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Abstract
In the present article, we wish to discuss q-analogues of Laplace-type integrals on
diverse types of q-special functions involving Fox’s Hq-functions. Some of the
discussed functions are the q-Bessel functions of the first kind, the q-Bessel functions
of the second kind, the q-Bessel functions of the third kind, and the q-Struve functions
as well. Also, we obtain some associated results related to q-analogues of the
Laplace-type integral on hyperbolic sine (cosine) functions and some others of
exponential order type as an application to the given theory.

Keywords: Jv(x;q) function; Yv(x;q) function; Kv(x;q) function; Hv(x;q) function;
Laplace-type integral

1 Introduction and preliminaries
Quantum calculus is a version of calculus where derivatives are differences and antideriva-
tives are sums, and no further limits are required. The quantum calculus or q-calculus,
compared to the differential and integral calculus, has been very recently named. Hence
some rules and definitions need to be recalled. For 0 < q < 1, the q-calculus starts with
the definition of the q-analogue of the differential and the q-analogue of derivatives as
well. The q-analogue of the integer n, the factorial of n, and the binomial coefficient are
respectively given as

[n]q =
1 – qn

1 – q
,

(
[n]q

)
! =

{∏n
1[k]q, n ∈N

1, n = 0

}

,

[
n
k

]

q

=
n∏

1

1 – qn–k+1

1 – qk . (1)

The q-analogue of (x + a)n (n ∈N) and its q-derivative are respectively given as

(x + a)n
q =

n–1∏

j=0

(
x + qja

)
, Dq(x + a)n

q = [n]q(x + a)n–1
q , (x + a)0

q = 1. (2)

The q-Jackson integrals from 0 to a and from a to b are given as follows (see [1], see also
[2]):

∫ a

0
f (x) dqx = (1 – q)a

∞∑

0

f
(
aqk)qk (3)
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and

∫ a

b
f (x) dqx =

∫ b

0
f (x) dqx –

∫ a

0
f (x) dqx. (4)

The improper q-Jackson integral is given as follows (see [1]):

∫ ∞
A

0
f (x) dqx = (1 – q)

∑

n∈Z

qk

A
f
(

qk

A

)
, A ∈C.

The q-analogues of the gamma function are defined by

�q(α) =
∫ 1

1–q

0
xα–1Eq

(
q(1 – q)x

)
dqx

and

q�(α) = K(A;α)
∫ ∞

A(1–q)

0
xα–1eq

(
–(1 – q)x

)
dqx,

where α > 0 and, for every t ∈R,

K(A; t) = At–1 (–q/A; q)∞
(–qt/A; q)∞

(–A; q)∞
(–Aq1–t ; q)∞

.

Here

(a; q)n =
n–1∏

0

(
1 – aqk), (a; q)∞ =

lim
n → ∞ (a; q)n.

The very useful identities used in this article are (cf. [2])

�q(x) =
(q; q)∞
(qx; q)∞

(1 – q)1–x and (a; q)t =
(a; q)∞

(aqt ; q)∞
, t ∈R.

The q-hypergeometric functions are represented by

rφs

(
a1, a2, . . . , ar

α1,α2, . . . ,αs

∣∣
∣∣
∣
q, z

)

=
∞∑

0

(a1, a2, . . . , ar ; q)n

(α1,α2, . . . ,αs; q)n

zn

(q; q)n

and

m–k�m–1

(
a1, a2, . . . , am–k

α1,α2, . . . ,αm–1

∣
∣∣∣
∣
q, z

)

=
∞∑

0

(a1, . . . , am–k ; q)n

(α1, . . . ,αm–1; q)n

[
(–1)nq(n

2)
]k

× zn

(q; q)n
,

where (a1, a2, . . . , ap; q)n =
∏p

k=0(ak ; q)n.
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2 H-Function and related functions
The H-function, which is an extension of the hypergeometric functions pFq, introduced
by Fox [3] (see also [4, 5]), has found various applications in a huge range of problems asso-
ciated with reaction, reaction diffusion, communication, engineering, fractional differen-
tial equations, integral equations, theoretical physics, and statistical distribution theory
as well. The H-functions have also been recognized to play a fundamental role in frac-
tional calculus with its applications. Fox’s H-function, admitting to a standard notation,
is presented as

Hm,n
p,q (η) =

1
2π i

∫

P
jm,n

p,q (w)ηw dw, (5)

where P is a suitable complex path, ηw = exp{w(log |η| + i argη)}, jm,n
p,q (w) = A(w)B(w)

C(s)D(w) , and

A(w) =
m∏

1

�(bj – βjw), B(w) =
n∏

1

�(1 – aj + αjw),

C(w) =
q∏

m+1

�(1 – bj – βjw), D(w) =
p∏

n+1

�(aj + αjw),

0 ≤ n ≤ p, 1 ≤ m ≤ q, {aj, bj} ∈ C, {αj,βj} ∈ R
+. Let αj and βj be positive integers and

0 ≤ m ≤ N ; 0 ≤ n ≤ M. Then the q-analogue of Fox’s H-function is given as (see [6])

Hm,n
M,N

(

x; q

∣∣
∣∣
∣
(a1,α1), (a2,α2), . . . , (aμ,αM)
(b1,β1), (b2,β2), . . . , (bN ,βN )

)

=
1

2π i

∫

C

∏m
j=1 G(qbj–βjs)

∏n
j=1 G(q1–aj+αjs)πxs

∏N
j=m+1 G(q1–bj+βjs)

∏M
j=n+1 G(qaj–αjs)G(q1–s) sinπs

dqs,

where G is defined in terms of the product

G
(
qα

)
=

∞∏

k=0

(
1 – qα–k)–1 =

1
(qα ; q)∞

. (6)

The contour C is parallel to Re(ws) = 0, such that all poles of G(qbj–βjs), 1 ≤ j ≤ m, are its
right and those of G(q1–aj+αjs), 1 ≤ j ≤ n, are the left of C. The above integral converges if
Re(s log x – log sinπs) < 0, for huge values of |s| on C. Hence,

∣∣arg(x) – w2w–1
1 log |x|∣∣ < π , |q| < 1, log q = –w = –w1 – iw2,

where w1 and w2 are real numbers.
Indeed, for αi = βj = 1, for all i, j, we write the q-analogue of Meijer’s G-function as

Gm,n
M,N

(

x; q

∣
∣∣
∣∣
a1, a1, . . . , aM

b1, b2, . . . , bN

)

=
1

2π i

∫

C

∏m
j=1 G(qbj–s)

∏n
j=1 G(q1–aj+s)πx2

∏N
j=m+1 G(q1–bj+s)

∏M
j=n+1 G(qaj–s)G(q1–s) sinπs

dqs, (7)

where 0 ≤ m ≤ N ; 0 ≤ n ≤ M and Re(s log x – log sinπs) < 0.
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Additionally, the q-analogues of the Bessel function Jv(x) of the first kind, the Bessel
function of Yv(x), the Bessel function of the third kind Kv(x), and Struve’s function Hv(x)
are, respectively, defined in terms of Fox’s Hq-function by [7] as follows:

Jv(x; q) =
{

G(a)
}2H1,0

0,3

(
x2(1 – q)2

4
; q

∣
∣∣∣
∣ ( v

2 , 1), (– v
2 , 1)(1, 1)

)

, (8)

Yv(x; q) =
{

G(a)
}2

× H2,0
1,4

(
x2(1 – q)2

4
; q

∣∣
∣∣∣
(– v–1

2 , 1)
( v

2 , 1), (– v
2 , 1)(– v–1

2 , 1)(1, 1)

)

, (9)

Kv(x; q) = (1 – q)H2,0
0,3

(
x2(1 – q)2

4
; q

∣
∣∣
∣∣ ( v

2 , 1), (– v
2 , 1)(1, 1)

)

, (10)

Hv(x; q) =
(

1 – q
2

)1–α

× H3,1
1,4

(
x2(1 – q)2

4
; q

∣∣
∣∣
∣
( 1+α

2 , 1)
( v

2 , 1), (– v
2 , 1)( v+α

2 , 1)(1, 1)

)

. (11)

In [8] (see also [9]), some q-analogues of the natural exponential functions, sine func-
tions, cosine functions, hyperbolic sine functions, and hyperbolic cosine functions are,
respectively, given in terms of Fox′s H-function as follows:

eq(–x) = G(q)H1,0
0,2

(

x(1 – q); q

∣
∣∣
∣∣ (0, 1)(1, 1)

)

, (12)

sinq(x) =
√

π (1 – q)– 1
2
{

G(q)
}2

× H1,0
0,3

(
x2(1 – q)2

4
; q

∣∣
∣ ( 1

2 , 1)(0, 1)(1, 1)
)

, (13)

cosq(x) =
√

π (1 – q)– 1
2
{

G(q)
}2

× H1,0
0,3

(
x2(1 – q)2

4
; q

∣
∣∣
∣∣ (0, 1)( 1

2 , 1)(1, 1)

)

, (14)

sinhq(x) =
√

π

i
(1 – q)– 1

2
{

G(q)
}2

× H1,0
0,3

(

–
x2(1 – q)2

4
; q

∣
∣∣
∣∣ ( 1

2 , 1)(0, 1)(1, 1)

)

, (15)

coshq(x) =
√

π (1 – q)– 1
2
{

G(q)
}2

× H1,0
0,3

(

–
x2(1 – q)2

4
; q

∣∣
∣∣
∣ (0, 1)( 1

2 , 1)(1, 1)

)

. (16)

On the other hand, some impressive integral transforms also have the corresponding q-
analogues in the concept of q-calculus; they include the q-Laplace transforms [10], the q-
Sumudu transforms [9, 11–13], the q-Wavelet transform [14], the q-Mellin transform [15],
q-E2,1-transform [16], q-Mangontarum transforms [17, 18], q-natural transforms [19], and
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so on. Recently, a number of authors have studied various image formulas for these q-
integral transforms, associated with a variety of special functions. In this sequel, we aim
to investigate the q-analogues of Laplace-type integrals on diverse types of q-special func-
tions involving Fox’s Hq-function.

3 q-Laplace-type transforms for Hq-function
A Laplace-type integral was introduced in [20, 21]. The q-analogues of the Laplace-type
integral of the first kind were defined later by [22] as follows:

qL2
(
f (ξ ); y

)
=

1
1 – q2

∫ y–1

0
ξEq2

(
q2y2ξ 2)f (ξ ) dξ

=
(q2; q2)∞

[2]qy2

∞∑

i=0

q2i

(q2; q2)i
f
(
qiy–1), (17)

whereas the q-analogues of the Laplace-type integral of the second kind were defined by

q�2
(
f (ξ ); y

)
=

1
1 – q2

∫ ∞

0
ξeq2

(
y2ξ 2)dqξ

=
1

[2]q(–y2; q2)∞

∑

i∈Z
q2if

(
qi)(–y2; q2)

i. (18)

For the sake of convenience, we establish some formulas for the qL2 operator. A similar
argument can give certain corresponding results for the operator q�2.

Theorem 1 Let β be a positive real number. Then

qL2
(
ξ 2β–2)(y) =

(q2; q2)∞
[2]qy2(qβ ; q2)∞

.

Proof By using (17), we have

qL2
(
ξ 2β–2; y

)
=

(q2; q2)∞
[2]qy2β

∞∑

i=0

q2i

(q2; q2)i

(
qiy–1)2β–2

=
(q2; q2)∞
[2]qy2β

∞∑

i=0

q2βiy2β–2

(q2; q2)i
.

That is,

qL2
(
ξ 2β–2; y

)
=

(q2; q2)∞
[2]qy2

∞∑

i=0

q2βi

(q2; q2)i
. (19)

By the fact that

eq(z) =
∞∑

i=0

zi

(q; q)i
,
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we have

qL2
(
ξ 2β–2; y

)
=

(q2; q2)∞
[2]qy2 eq2

(
qβ

)

=
(q2; q2)∞

[2]qy2
1

(q2β ; q2)∞
.

This completes the establishment of the belief. �

Theorem 2 Let λ be a complex number. Then

qL2

(

x2λHm,n
M,N

(

γ x2k ; q2

∣∣
∣∣
∣
(a1,α1), . . . , (aM,αM)
(b1,β1), . . . , (bN ,βN )

))

(y)

=
(q2; q2)∞
y2λ+2[2]q

Hm,n+1
M+1,N

(
γ

y2k , q2

∣∣∣
∣∣
(–λ, k), (a1,α1), . . . , (aM,αM)
(b1,β1), . . . , (bN ,βN )

)

,

where 0 ≤ n ≤ m and 0 ≤ m ≤ N and λ is an arbitrary complex number.

Proof Let λ be a complex number. Then by (17) we obtain

qL2

(

x2λHm,n
M,N

(

γ x2k ; q2

∣
∣∣
∣∣
(a1,α1), . . . , (aM,αM)
(b1,β1), . . . , (bN ,βN )

))

(y)

=
1

2π i

∫

c

∏m
j=1 G(q2bj–2βjz)

∏n
j=1 G(q2–2aj+2αjz)πγ z

∏N
j=m+1 G(q2–2bj+2βjz)

∏M
j=n+1 G(q2aj–2αjz)G(q2–2z) sinπz

×q L2
(
x2λ+2kz)(y) dqz. (20)

Let β = λ + kz + 1, then by Theorem 1 we have

qL2
(
x2(λ+kz))(y) =q L2

(
x2B–2)(y) =

(q2; q2)∞
[2]qy2(q2(λ+zk+1); q2)∞

. (21)

By invoking (21) in (20), we get

qL2

(

x2λHm,n
M,N

(

γ x2k ; q2

∣∣
∣∣
∣
(a1,α1), . . . , (aM,αM)
(b1,β1), . . . , (bN ,βN )

))

(y)

=
1

2π i

∫

c

∏m
j=1 G(q2bj–2βjz)

∏n
j=1 G(q2–2aj+2αjz)πγ z

∏N
j=m+1 G(q2–2bj+2βjz)

∏M
j=n+1 G(q2aj–2αjz)G(q2–2z) sinπz

× (q2; q2)∞
[2]qy2(q2(λ+zk+1); q2)∞

dqz. (22)

By inserting the identity

G
(
q2λ+2kz+2) =

1
(q2λ+2kz+2; q2)∞
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in (22) yields

qL2

(

x2λHm,n
M,N

(

γ x2k ; q2

∣∣
∣∣
∣
(a1,α1), . . . , (aM,αM)
(b1,β1), . . . , (bN ,βN )

))

(y)

=
(q2; q2)∞

2π iy2λ+2[2]q

∫

c

∏m
j=1 G(q2bj–2βjz)

∏n
j=1 G(q2–2aj+2αjz)

∏N
j=m+1 G(q2–2bj+2βjz)

∏M
j=n+1 G(q2aj–2αjz)

× G(q1+λ+kz)
G(q2(1–z)) sinπz

π

(
γ

y2k

)z

dqz.

Now, on account of the definition of Hq-function, we may establish that

qL2

(

x2λHm,n
M,N

(

γ x2k ; q2

∣
∣∣
∣∣
(a1,α1), . . . , (aM,αM)
(b1,β1), . . . , (bN ,βN )

))

(y)

=
(q2; q2)∞
y2λ+2[2]q

Hn+1,m
N ,M+1

(

γ x2k ; q2

∣∣
∣∣
∣

(1 – b1,β1), . . . , (1 – bN ,βN )
(1 + λ, k), (1 – a,α1), . . . , (1 – aM,αM)

)

,

provided k < 0.
The proof is completed. �

4 Applications to trigonometric and hyperbolic functions
In this part, we shall give certain natural relevance to the leading results.

Theorem 3 Let eq be defined in terms of (12). Then

qL2
(
eq2 (–x)

)
(y) =

G(q2)(q2; q2)∞
[2]qy2 H1,1

1,2

(
1 – q2

y2 ; q2

∣
∣∣
∣∣
(0, 1)
(0, 1), (1, 1)

)

.

Proof By setting λ = 0, γ = 1 – q2, and k = 1, Theorem 3 immediately follows from Theo-
rem 2. �

The demonstration of this theorem is finished.

Theorem 4 Let sinq be defined in terms of (13). Then we have

qL2
(
sinq2 (x)

)
(y) =

√
π (1 – q2) –1

2 {G(q2)}2

[2]qy4

(
q2; q2)

∞

× H1,1
1,3

(
(1 – q2)2

4y2 ; q2

∣∣
∣∣
∣
(0, 1)
( 1

2 , 1)(0, 1), (1, 1)

)

.

Proof The proof of this theorem indeed follows from substituting the values λ = 0, k = 1,
and γ = (1–q2)2

4 and from multiplying by
√

π (1 – q2) –1
2 {G(q2)}2.

Hence, the proof is completed. �
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Theorem 5 Let cosq be defined in terms of (14). Then

qL2
(
cosq2 (x)

)
(y) =

√
π (1 – q2) –1

2 {G(q2)}2

[2]qy4

(
q2; q2)

∞

× H1,1
1,3

(
(1 – q2)2

4y2 ; q2

∣
∣∣
∣∣
(0, 1)
(0, 1), ( 1

2 , 1), (1, 1)

)

.

Proof Proof follows from Theorem 2 for λ = 0, k = 1, γ = (1–q2)2

4 .
The proof is completed. �

Theorem 6 Let sinhq be defined in terms of (15). Then

qL2
(
sinhq2 (x)

)
(y) =

√
π (1 – q2) –1

2 {G(q2)}2

i[2]qy4

(
q2; q2)

∞

× H1,1
1,3

(
(1 – q2)2

4y2 ; q2

∣∣∣
∣∣
(0, 1)
( 1

2 , 1)(0, 1), (1, 1)

)

.

Proof By using the special case, λ = 0, k = 1, γ = (1–q2)2

4 .
The proof is completed. �

Theorem 7 Let coshq be defined in terms of (16). Then

qL2
(
coshq2 (x)

)
(y) =

√
π (1 – q2) –1

2 {G(q2)}2

[2]qy4

(
q2; q2)

∞

× H1,1
1,3

(
(1 – q2)2

4y2 ; q2

∣∣∣
∣∣
(0, 1)
(0, 1), ( 1

2 , 1), (1, 1)

)

.

Proof The validation of this theorem is identical to that of the previous theorem. �

Theorem 8 Let the Bessel function be defined in terms of (8). Then

qL2
(
Jv

(
x; q2))(y) =

{G(q2)}2

[2]qy4

(
q2; q2)

∞

× H1,1
1,3

(
(1 – q2)2

4y2 ; q2

∣∣
∣∣
∣
(0, 1)
( v

2 , 1), ( –v
2 , 1), (1, 1)

)

.

Proof By setting λ = 0, k = 1, γ = 1–q2

4 and multiplying by {G(q2)}2, the result follows. �

Theorem 9 Let the q-Bessel function of the second kind be defined in terms of (9)–(11).
Then

qL2
(
Yv

(
x; q2))(y) =

{G(q2)}2

[2]qy4

(
q2; q2)

∞

× H2,1
2,4

(
(1 – q2)2

4y2 ; q2

∣
∣∣
∣∣
(0, 1), ( –v

2 , 1)
( v

2 , 1), ( –v
2 , 1), ( –v–1

2 , 1)(1, 1)

)

,
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qL2
(
Kv

(
x; q2))(y) =

(1 – q2)
[2]qy4

(
q2; q2)

∞

× H2,1
1,3

(
(1 – q2)2

4y2 ; q2

∣
∣∣∣
∣
(0, 1)
( v

2 , 1), ( –v
2 , 1), (1, 1)

)

,

qL2
(
Hv

(
x; q2))(y) =

(1 – q2)1–α

21–α[2]qy4

(
q2; q2)

∞

× H3,2
2,4

(
(1 – q2)2

4y2 ; q2

∣
∣∣∣
∣
(0, 1), ( 1–α

2 , 1)
( v

2 , 1), ( –v
2 , 1), ( 1+α

2 , 1)(1, 1)

)

.

Proof Proof of this theorem follows from (9)–(11) and the technique quite similar to that
of Theorems 3–8. We omit the details. �
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