R),

|u|JμR (R) = ‖xDμ∞u‖L2(R),

|u|JμS (R) = (|(–∞Dμ
x u, xDμ∞u)|) 1

2 .

Let Jμ
L (R), Jμ

R (R), Jμ
S (R), and Hμ(R) denote the closure of C∞

0 (R) with respect to ‖u‖JμL (R),
‖u‖JμR (R), ‖u‖JμS (R), and ‖u‖Hμ(R), respectively.

Lemma 2 (see [24, 40]) Let μ > 0, μ �= n – 1/2, n ∈N. Then spaces Jμ
L (R), Jμ

R (R), Jμ
S (R), and

Hμ(R) are equal, with equivalent semi-norms and norms.

Lemma 3 (see [24, 40]) Let μ > 0. A function u ∈ L2(R) belongs to Jμ
L (R) if and only if

|ω|μû ∈ L2(R), specifically |u|JμL (R) = ‖|ω|μû‖L2(R) = |u|Hμ(R). Similarly, |u|JμR (R) = |u|Hμ(R).

Lemma 4 (see [24, 40]) Let μ > 0 be given. Then

(
–1Dμ

x u, xDμ
1 u

)
=

(
–∞Dμ

x ũ, xDμ
∞ũ

)
= cos(πμ)

∥∥–∞Dμ
x ũ

∥∥2
L2(R) = cos(πμ)

∥∥xDμ
∞ũ

∥∥2
L2(R).

Hence we have the following relations.

Lemma 5 (see [24, 40]) Let μ > 0, Ω = (–1, 1), u ∈ Jμ
L,0(Ω) ∩ Jμ

R,0(Ω). Then

(
–1Dμ

x u, xDμ
1 u

)
= cos(πμ)|u|μ.

Proof We can get the result by Remark 1 and Lemmas 3, 4, immediately. �

Lemma 6 (Fractional Poincaré–Friedrichs inequality [40]) For u ∈ Jμ
L,0(Ω),

‖u‖ ≤ C|u|JμL (Ω),

and for 0 < s < μ,

|u|Js
L(Ω) ≤ C|u|JμL (Ω).

The results for Jμ
R,0(Ω) follow analogously. For u ∈ Hμ

0 (Ω),

‖u‖ ≤ Cp|u|μ,

and for 0 < s < μ, s �= n – 1/2, n ∈N,

|u|s ≤ Cp|u|μ.
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Via integration by parts, one can verify the following readily.

Lemma 7 (see [38]) Let 0 < s < 1, u ∈ H2s
0 (Ω), v ∈ Hs

0(Ω). Then we have

(
–1D2s

x u, v
)

=
(

–1Ds
xu, xDs

1v
)
,

(
xD2s

1 u, v
)

=
(

xDs
1u, –1Ds

xv
)
.

Remark 3 Since ux can be expressed as ux = –1D
1
2
x –1D

1
2
x u, we can get from Lemma 7 that,

for u ∈ H1
0 (Ω), v ∈ H

1
2

0 (Ω),

(ux, v) =
(

–1D
1
2
x –1D

1
2
x u, v

)
=

(
–1D

1
2
x u, xD

1
2
1 v

)
,

(ux, v) = –
(

xD
1
2
1 xD

1
2
1 u, v

)
= –

(
xD

1
2
1 u, –1D

1
2
x v

)
.

Moreover, due to (ux, u) = 0, we can also deduce that

(
–1D

1
2
x u, xD

1
2
1 u

)
= 0, u ∈ H1

0 (Ω).

Now, we introduce some space-time functional spaces. Let E be a Hilbert space, we
define the space L2(0, T ; E) as

L2(0, T ; E) :=
{

u : (0, T) 	→ E
∣∣∣ ∫ T

0
‖u‖2

E dt < ∞, u is measurable
}

,

and similarly we can define some other spaces for space-time functions.
We define a(u, v) = –K1(–1Dα

x u, xDα
1 v) + K2(–1D

1
2
x u, xD

1
2
1 v) + K3(u, v) for convenience. By

the linearity of the left and right R–L derivatives, we can verify readily that a(·, ·) is a bi-
linear form. The variational formulation of equation (1) with the homogeneous bound-
ary condition is as follows: Let f ∈ L2(D) and u0 ∈ L2(Ω), find u ∈ L2(0, T ; Hα

0 (Ω)) ∩
C([0, T]; L2(Ω)) such that

{
(ut , v) + a(u, v) = (f , v), ∀v ∈ Hα

0 (Ω), (4)

u(0) = u0. (5)

Lemma 8 The bilinear form a(·, ·) is continuous and coercive on Hα
0 (Ω) × Hα

0 (Ω).

Proof Hölder’s inequality, Lemmas 1 and 6 yield

∣∣a(u, v)
∣∣ ≤ K1

∥∥–1Dα
x u

∥∥∥∥xDα
1 v

∥∥ + K2
∥∥–1D

1
2
x u

∥∥∥∥xD
1
2
1 v

∥∥ + K3‖u‖‖v‖
≤ C1‖u‖α‖v‖α , ∀u, v ∈ Hα

0 (Ω),

i.e., a(·, ·) is continuous on Hα
0 (Ω) × Hα

0 (Ω).
On the other hand, by Remark 3, Lemmas 1-2, 5-6, we have

a(u, u) = –K1
(

–1Dα
x u, xDα

1 u
)

+ K2
(

–1D
1
2
x u, xD

1
2
1 u

)
+ K3(u, u)

= –K1 cosπα|u|2α + K3‖u‖2
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≥ C min
(
K1| cosπα|, K3

)‖u‖2
α

� C2‖u‖2
α , ∀u ∈ Hα

0 (Ω),

viz., a(·, ·) is coercive on Hα
0 (Ω).

The proof of the lemma is completed. �

According to the above lemma on the continuity and coercivity of the bilinear form
a(·, ·), the existence and uniqueness of solution for the weak form above (4)–(5) could be
proved.

Theorem 1 Let u0 ∈ L2(Ω), f ∈ L2(D). Then (4)–(5) has a unique solution u ∈ L2(0, T ;
Hα

0 (Ω)) ∩ C0([0, T]; L2(Ω)). Furthermore, ∂u
∂t ∈ L2(0, T ; H–α(Ω)) and

‖u‖2 + C
∫ t

0
‖u‖2

α ds ≤ ‖u0‖2 + C
∫ t

0
‖f ‖2 ds, ∀t ∈ [0, T]. (6)

Proof Assume that {φk(x), k = 0, 1, . . . , N} is the complete orthogonal basis of V = Hα
0 (Ω).

Define VN = span{φ0, . . . ,φN }, then we get the approximation problem: for each t ∈ [0, T],
find UN (x, t) ∈ VN such that

{
d
dt (UN (t), v) + a(UN (t), v) = (f , v), ∀v ∈ V , (7)
UN (0) = u0,N =

∑N
j=0 ρjφj. (8)

Let v = φj, UN =
∑N

k=0 ck(t)φk , we have the following linear ordinary differential equation:

d
dt

cj(t)(φj,φj) +
N∑

k=0

a(φk ,φj)ck(t) = (f ,φj), j = 0, 1, . . . , N . (9)

Since (φj,φj) > 0, ∀j = 0, 1, . . . , N , there exists a unique solution cN = (cN
0 , cN

1 , . . . , cN
N )T to (9)

and UN ∈ H1(0, T ; V ).
Choosing UN (t) as a test function, we get

(
d
dt

UN (t), UN (t)
)

+ a
(
UN (t), UN (t)

)
=

(
f (t), UN (t)

)
.

Then, by the coercivity of a(·, ·), we obtain

1
2

d
dt

∥∥UN (t)
∥∥2 + C2

∥∥UN (t)
∥∥2

α
≤ ‖f ‖∥∥UN (t)

∥∥ ≤ 1
2C2

‖f ‖2 +
C2

2
∥∥UN (t)

∥∥2
α

.

Integrating the inequality over (0, t), t ∈ (0, T], we have

∥∥UN (t)
∥∥2 + C2

∫ t

0

∥∥UN (t)
∥∥2

α
ds ≤ ‖u0‖2 + C

∫ t

0
‖f ‖2 ds. (10)

Thus UN (x, t) ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; V ). There exists a subsequence (still denoted by
UN ), which weakly star converges in L∞(0, T ; L2(Ω)) and weakly converges in L2(0, T ; V ),
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i.e., there exists ũ ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; V ) such that

lim
N→∞

∫ T

0

(
UN (t),ϕ(t)

)
dt =

∫ T

0

(
ũ(t),ϕ(t)

)
dt, ϕ ∈ L1(0, T ; L2(Ω)

)
,

lim
N→∞

∫ T

0

(
DαUN (t),ψ(t)

)
dt =

∫ T

0

(
Dαũ(t),ψ(t)

)
dt, ψ ∈ L2(0, T ; L2(Ω)

)
,

lim
N→∞

∫ T

0

(
D

1
2 UN (t),ϕ(t)

)
dt =

∫ T

0

(
D

1
2 ũ(t),ϕ(t)

)
dt, ϕ ∈ L1(0, T ; L2(Ω)

)
,

where Dα and D 1
2 are left/right Riemann–Liouville fractional derivatives, respectively. Let

φ(t) ∈ C1[0, T] with φ(T) = 0, multiplying (7) by φ(t), integrating with respect to t, and
using integration by parts, we get

–
∫ T

0

(
UN (t), v

)dφ

dt
dt –

(
UN (0), v

)
φ(0) +

∫ T

0
a
(
UN (t), v

)
dt =

∫ T

0

(
f (t), v

)
dt.

Since UN (0) converges to u0 in L2(Ω), we have

–
∫ T

0

(
ũ(t), v

)dφ

dt
dt – (u0, v)φ(0) +

∫ T

0
a
(
ũ(t), v

)
dt =

∫ T

0

(
f (t), v

)
dt, ∀v ∈ V . (11)

Taking φ ∈ C∞
0 (0, T), then we get by the variational principle

(
dũ
dt

, v
)

+ a
(
ũ(t), v

)
=

(
f (t), v

)
dt, ∀v ∈ V . (12)

Multiplying (12) by φ ∈ H1(0, T ; V ), φ(T) = 0, integrating it with respect to t, and using
integration by parts, we obtain

–
∫ T

0
(ũ, v)

dφ

dt
dt –

(
ũ(0), v

)
φ(0) +

∫ T

0
a
(
ũ(t), v

)
φ(t) dt

=
∫ T

0

(
f (t), v

)
φ(t) dt, ∀v ∈ V . (13)

Comparing (11) with (13), we get

(
ũ(0), v

)
= (u0, v), ∀v ∈ V .

Thus ũ(0) = u0, the existence of the solution of (4)–(5) is established. Let N → ∞ in (10),
we obtain estimate (6).

u ∈ L2(0, T ; V ) leads to –K1–1D2α
x u + K2ux + K3u ∈ L2(0, T ; V ′), where V ′ is the dual

space of V . By f ∈ L2(D) ⊂ L2(0, T ; V ′), we get du
dt ∈ L2(0, T ; V ′) and u ∈ H1(0, T ; V ′), which

means that u ∈ C0([0, T]; L2(Ω)).
Next we prove the uniqueness of solution of (4)–(5).
Let u1 be another solution of (4)–(5), w = u – u1 satisfies

⎧⎨
⎩(wt , v) + a(w, v) = 0, ∀v ∈ V ,

w(0) = 0.



Chen et al. Advances in Difference Equations  (2018) 2018:140 Page 9 of 22

From (6) we have

‖w‖2 + C2

∫ t

0
‖w‖2

α dt ≤ 0,

which implies w = 0, i.e., u1 = u. The proof of the theorem is completed. �

3 Existence and uniqueness of the fully discrete scheme
In this section, we study the existence and uniqueness of the fully spectral discrete scheme
of (1)–(3). By introducing some lemmas and tools, we prove that the fully discrete scheme
has a unique solution.

Let PN (Ω) be the set of all algebraic polynomials defined on domain Ω with the degree
less than or equal to N ∈ Z

+. V 0
N = PN (Ω) ∩ H1

0 (Ω). Let τ be the step size for time t, tk =
kτ , k = 0, 1, . . . , nT , and T = nTτ , tk– 1

2
= (tk + tk–1)/2. For convenience, we introduce the

following notations for the function u(x, t):

uk = uk(·) = u(·, tk), uk– 1
2 = u(tk– 1

2
),

∂̄tuk =
uk – uk–1

τ
, uk̂ =

uk + uk–1

2
.

Due to homogeneous boundary conditions, we adopt Legendre–Gauss–Lobatto (LGL)
points here. Let IN : C(Ω̄) → PN be the interpolating operator associated with LGL points.

IN u(xi) = u(xi), i = 0, 1, . . . , N ,

where xi ∈ Ω̄ are LGL points.
For the time advance, the Crank–Nicolson scheme will be used to discrete the tempo-

ral derivative of (1). We can obtain the fully discrete Crank–Nicolson–Legendre spectral
method for (1)–(3): find uk

N ∈ V 0
N , 1 ≤ k ≤ nT , such that

⎧⎨
⎩(∂̄tuk

N , v) + a(uk̂
N , v) = (f k– 1

2 , v), ∀v ∈ V 0
N ,

u0
N = u0N ,

(14)

where u0N ∈ V 0
N is an approximation of u0 in the space V 0

N .
Now, we consider the existence and uniqueness of the Crank–Nicolson fully discrete

scheme (14), we have the following theorem.

Theorem 2 Let u0 ∈ L2(Ω), f ∈ L2(D). The Crank–Nicolson fully discrete scheme (14) has
a unique solution uk

N ∈ V 0
N .

Proof Rewrite scheme (14) as the following equivalent form:

(
uk

N , v
)

+
τ

2
a
(
uk

N , v
)

=
(
uk–1

N , v
)

–
τ

2
a
(
uk–1

N , v
)

+ τ
(
f k– 1

2 , v
)
.

For simplicity, we denote A(u, v) = (u, v) + τ
2 a(u, v), F(v) = (uk–1

N , v) – τ
2 a(uk–1

N , v) + τ (f k– 1
2 , v).

On the one hand, via Lemma 8, we have

∣∣A(
uk

N , v
)∣∣ ≤ ∥∥uk

N
∥∥‖v‖ + Cτ

∥∥uk
N
∥∥

α
‖v‖α ≤ (1 + Cτ )

∥∥uk
N
∥∥

α
‖v‖α
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and

A
(
uk

N , uk
N
) ≥ ∥∥uk

N
∥∥2 +

C2τ

2
∥∥uk

N
∥∥2

α
≥ Cτ

∥∥uk
N
∥∥2

α
.

Therefore A(u, v) is continuous on V 0
N × V 0

N and coercive on V 0
N .

On the other hand, by virtue of Hölder’s inequality, we deduce that

∣∣F(v)
∣∣ =

∣∣∣∣(uk–1
N , v

)
–

τ

2
a
(
uk–1

N , v
)

+ τ
(
f k– 1

2 , v
)∣∣∣∣

≤ ∥∥uk–1
N

∥∥‖v‖ + Cτ
∥∥uk–1

N
∥∥

α
‖v‖α + τ

∥∥f k– 1
2
∥∥‖v‖α

≤ (∥∥uk–1
N

∥∥ + Cτ
∥∥uk–1

N
∥∥

α
+ τ

∥∥f k– 1
2
∥∥)‖v‖α ,

viz., F(v) is continuous on V 0
N .

Thus the existence and uniqueness of (14) are ensured by the Lax–Milgram theorem.
The proof is completed. �

4 Stability and convergence of the fully discrete scheme
In this section, we consider the stability and convergence analysis for the fully discrete
scheme (14). Let us first consider the stability of scheme (14), we have the following result.

Theorem 3 The fully discrete scheme (14) is unconditionally stable.

Proof Taking v = uk̂
N in (14), we obtain

(
∂̄tuk

N , uk̂
N
)

+ a
(
uk̂

N , uk̂
N
)

=
(
f k– 1

2 , uk̂
N
)
. (15)

For the left-hand side of (15), we infer that

(
∂̄tuk

N , uk̂
N
)

+ a
(
uk̂

N , uk̂
N
) ≥ 1

2τ

(∥∥uk
N
∥∥2 –

∥∥uk–1
N

∥∥2) + C2

∥∥∥∥uk
N + uk–1

N
2

∥∥∥∥
2

α

.

On the other hand, for the right-hand side of (15), we have

(
f k– 1

2 , uk̂
N
) ≤ 1

2C2

∥∥f k– 1
2
∥∥2 +

C2

2

∥∥∥∥uk
N + uk–1

N
2

∥∥∥∥
2

α

.

Bringing the above two inequalities into (15), and summing for k from 1 to n, we deduce
that

∥∥un
N
∥∥2 + C2τ

n∑
k=1

∥∥∥∥uk
N + uk–1

N
2

∥∥∥∥
2

α

≤ ∥∥u0
N
∥∥2 +

1
C2

n∑
k=1

(
τ
∥∥f k– 1

2
∥∥2)

≤ ∥∥u0
N
∥∥2 + C‖f ‖2

L∞(0,T ;L2(Ω)).

The theorem is proved. �

Next, we analyze the convergence of the fully discrete scheme (14). Firstly, we introduce
some notations and lemmas.
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For the following projector Π
1,0
N , one can be referred to [41] for more details.

Let Π
1,0
N : H1

0 (Ω) 	→ V 0
N be the orthogonal projection operator such that

(
∂x

(
u – Π

1,0
N u

)
, ∂xϕN

)
= 0, ∀ϕN ∈ V 0

N .

For the operator Π
1,0
N , we have the following estimate.

Lemma 9 (see [41]) Let s be a real number. For any nonnegative real number r, 0 ≤ s ≤
r, there exists a positive constant C depending only on r such that, for any function u in
Hs

0(Ω) ∩ Hr(Ω), the following estimate holds:

∥∥u – Π
1,0
N u

∥∥
s ≤ CNs–r‖u‖r .

Define the projector Π
α,0
N : Hα

0 (Ω) 	→ V 0
N such that

a
(
u – Π

α,0
N u, v

)
= 0, ∀v ∈ V 0

N . (16)

By virtue of (16) and the continuity and coercivity of the bilinear form a(·, ·), we have

C
∥∥u – Π

α,0
N u

∥∥2
α

≤ a
(
u – Π

α,0
N u, u – Π

α,0
N u

)
= a

(
u – Π

α,0
N u, u – Π

1,0
N u

)
≤ C

∥∥u – Π
α,0
N u

∥∥
α

∥∥u – Π
1,0
N u

∥∥
α

, ∀u ∈ V 0
N .

Therefore, by Lemma 9, we get

∥∥u – Π
α,0
N u

∥∥
α

≤ C
∥∥u – Π

1,0
N u

∥∥
α

≤ CNα–r‖u‖r , α ≤ r.

We next estimate the error ‖u – Π
α,0
N u‖ using a duality argument. For any g ∈ L2(Ω), we

consider the auxiliary problem
⎧⎨
⎩–K1xD2α

1 w – K2wx + K3w = g, in Ω ,

w = 0, on ∂Ω .
(17)

We can get that

‖w‖2α ≤ C‖g‖. (18)

The weak form of (17) is as follows:

a(ϕ, w) = (g,ϕ), ∀ϕ ∈ Hα
0 (Ω).

Taking ϕ = u – Π
α,0
N u, we obtain

(
g, u – Π

α,0
N u

)
= a

(
u – Π

α,0
N u, w

)
≤ ∥∥u – Π

α,0
N u

∥∥
α

∥∥w – Π
1,0
N w

∥∥
α

≤ CN–r‖u‖r‖w‖2α . (19)
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Using (18) and (19), we have

∥∥u – Π
α,0
N u

∥∥ = sup
g∈L2(Ω),g �=0

|(g, u – Π
α,0
N u)|

‖g‖ ≤ CN–r‖u‖r . (20)

Discrete Gronwall’s inequality is a useful tool in the convergence analysis.

Lemma 10 (Discrete Gronwall’s inequality[42]) Let τ , B, ai, bi, ci, γi (integers i ≥ 0) be
nonnegative numbers such that

an + τ

n∑
i=0

bi ≤ τ

n∑
i=0

γiai + τ

n∑
i=0

ci + B for n ≥ 0.

Suppose that τγi < 1 for all i, and set σi ≡ (1 – τγi)–1. Then

an + τ

n∑
i=0

bi ≤
(

τ

n∑
i=0

ci + B

)
exp

(
τ

n∑
i=0

σiγi

)
for n ≥ 0. (21)

Now, we consider the convergence of the fully discrete scheme.

Theorem 4 Let 1/2 < α < 1, u and uk
N be the solutions of (1)–(3) and (14), respectively.

Assume that ut ∈ L2(0, T ; Hm(Ω)), utt ∈ L2(0, T ; Hα(Ω)), uttt ∈ L2(0, T ; L2(Ω)), and u0 ∈
Hm(Ω), m > α. Then there exists a positive constant C independent of k, τ , and N such that

∥∥uk – uk
N
∥∥ ≤ C

(
τ 2 + N–m)

, 0 ≤ k ≤ nT .

Proof Setting e = u – Π
α,0
N u and η = Π

α,0
N u – uN , by (1)–(3), (14) and the definition of

projector Π
α,0
N , we get the error equation below: for all

⎧⎪⎪⎨
⎪⎪⎩

(∂̄tη
k , v) + a(ηk̂ , v) = –(∂̄tek , v) + (∂̄tuk – uk– 1

2
t , v)

+ a(uk̂ – uk– 1
2 , v), ∀v ∈ V 0

N ,

η0 = 0.

(22)

It is easy to get u ∈ L2(0, T ; Hm(Ω)) ∩ L∞(0, T ; Hm(Ω)) by ut ∈ L2(0, T ; Hm(Ω)) and u0 ∈
Hm(Ω), this means that ‖u‖β (∀β ≤ m) is bounded. Taking v = ηk̂ in (22), we have

(
∂̄tη

k ,ηk̂) + a
(
ηk̂ ,ηk̂) = –

(
∂̄tek ,ηk̂) +

(
∂̄tuk – uk– 1

2
t ,ηk̂) + a

(
uk̂ – uk– 1

2 ,ηk̂). (23)

For the left-hand side of (23), we note that

(
∂̄tη

k ,ηk̂) =
(

ηk – ηk–1

τ
,
ηk + ηk–1

2

)
=

1
2τ

(∥∥ηk∥∥2 –
∥∥ηk–1∥∥2).

By the coercivity of a(·, ·), we get

a
(
ηk̂ ,ηk̂) ≥ C2

∥∥ηk̂∥∥2
α

.
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Thus for the left-hand side of (23), we obtain

(
∂̄tη

k ,ηk̂) + a
(
ηk̂ ,ηk̂) ≥ 1

2τ

(∥∥ηk∥∥2 –
∥∥ηk–1∥∥2) + C2

∥∥ηk̂∥∥2
α

. (24)

Next we estimate terms on the right-hand side of (23). By Hölder’s inequality and Young’s
inequality, we have

∣∣(∂̄tek ,ηk̂)∣∣ ≤ ∥∥∂̄tek∥∥∥∥ηk̂∥∥ ≤ ∥∥∂̄tek∥∥2 +
1
4
∥∥ηk̂∥∥2. (25)

According to Hölder’s inequality, we deduce that

∥∥∂̄tek∥∥2 =
1
τ 2

∥∥∥∥
∫ tk

tk–1

etdt
∥∥∥∥

2

≤ 1
τ 2

∫
Ω

(∫ tk

tk–1

dt
)(∫ tk

tk–1

e2
t dt

)
dx

=
1
τ

∫ tk

tk–1

‖et‖2 dt ≤ 1
τ

N–2m
∫ tk

tk–1

‖ut‖2
m dt. (26)

Substituting (26) into (25), we get

∣∣(∂̄tek ,ηk̂)∣∣ ≤ 1
τ

N–2m
∫ tk

tk–1

‖ut‖2
m dt +

1
4
∥∥ηk̂∥∥2. (27)

Via Taylor’s theorem with integral remainder and Young’s inequality, we infer that

∣∣(∂̄tuk – uk– 1
2

t ,ηk̂)∣∣
=

1
2τ

∣∣∣∣
(∫ tk– 1

2

tk–1

(tk–1 – t)2uttt dt +
∫ tk

tk– 1
2

(tk – t)2uttt dt,ηk̂
)∣∣∣∣

≤ 1
2τ

(∥∥∥∥
∫ tk– 1

2

tk–1

(tk–1 – t)2uttt dt
∥∥∥∥ +

∥∥∥∥
∫ tk

tk– 1
2

(tk – t)2uttt dt
∥∥∥∥
)∥∥ηk̂∥∥

≤ 1
4τ 2

(∥∥∥∥
∫ tk– 1

2

tk–1

(tk–1 – t)2uttt dt
∥∥∥∥

2

+
∥∥∥∥
∫ tk

tk– 1
2

(tk – t)2uttt dt
∥∥∥∥

2)
+

1
4
∥∥ηk̂∥∥2. (28)

By virtue of Hölder’s inequality, we obtain

∥∥∥∥
∫ tk– 1

2

tk–1

(tk–1 – t)2uttt dt
∥∥∥∥

2

≤
∫ 1

–1

(∫ tk– 1
2

tk–1

(tk–1 – t)4 dt
)(∫ tk– 1

2

tk–1

u2
ttt dt

)
dx

≤ τ 5

5 · 25

∫ tk– 1
2

tk–1

‖uttt‖2 dt, (29)

analogously, we have

∥∥∥∥
∫ tk

tk– 1
2

(tk – t)2uttt dt
∥∥∥∥

2

≤ τ 5

5 · 25

∫ tk

tk– 1
2

‖uttt‖2 dt. (30)

Substituting (29)–(30) into (28), we get

(
∂̄tuk – uk– 1

2
t ,ηk̂) ≤ 1

4
∥∥ηk̂∥∥2 +

τ 3

5 · 27

∫ tk

tk–1

‖uttt‖2 dt. (31)
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For the last term on the right-hand side of (23), we have

a
(
uk̂ – uk– 1

2 ,ηk̂) ≤ C1
∥∥uk̂ – uk– 1

2
∥∥

α

∥∥ηk̂∥∥
α

≤ C2

2
∥∥ηk̂∥∥2

α
+

C2
1

2C2

∥∥uk̂ – uk– 1
2
∥∥2

α
. (32)

Via Taylor’s formula and Hölder’s inequality, we deduce that

∥∥uk̂ – uk– 1
2
∥∥2

α
=

1
4
∥∥uk + uk–1 – 2uk– 1

2
∥∥2

α

=
1
4

∥∥∥∥
∫ tk– 1

2

tk–1

(t – tk–1)utt dt +
∫ tk

tk– 1
2

(tk – t)utt dt
∥∥∥∥

2

α

≤ 1
2

(∥∥∥∥
∫ tk– 1

2

tk–1

(t – tk–1)utt dt
∥∥∥∥

2

α

+
∥∥∥∥
∫ tk

tk– 1
2

(tk – t)utt dt
∥∥∥∥

2

α

)

≤ Cτ 3
∫ tk

tk–1

‖utt‖2
α dt. (33)

Inserting (33) into (32), we obtain

a
(
uk̂ – uk– 1

2 ,ηk̂) ≤ C2

2
∥∥ηk̂∥∥2

α
+ Cτ 3

∫ tk

tk–1

‖utt‖2
α dt. (34)

Substituting (24), (27), (31), (34) into (23) and summing for k from 1 to n (n ≤ nT ), we
have

∥∥ηn∥∥2 + C2τ

n∑
k=1

∥∥ηk̂∥∥2
α

≤ 2τ

n∑
k=0

∥∥ηk∥∥2 + 2N–2m
∫ tn

0
‖ut‖2

m dt + Cτ 4
∫ tn

0

(‖utt‖2
α + ‖uttt‖2)dt. (35)

Let ak = ‖ηk‖2, bk = C2‖ηk̂‖2
α , ck = 0, γk = 2, and

B = 2N–2m‖ut‖2
L2(0,T ;Hm(Ω)) + Cτ 4(‖utt‖2

L2(0,T ;Hα (Ω)) + ‖uttt‖2
L2(0,T ;L2(Ω))

)
.

Then ak , bk , ck , γk ≥ 0. In view of Lemma 10 and τ < 1/2, we get

∥∥ηn∥∥2 + C2τ

n∑
k=1

∥∥ηk̂∥∥2
α

≤ exp

(
2T

1 – 2τ

)
B. (36)

Moreover, by virtue of (20), we obtain

∥∥en∥∥2 =
∥∥UN – Π

α,0
N UN

∥∥2 ≤ CN–2m‖UN‖2
m = CN–2m

∥∥∥∥u0 +
∫ tn

0
ut(s)ds

∥∥∥∥
2

m

≤ CN–2m(‖u0‖2
m + ‖ut‖2

L2(0,T ;Hm(Ω))
)
. (37)

Finally, combining the formulae (36) and (37), we get the error estimate.
The proof of the theorem is completed. �
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5 Numerical experiments
In this section, we present numerical results obtained by the proposed method.

5.1 Implementation
Now, we give the implementation of the fully discrete system (14).

Let Lk(x) be the Legendre polynomial of degree k with the following recursive relations
(see [43]):

L0(x) = 1, L1(x) = x, (k + 1)Lk+1(x) = (2k + 1)xLk(x) + kLk–1(x), (38)

L′
k+1(x) – L′

k–1(x) = (2k + 1)Lk(x), k ≥ 1. (39)

A detailed discussion of the properties of Legendre polynomials is furnished in [44].

Lemma 11 ([31]) If 0 < μ < 1, we have

–1Dμ
x Ln(x) =

Γ (n + 1)
Γ (n – μ + 1)

(1 + x)–μJμ,–μ
n (x),

xDμ
1 Ln(x) =

Γ (n + 1)
Γ (n – μ + 1)

(1 – x)–μJ–μ,μ
n (x),

where Ja,b
n (x) (a, b > –1) is a Jacobi polynomial.

The function space V 0
N can be expressed as V 0

N = span{φi(x) : i = 1, 2, . . . , N – 1}, in which
φi(x) = Li+1(x) – Li–1(x) (–1 < x < 1), and the unknown function uk

N ∈ V 0
N has the following

form:

uk
N =

N–1∑
i=1

ck
i φi(x). (40)

In general, the term (f ,φj) cannot be computed exactly and is usually approximated by
(IN f ,φj), where IN is an interpolation operator upon PN relative to the Gauss–Lobatto
points. Here, we approximate (f k– 1

2 ,φj) by (IN f k̂ ,φj). Thus, substituting (40) into (14), we
can write

(
uk

N , v
)

+
τ

2
a
(
uk

N , v
)

=
(
uk–1

N , v
)

–
τ

2
a
(
uk–1

N , v
)

+ τ
(
IN f k̂ , v

)
, ∀v ∈ V 0

N . (41)

By the definition of a(·, ·), we deduce that

LHS of (41)

=
N–1∑
i=1

ck
i (φi, v) –

K1τ

2

N–1∑
i=1

ck
i
(

–1Dα
x φi, xDα

1 v
)

+
K2τ

2

N–1∑
i=1

ck
i
(

–1D
1
2
x φi, xD

1
2
1 v

)

+
K3τ

2

N–1∑
i=1

ck
i (φi, v)

=
N–1∑
i=1

[
–

K1τ

2
(

–1Dα
x φi, xDα

1 v
)

+
K2τ

2
(

–1D
1
2
x φi, xD

1
2
1 v

)
+

(
1 +

K3τ

2

)
(φi, v)

]
ck

i , (42)
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and

RHS of (41)

=
N–1∑
i=1

ck–1
i (φi, v) +

K1τ

2

N–1∑
i=1

ck–1
i

(
–1Dα

x φi, xDα
1 v

)

–
K2τ

2

N–1∑
i=1

ck–1
i

(
–1D

1
2
x φi, xD

1
2
1 v

)
–

K3τ

2

N–1∑
i=1

ck–1
i (φi, v) + τ

(
IN f k̂ , v

)

=
N–1∑
i=1

[
K1τ

2
(

–1Dα
x φi, xDα

1 v
)

–
K2τ

2
(

–1D
1
2
x φi, xD

1
2
1 v

)
+

(
1 –

K3τ

2

)
(φi, v)

]
ck–1

i

+ τ
(
IN f k̂ , v

)
. (43)

Set the matrices M, Sα ∈R
(N–1)×(N–1) that satisfy

Mij = (φj,φi), Sα
ij =

(
xDα

1 φj, –1Dα
x φi

)
, 1 ≤ i, j ≤ N – 1.

Substituting (42), (43) into (41) and letting v = φj, we obtain the matrix form of the discrete
scheme as follows:

(
–

τ

2
K1Sα +

τ

2
K2S

1
2 +

(
1 +

τ

2
K3

)
M

)
Ck

=
(

τ

2
K1Sα –

τ

2
K2S

1
2 +

(
1 –

τ

2
K3

)
M

)
Ck–1 + τFk , (44)

where Ck = (ck
1, ck

2, . . . , ck
N–1)T , Fk = (f̃ k

1 , f̃ k
2 , . . . , f̃ k

N–1)T , satisfying

f̃ k
i =

(
IN f k̂ ,φi

)
=

1
2
(
IN

(
f k + f k–1),φi

)
.

In the numerical experiments, we use Jacobi–Gauss–Lobatto quadrature to calculate
the element Sα

ij for convenience.

Sα
ij =

(
xDα

1 φj(x), –1Dα
x φi(x)

)
=

(
xDα

1 Lj+1(x), –1Dα
x Li+1(x)

)
–

(
xDα

1 Lj–1(x), –1Dα
x Li+1(x)

)
–

(
xDα

1 Lj+1(x), –1Dα
x Li–1(x)

)
+

(
xDα

1 Lj–1(x), –1Dα
x Li–1(x)

)
� D(j + 1, i + 1) – D(j + 1, i – 1) – D(j – 1, i + 1) + D(j – 1, i – 1).

By virtue of Lemma 11, we obtain

D(j, i) =
(

xDα
1 Lj(x), –1Dα

x Li(x)
)

=
Γ (i + 1)

Γ (i – α + 1)
Γ (j + 1)

Γ (j – α + 1)

∫ 1

–1
(1 – x)–α(1 + x)–αJα,–α

i (x)J–α,α
j (x) dx

≈ Γ (i + 1)
Γ (i – α + 1)

Γ (j + 1)
Γ (j – α + 1)

M∑
k=0

Jα,–α
i (xk)J–α,α

j (xk)ωk , (45)



Chen et al. Advances in Difference Equations  (2018) 2018:140 Page 17 of 22

Table 1 max |a
1
2
ij | and L1, L2, L∞ norms of A

1
2 = S

1
2 – S for different N

N max |a
1
2
ij | L1 norm L2 norm L∞ norm

10 8.8818e–15 2.9421e–14 1.8203e–14 2.6201e–14
50 9.1038e–14 4.1622e–13 1.5942e–13 4.0790e–13
90 5.9908e–13 1.7258e–12 9.2418e–13 1.8320e–12

Table 2 max |a0ij | and L1, L2, L∞ norms of A0 = S0 –M for different N

N max |a0ij | L1 norm L2 norm L∞ norm

10 7.5495e–15 1.1657e–14 8.1202e–15 1.1657e–14
50 7.9936e–15 2.5934e–14 9.6391e–15 2.5879e–14
90 1.7186e–13 2.3348e–13 1.7794e–13 2.3354e–13

where {xk}, k = 0, 1, . . . , M, are the Jacobi–Gauss–Lobatto points with respect to the weight
function ω–α,–α(x) = (1 + x)–α(1 – x)–α . If M ≥ N + 1, the numerical integration (45) is exact
for all 0 ≤ i, j ≤ N . We can also use Jacobi–Gauss or Jacobi–Guass–Radau quadrature to
calculate Sα

ij [45].

Remark 4 The element of coefficient matrix S ∈ R
(N–1)×(N–1), corresponding to the advec-

tion term ux, is calculated by Sij = (∂xφj,φi) (1 ≤ i, j ≤ N – 1) in the traditional fully discrete
Legendre spectral scheme case. In our numerical scheme, we calculate it in the same way
as that of fractional diffusion term with α = 1

2 . Let A 1
2 = (a

1
2
ij ) = S 1

2 – S, Table 1 lists the
maximum absolute value |a 1

2
ij | as well as L1, L2, and L∞ norms of the matrix A 1

2 for differ-
ent N , respectively. It indicates that matrix S 1

2 obtained by our scheme and matrix S are
considerably similar, so the approach we adopt here is suitable.

Remark 5 In fact, our numerical scheme is also right to calculate the coefficient matrix
M corresponding to the reaction term u with α = 0. Let A0 = (a0

ij) = S0 – M. Table 2 lists
the maximum absolute value |a0

ij| and L1, L2, and L∞ norms of the matrix A0 for different
values of N .

5.2 Numerical example
Example 1 Consider the following SFRADE:

⎧⎪⎪⎨
⎪⎪⎩

ut – –1D2α
x u + ux + u = f (x, t), (x, t) ∈D = Ω × I,

u(x, 0) = eβ (x2 – 1)2, x ∈ Ω ,

u(±1, t) = 0, t ∈ I,

(46)

where Ω = (–1, 1), I = (0, 1], and

f (x, t)

= (α + 1)eαt+β
(
x2 – 1

)2 + 4eαt+βx
(
x2 – 1

)
–

8eαt+β

Γ (5 – 2α)
(x + 1)2–2α

[
3(x + 1)2 – 3(4 – 2α)(x + 1) + (4 – 2α)(3 – 2α)

]
.

The exact solution of (46) is u(x, t) = eαt+β (x2 – 1)2. Here, we select β = –3.
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Table 3 The L2 errors and temporal convergence order with different α and τ for Example 1, N = 50

τ α = 0.55 α = 0.75 α = 0.95

Error Order Error Order Error Order

1/2 1.2653e–04 – 2.6849e–04 – 4.7402e–04 –
1/4 3.1575e–05 2.0027 6.7038e–05 2.0018 1.1908e–04 1.9930
1/8 7.8908e–06 2.0005 1.6764e–05 1.9996 2.9811e–05 1.9981
1/16 1.9730e–06 1.9998 4.2004e–06 1.9968 7.4586e–06 1.9989
1/32 4.9393e–07 1.9980 1.0635e–06 1.9818 1.8967e–06 1.9754

Figure 1 Numerical errors versus polynomial
degree N for Example 1 with different α

To confirm the temporal accuracy, we choose N = 50, which is large enough such that
the spatial error is negligible compared with the temporal error. Table 3 lists the errors
‖u – uN‖ and temporal convergence rates. From the table, we can check that temporal
convergence order, almost second-order, is in accordance with the theoretical result in
Theorem 4.

Next, we investigate the spatial discretization error. We take τ = 0.001 so that the tem-
poral discretization error is negligible compared with the spatial discretization error. As
shown in Fig. 1, the L2 errors of the numerical solution with different values of α decay
exponentially in an approximate line as the polynomial degree N increases. Solution u is
sufficiently smooth with respect to spatial variable x, thus the numerical result coincides
with Theorem 4.

In Fig. 2, comparisons between the exact solution and the numerical solutions of the
present method and the finite difference method are presented at various values of the
final time T and α, respectively, where N = 50. It can be seen that numerical results
of the spectral method much better coincide with the exact solution than those of the
finite difference method. This illustrates that the spectral method is a high accuracy
method.

Example 2 Consider the following SFRADE:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut – 3–1D2α
x u + 2ux = f (x, t), (x, t) ∈D = Ω × I,

u(x, 0) = (1 – x)(x + 1)4, x ∈ Ω ,

u(±1, t) = 0, t ∈ I,

(47)
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Figure 2 Comparisons of the exact solution with the numerical solutions of spectral method and finite
difference method for Example 1 with different α and T , where N = 50

Figure 3 The numerical and the exact solution at
T = 1 for Example 2, taking N = 50

where Ω = (–1, 1), I = (0, 1], and

f (x, t) =
(

π

4
cos

π t
4

+ K3 sin
π t
4

)
(1 – x)(x + 1)4 + K2 sin

π t
4

(x + 1)3(3 – 5x)

–
4!K1

Γ (6 – 2α)
sin

π t
4

(x + 1)4–2α(5 – 5x – 4α).

It is easy to verify that the exact solution of (47) is u(x, t) = sin π t
4 (1 – x)(x + 1)4. The

comparisons of the numerical and the exact solution of problem (47) at t = 1 are shown in
Fig. 3. In this case, we take the time step size τ = 0.0001 and the degree of interpolation
polynomial in spatial direction N = 50. It can be seen that our numerical results are in
excellent agreement with the exact solution.

We take N = 50, a value large enough such that the spatial discretization errors are neg-
ligible compared with the temporal errors, we choose different time step size τ to obtain
the numerical convergence order in time list in Table 4. We consider the errors as a func-
tion of τ , and plot the log-log graph with T = 1 and α = 0.9 in Fig. 4, it coincides with τ 2.
We can check that these numerical convergence orders, almost approaching 2, are consis-
tent with the theoretical analysis in Theorem 4. This demonstrates that our method has
second order convergence in time.
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Table 4 The L2 errors and temporal convergence order with different τ for Example 2, α = 0.9,
N = 50

τ Error Order

1/4 8.9062e–04 –
1/8 2.2084e–04 2.0118
1/16 5.5094e–05 2.0031
1/32 1.3766e–05 2.0008
1/64 3.4411e–06 2.0002

τ Error Order

1/20 3.9736e–05 –
1/40 9.9305e–06 2.0005
1/80 2.4824e–06 2.0001
1/160 6.2059e–07 2.0000
1/320 1.5515e–07 2.0000

Figure 4 Numerical errors versus τ for Example 2,
where α = 0.9

Figure 5 Numerical errors versus polynomial
degree N for Example 2, where α = 0.9

In Fig. 5, we plot the logarithm of errors ‖u – uN‖ as a function of the polynomial de-
gree N at T = 1 with α = 0.9. Figure 5 demonstrates that our method has spectral accuracy
in space for this problem. Obviously, the exponential convergence in spatial discretization
can be seen from the figure which shows almost linear curves. The above numerical exper-
iments state that it is effective and feasible to use spectral method to solve space-fractional
reaction–advection–diffusion equations.

6 Conclusions
In this paper, we have considered the reaction–advection–diffusion equation in the case of
Riemann–Liouville fractional diffusion and integer advection. By treating first order inte-
ger derivative as the composition of two 1

2 -order fractional operators, we construct a new
Crank–Nicolson fully discrete Legendre spectral scheme and a dual auxiliary problem.
The scheme proved to be unconditionally stable and to converge with O(τ 2 + N–m) in L2-
norm. The model problems are given in the case of the left Riemann–Liouville fractional
derivative, but the results are also valid for the right Riemann–Liouville fractional deriva-
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tive case as well as the Riesz fractional derivative. The methodology we present here can
also be suitable for problems in the 2-D and 3-D cases, and a discrete scheme with various
spectral methods and different temporal discretizations will be considered in our future
work.
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