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Abstract
Let U, V and W be three Hilbert spaces and let 87 be a W-valued fractional Brownian

motion with Hurst index H € (%, 1). In this paper, we consider the approximate
controllability of the Sobolev-type fractional stochastic differential equation

DXL (t)] = Ax(8) + f(t,x,) + Bu(t) + G(t)%BH (0, te(0T],
x(t) =), t € (~00,0],

where <D is the Caputo fractional derivative of order @ € (1 — H, 1), the time history
X; : (-00,0] = x¢(0) = x(t + 8) with t > 0 belonging to the phase space %, the control
function u(-) is given in L2([0, T1, V), Bis a bounded linear operator from V into U. Under
some suitable conditions, we show that the system is approximately controllable on
[0, T] and we give an example to illustrate the theory.

MSC: 60G22; 60HO5; 60H10
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1 Introduction

The study of controllability is one of the important parts of mathematical control theory
in both deterministic and stochastic control theory. There are lots of publications working
on control problems of various systems [1-4]. Complete controllability means the systems
can be steered to arbitrary final state while the systems with approximate controllability
just can be steered to a small neighborhood of the final state. Even though the concept
of the approximate controllability is weaker than the complete controllability, it is preva-
lent to consider approximate controllable systems which can be adequate in application
[5-7]. In fact, the approximate controllability of systems represented by nonlinear evolu-
tion equations has been studied by several authors. In [8], Sakthivel et al. studied a class
of control systems governed by the semilinear fractional differential equations in Hilbert
spaces by using the semigroup theory, the fractional power theory and fixed point the-
orem. Fu and Mei [9] investigated the approximate controllability of semilinear neutral
functions differential systems with finite delay.
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Due to the extensive applications in various fields such as science and engineering, frac-
tional differential equations attract more and more attention of experts and scholars. Frac-
tional differential equations may be derived from the particle sticking and trapping phe-
nomena which would be more accurate to describe certain physical phenomena (see, for
examples, [10-12]). In addition, Sobolev-type equation appears in all kinds of physical
problems such as flow of fluid through fissured rocks, thermodynamics, propagation of
long waves of small amplitude (see [13]). Therefore, it is necessary and significative to
study fractional order differential equations of Sobolev-type (see [14, 15] and the refer-
ences therein). The existence and uniqueness of mild solution to Sobolev-type fractional
nonlocal dynamical equations in Banach spaces is shown in [16]. By using the fractional
calculus, semigroup theory and stochastic analysis techniques, [17] considered a class of
nonlinear fractional Sobolev-type stochastic differential equations in a Hilbert space.

On the other hand, the property of long memory is widely used in describing the phe-
nomena in fields like hydrology and geophysics as well as economics and telecommuni-
cations. As an extension of Brownian motion, fractional Brownian motion (fBm) is a self-
similar Gaussian processes which have the properties of long/short-range dependence.
However, in comparison with Brownian motion, the process is neither a semi-martingale
nor a Markov process. For this reason, there are a few publications leaning the systems
which are driven by this type of perturbation. In [18], the authors first studied the frac-
tional Brownian motion in Hilbert spaces and some related stochastic equations. We re-
fer to [19, 20] and the references therein for the details of the theory of stochastic calcu-
lus for fractional Brownian motion. However, it should be emphasized that to the best of
our knowledge the controllability of stochastic functional differential equation of Sobolev-
type driven by fractional Brownian motion has not been studied yet and the aim of this
paper is to do some further research on this problem.

Motivated by these results, in this paper we study the approximate controllability of the

Sobolev-type fractional stochastic differential equations of the form

<DY[Lx(t)] = Ax(t) + f(t,x,) + Bu(t) + o () £ B (¢), te(0,T],
x(t) = ¢(t), t € (—00,0].

In the above system, we assume that

+ °D* is the Caputo fractional derivative of order a € (1 - H, 1),

« A, L are two linear bounded operators on a Hilbert space U,

« Bisabounded linear operator from the Hilbert space V into Hilbert space U,

« the time history x,(0) = x(¢ + 6), £ > 0,

«+ u(-) is a control function on L*([0, T], V),

« B = (BM(¢),t € [0, T]} is a cylindrical fractional Brownian motion with Hurst index

He(3,1),

« the functions f and o are two Borel functions with some suitable conditions.

The paper is organized as follows. In Sect. 2, we represent some preliminaries for
stochastic integral of fractional Brownian motion in Hilbert space. In Sect. 3, we obtain
the approximate controllability results of the Sobolev-type fractional stochastic system

(1.1). In Sect. 4, we give an example as an application.
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2 Preliminaries
In this section, we will introduce some definitions, lemmas and notions which will be used
in the next section.

2.1 Fractional Brownian motion

Let (2, %, (%;), P) be a complete filtered probability space. A fractional Brownian motion
(fBm) gH = {8 (¢), t € [0, T]} with Hurst index H € (0,1) is a mean zero Gaussian process
such that 87(0) = 0 and

1
E(8"(0B"(5) = S (™ + 27 = 1t =)
forall¢,s > 0. When H = 1/2, B coincides with the standard Brownian motion, and when

H# % it is neither a semi-martingale nor a Markov process. The fBm 8 admits the fol-
lowing integral representation:

B (0) = / Kialtr9) aW (0
0

forall £ > 0, where {W(¢),0 < t < T} is a standard Brownian motion and the kernel Ky (t, s)

satisfies

NI
%(t,s)mm(H—%)(t) (t-s)2

with a normalizing constant «y > 0 such that E(8)? = 1. Throughout this paper we as-

I @&

sume that % < H <1 is arbitrary but fixed.
Let H be the completion of the linear space £ generated by the indicator functions 1},
t € [0, T] with respect to the inner product

1
(Lo Lo = 5 (£ + 87 = |2 = s*7).

The mapping

T
E59— plg) = /0 o(s)dp™(s)

is an isometry from £ to the Gaussian space generated by 8 and it can be extended to H,
which is called the Wiener integral with respect to . Consider the operator K}, from £
to L2([0, T]) defined by

T
(K0)O) = [ 905 (05

for ¢ € £. Then the operator K}; is an isometry between £ and L*([0, T]) which can be also
extended to the Hilbert space H.

Lemma 2.1 For every ¢ € H, we have

T T
[ e o= [ (<ip)orawe,
0 0
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We now recall that the definition of stochastic integral of fBm in the Hilbert space V.
Let {B"(£),0 < t < T} be a W-valued .%;-adapted fBm defined on (2, .7, (%), P) with the
representation of the form

B () =) VaBl (B)en t=0,
n=1

where {e,},cn is a complete orthogonal basis in W, and
« {BH,n=1,2,...} is a sequence of independent fBms with the same Hurst index
He(3,1),
+ {Ay;n € N} is a bounded sequence of non-negative real numbers such that Qe, = ey,
+ Qis a non-negative self-adjoint trace class operator with finite trace

[o¢]
TrQ= an < +00.

n=1

Let ¢ : [0, T] — LY(W, U) such that

oo
Z||1<1§(¢Q%en) “Lg([o,T];u) < 0, (21)

where L(W, U) is the space of all Hilbert—Schmidt operators from Q% W to U with norm
Il ||Lg(w,u) defined by

1€ 90w, = EQ7 [ = Tr(6 Q) ZH\F hnenl’.

Definition 2.1 Let ¢ : [0, T] — LY(W, U) satisfy (2.1). We define the stochastic integral
fo )dB'(s) by

/0 o(s)dB"(s) ::; /0 o()Qben dpl!
Z / Ky (9Q7ey))(s) dB(s).

Lemma 2.2 Let ¢ : [0, T] — LY(W, U) satisfy (2.1). Then, for any a,b € [0, T] with a < b
we have

b
E / o(s) dB(s)

a

2 X b
<cHQH -1)(b-a)* )" f le©Qe. | ds.
n=1v4

In addition, Y .7, ||(p(s)Q% e, || is uniformly convergent in t € [0, T, then we have

2

b
E / o(s) dB(s)

a

o b
<cHQH-1)(b-a)* 1y f [0 igan 2s:
n=1v4
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2.2 Some assumptions
In this subsection, we recall that some notions of fractional calculus and give some as-
sumptions for the stochastic system (1.1). Recall that the fractional integral I* of order «

for a function f : [0,00) — R is defined as

w11 fls)
If(zf)—r(a)‘/0 (t—s)l—“ds’ t>0,a>0,

provided the right side is point-wise defined on [0, c0), where I'(-) is the gamma function,
which is defined by I'(x) := fooo t*Le~t dt. Moreover, the Caputo derivative “D* of order o
for a function f € C*([0, 00)) is defined as

1 ALY

Fo ) | Gy =0, > 0n1<acn
o ) T

‘Dif(t) =

If f is an abstract function with values in U, then the integrals appearing in the above
definitions are taken in Bochner’s sense.

To study the stochastic system (1.1), we need some assumptions. Throughout this paper
we assume that U, V, W is three real separable Hilbert spaces with inner products (-, )y,
(-,-)v and (-, -)w, respectively. We first give some conditions about the three operators L,
A, B as follows:

(A1) A and L are two linear unbounded operators on U such that D(A) ¢ U, D(L) C U,

and A is closed,

(A2) D(L) C D(A),

(A3) L7':U — D(U) is compact,

(A4) Bisabounded linear operator from V into U.

Based on the above assumptions (A1), (A2) and the closed graph theorem, the linear oper-
ator AL™!: I — U the bounded, and AL! generates a semigroup {S(¢), ¢ > 0} in U. Denote
M = maxeo [IS()|, IL|l = My and IL71]| = M;.

For x € U, we define two families {7, (¢), ¢ > 0} and {.¥(¢),t > 0} of operators by

T ()% = fo OOL’lsa(Q)S(t“Q)de
and

F()x =« /0 ” L7'0&,(0)S(t70)x db,
where

0> &,(0) = % 2:(—9)"_1 %F(Vux + 1) sin(nra)
n=1 :

is a probability density function defined on (0, 00).

Lemma 2.3 ([21]) The operators 71 (t) and .71 (t) have the following properties:
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(i) Foreveryt=>0, 7.(t) and .7 (t) are linear and bounded, and, moreover, for every
xel

| Z(6)x]| < MM 1%,

MM,
[l
I(a)

|72 =

(i) J.(t) and S(t) are strong continuous and compact.

We now introduce the abstract phase space. For a continuous function / : (—o0,0] —
(0, 00) satisfying

0
[:= / h(t) dt < oo,

(o¢]

we define a phase space %), associated with / as follows (see, Cui and Yan [11]):

1/2

By, = {qb : (-00,0] — U, for any a > 0, (E||¢(9) ”2) is bounded

and measurable functions on [-a, 0] with ¢(0) =0

0 2\1/2
and/ h(s) sup (E||¢(9)” ) ds<oo}.

$<6<0

Clearly, (%, || - l,) is a Banach space if %), is endowed with the norm

0
161, = / ) sup (E|o(@)]")" ds

for ¢ € ABy. According to the definition of the fractional derivative and Caputo derivative,
we rewrite (1.1) as the equivalent integral equation

_ _3;_ ! _ a-1
Lx(t) = ¢(0) + @ ./0 (t—5s) [Ax(s) +f(s,%5) + Bu(s)] ds

1 ! a-1 H
+T0£)/o (t=s)*"o(s)dB"(s). (2:3)

We present the definition of mild solutions of (1.1).

Definition 2.2 An U-valued stochastic process {x(¢), ¢ € [0, T]} is a mild solution of (1.1)
if the next conditions hold:

(i) x(¢) is measurable and .%;-adapted, and «; is %,-valued,

(ii) foreach ¢ € [0, T], x(¢) satisfies the equation

x(t) = T.(t) (L¢>(0)) + / (t—s)* LA - s)[f(s, Xg) + Bu(s)] ds
0
+ /t(t —8)* LA (¢ - s)a (s) dBT (s), (2.4)
0

(i) x(t) = $(#) on (—00,0] such that [|p]|%;, < oo.
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Finally, in order to prove our main statement, we need some conditions on the functions
f and o as follows.
(B1) Let the function f: [0, T] x %, — U is continuous and there exist some constants
Ny >0, k¢ > 0 such that, for £ € [0, T] and &,1 € B,

E[f(t,€) -f&n)|* < NlE - nlla,

for all £ € [0, T] and k¢ = sup,( 7 Ilf (¢, 0)2.
(B2) For the complete orthogonal basis {e, },cx in W, the function o : [0, T] — LYW, U)
satisfy

ad 1
Z |oQ2e, ||L2([0,T],u) <00

n=1

and ) o7, ||o(t)Q% e, || is uniformly convergent in ¢ € [0, T']. In addition, there exist
some £y and § > 0 such that

to to
L[5 100 g ) g s <o

3 Main results

In this section, we will show the approximate controllability of the stochastic system (1.1).
We need to establish the existence of the solution for the stochastic control system and to
show that the corresponding linear part is approximate controllability.

Definition 3.1 The system (1.1) is called approximately controllable on [0, T] if
R(T)=U
with JR(¢) = (x() = x(t, u) : u € L*([0, T], V)}.
Consider the corresponding linear fractional deterministic control system to (1.1)

D¢ [Lx(t)] = Ax(¢) + Bu(t), tel0,T],
%(0) = ¢(0),

(3.1)

and define the relevant operators
T
re= / (T —s)* ' AT - s)BB* /(T —s)ds
0

and

R(a,Tq) = (ol + F()T)_l,
where B* and .#}*(T - s) denote the adjoint operators of B and .¥;(T - s), respectively. It is
clear that the operator I'{ is a linear bounded operator. The fact that the linear Sobolev-

type fractional control system (3.1) is approximately controllable on [0, 7] is equivalent to
the next hypothesis (see, for example, Mahmudov and Denker [22]):
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(Ho) aR(a,T'Y) — 0 in the strong operator topology, as @ — 0*.

Lemma 3.1 (Guendouzi and Idrissi [23]) For any zr € L*(S;U), there exists ¢(t) €
L2(22,L*(0, T; LY)) such that

T
zr = Ezp + / (s)dB(s).
0
Forany A >0and z7 € L?($2; U), we now define the control function u#* as follows:
. T
u(t) = B* (T - t)(kl + FOT)_ [—%(T) (L¢(0)) +Ezr + / o(s) dBH(s)]
0
t
~-B* (T -t) / (M + T T = )L AT - 5)f (s, %,) ds
0
t
-B*S(T-1) f ()J + FsT)fl(T —§)*LAU(T - s)o (s) dB (s). (3.2)
0

Theorem 3.1 (Pachpatte [24]) Let N be a convex subset of a normed linear space X and
let 0 e N.If @ : N — N is a completely continuous operator and

[1(®) := {x €N :x =y dx for somey € (0, 1)},
then either ® has a fixed point or TI(®) is bounded.

Define the space
B, = {x:x S C((—oo, T],L[) withxg =¢ € 93;,}
and let || - ||, be a seminorm defined by

1
I%la = gl + sup (E|x(s)]|*)? xe B
s€[0,T1]

where C((-o0o, T],U) denotes the space of all continuous U-valued stochastic process
{f(t), te (_OO) T]}'

Lemma 3.2 (Li and Liu [25]) Assume that x € B, then, for all t € [0, T], x; € B),. More-

over,

I(E|x@)]*)" <1 sup (E|+(5) 1) + lxoll 5,
se[0,t

where [ = f_ooo h(s)ds is given in Sect. 2.

Theorem 3.2 Assume the conditions (B;), (By) hold, then, for each X > O there exists a mild
solution of (1.1) on (—o0, T), provided that there is a constant % > 0 such that % > 1,
where

MM, T\ M2MZMT*\*
Ki=1-24P( =) Ny(1+4(—2—=—) ]>0,
al(«) ail' (@)



Han and Yan Advances in Difference Equations (2018) 2018:104

~ M MIMET®
Ky = 412(MM1M1)2E||¢0||2[1 + 12(#) ] + 4912,

ail'(x)?
o MM, \* MAMEMET\? 2k T
+121 ra ) 1M "ot ) | +cH(2H - 1)N,
o o o Ol

MAAEMAT\? T
2 1°""B 2 2H-1 by
+961 (705“(“)2 )(EnzTu +cHQH -1)T fo ||w<s>||Lg<W,u>dS)

and Mg = ||B||.

Proof Define the operator ¢ : B, — %, by

¢(t)1 te (—OO, 0]:
Sx(t) = { T.(t)(Lp(0)) + fot(t — 8)* LA (t = s)[f (s, %5) + Bu*(s)] ds
+ [t =5) LIt - ) (s) dBI(s), te (0,7,

forx € 4,.

We will show that & has a fixed point which is a mild solution for system (1.1). For

¢ € By, define

~ ¢ ¢(t)’ te (—OO, 0]’
TL(t)(Lg(0)), te(0,T].

Then g(t) € AB,. Letx(t) = q?(t) +9(8), t € (oo, T]. It is easy to check that x(¢) satisfies (1.1)

if and only if yo = 0 and

o) = f (6= F (= 9)[f 5,75 + §) + Bu*(s)] ds
0
+ /t(t — ) LS (¢t - s)o (s) dB(s).
0

Denote %y = {y € Ba,y0 =0 € By} and let || - ||, be the seminorm in %, defined by

172 _ 1/2
) )

I¥ls = llyollz, + sup (E[y(s)]*)" = Sup (E||y(s)||
s€[0,T]

Forr > 0, weset B, = {y € B, |yll7 < r}. Then B, is a bounded closed convex set in %, for

each . According to Lemma 3.2, we get

e + 3%, < 2(15el%, + 18:12,)

(
4(12 sup. E[|y(s)] +||J’0||L,3h+12 sup E|é(s)] +||¢o||jh)

IA

4(7 sup Eys)]” + 2 sup E| Z0)(260) *+ 10135,

< 4(Pr+ PMAMEAEE |9 (O)|* + 191, ) =1
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for y € B,. Define the mapping V¥ : %, — %, by

Wy(t) = f (t = 8)* L1t - 5)[f (s, b5 +y5) + Bu(s)] ds
0

+ /t(t - 8)* 1Lt - s)o (s) dB™ (s)
0

for t € [0, T]. It is evident that the operator ® has a fixed point if and only if the operator
W has a fixed point. Now, we turn to prove W has a fixed point.
Step 1. We claim that ¥ maps bounded sets into bounded sets of %,. This is equivalent

to show that there exists a positive constant p such that, for each y € B,, one has
2
[ey@], = p.

By (3.2), we obtain

A(MpMM,)? 2

Elw ol = =550y

T
(E”Z(T)(Lqﬁ(O)) I? +E‘ Ezr + / ?(s)dB"(s)
0

2

T ~
+E‘/ (T—s)""l%(T—s)f(s,ys+¢S)ds
0

)

T
+ E‘ / (T = $)* L.F(T - s)o (s) dBM (s)
0

_AMpMM,)?

= Wzli’

i=1
By Lemma 2.2, it is easy to show that
~ 2
I + Iy < (MM M)’E|¢(0) | + 2E |27 ||

T
+2cH(2H - 1)T2H_1/0 |@6s) ”ig(W,U) ds.

By using the Holder inequality, the assumption (B1), (3.3) and Lemma 2.3, we have

T T
135/ (T =) AT -9)| ds/ (T = 51| ST = 9)|E| (s, + @) | ds
0 0
MjN\/[ 2Toz T _
S2( F(a)l) 7/0 (T =) (Nfllys + bsl %, + k) ds

MM, T*\?
Nev' + k) = pr.
( al () > ( fr + f) Mg

<2

For the last part Iy, when « > 1 — H, we have

B(e,2H - 1) 2a+H-1)

T T
_ -l _ o=l _ £2H-2 —
‘/0 /0 (T =) (T -t)* s —t| dsdt 72(0[ TH-1)



Han and Yan Advances in Difference Equations (2018) 2018:104 Page 11 of 18

and

t t
Noi= sup [ [ 6=t e=r s =200y 0 )] g sl <o,
telo,71Jo Jo 2 2

where B(:, -) denotes the Beta function, which imply that

2
I, =E

© LT
> [ @9 - geetedso
n=1

2

0 T
- ZEH /0 (T =5 LAUT =90 ()Q esdBli ()
n=1

o0 T T 1
=;H(2H—1)/0 /0 |(T = 9" AT - 90 (5) Q% e, |

x (T = 0 AT = o () Q2 e, || Is — £ ds it

Y 2 T T
5cH(2H—1)(A1:I;ZI)1> /0 /0 (T = )T = £)* s — ¢|2H2

X ”a(s) ”Lg(\v,w ”G(t) HL(Z)(W,U) dsdt.

Consequently, we get

||2 4(1\/131\4]&/\/11)2

< 4{(MA~41M1)2EH¢(0) |? + 2Ez7 12

E””A(s) = A (a)?

T
+ 2cH(2H — 1) T /0 196 gy s + 115

MM, \?
+cH(2H—1)< I‘(a)) Na}

_ AMpMM,)*
T ()2 "

It follows that

2

t
E|wy)” < sEH /0 (= (=) (5,35 + ) di

2
+3E

ft(t —8)* LA (¢t - )Bul (s) ds
0

2
+3E

/ (= Syt - 5)o(s) dBI(s)
0

< g MMNTT2L
—_— r + K
- ') a2 O s
MpT\* 4(MMM;)?
+
22T ()2

N, +cH(2H — l)N,,] =p <o0.
o

This shows that the first statement holds, i.e., for each y € B,, | Wy(£)||2 < p.
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Step 11. We claim that W maps bounded sets into equicontinuous sets of Z,,. Similar to

the calculation in Step [, for 0 < ; < t, < T, we have

E”‘DJ’(tz) - \Ily(tl)nz

5]
< BEH / (tr = 9)* L1t = )f (5,95 + bs) dls
0

2

- / (b =5 At - 5)f sy + B ds
0

2
+ 3E

/tz (ty — 5)* L.F(ty — 5)Bu’ (s) ds — /tl (t1 — 5)* L.F(t1 — 5)Bu’(s) ds
0 0

+ 3E

‘ / % = 9 St - )0 (5)dB ()
0

2

- / Y (6= At — o (5) B )
0

We estimate /1, /5, /3. Let 0 < ¢ <t < T and § > 0 such that
”«VL(Sz) - LSﬂL(Sl)H <€

for every s1,s; € [0, T] with |s; — s3] < 8. Then, for /; we have

2

Ji < 3EH/O l [(t2 =) = (&1 = ) | S1(t2 — ) (5,5 + B5) ds

t ~ 2
+3E / (=5 [ i(tr = 5) = it — )|/ (5,5 + o) ds
0
ty o 2
+3E / (b= )" S (t2 = $)f (57, + ) dis
151

MM \* (1 a-1 a-1
< (F(a)> /o (61— = (6 — )] ds

x / (=9 = (12 = 9 JE (5,35 + B0) | ds
0

+
o

3t 2 t ~
e / (61— I E | (5,35 + &) ds
0

« ~ 2 ty
PR () [ - el B

M]VIl 2 , 0 » »
<3(M ) i) ([ L9 - )

3(ty — 11)% [ MM, \?
(2 1) <F(a)l) (Nfr,"'kf)'

o

2

3t 2

(Nf7' +kr) + 2
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Analogously, for J; we also have

t 2
2 < BE” / [(ta—5)*" = (t1 = 5)* ]S (82 — 5)Bu (s) ds
0

t 2

+3E (t —s)*! [ﬂ(tz -8)— (k- s)]Bu)‘(s) ds
0

ty 2

+3E / (£, — 8)* 1.7 (8, — s)Bu (s) ds

M[\;IlMB 2 1 a-1 a—1
EB(W) /0 [(tl—s) —(tp — ) ]ds

X / 1 [(tl —8)* T (- s)“_l]EH u*(s) ||2ds
0
20 22 t
+ SM% / (6 — 9 E ()| ds

. 3(ty — 1)* (MMIMB) / (t — )%~ lE”’" (s) ” ds

o
<3 MMM 24(M‘#WVII)zN / n[(t R () G I ’
M -s —(ty—s s
=7\ T )27 ()? o ?
3t2°‘M]2382 4(MpMM;)? 3(ty — 11)% [ MM Mg\ > 4(MpMM, )
o? 2T()2 " a? IM'a) AMM)? "

Asa>1-H, forJ3

2

J3 <3E

/ 1 [(ta—9)*" = (t1 —9)* | L1L(t2 — 8)o (s) dB" (s)
0

t 2
+3E f (6 - [Sults - 9) — Filts - 5)]o(s) dB(s)
0
t 2
+3E f (b — )% LSty — 5)o (s) dBM (s)
<3cH(2H - 1) ( ) / / t-9)""=(ta-9)""]

x [t -0 = (- 1)*]
X ”‘7(5) “Lg(W,U) ”U(t) HL‘ZJ(W,U) |s -t dsdt

+3cH(2H - 1)&2N,

MM \?* (2 2
+3cH(2H - 1)( 1) / / (ty — )" (ty — ) |s — |12
F(O[) t t

o g lo @ gy ds et

Thus, we see that J; (j = 1,2, 3) tends to zero, as t; — f,. It follows from the Arzela—Ascoli
theorem that W is completely continuous.
Step I11. We show that there exists an open set I1 C %), with y # y Wy for y € (0,1) and

y € oIl
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Ify=yWye B, for some y € (0,1). We then have

¥(6) = y{ /0 (= S~ )[f (5,7, + ) + B (9)] ds
+ /t(t —8)* L (- 8)o(s) dBH(s)}
0

for every t € [0, T'. It follows that

2

Elyo)]* < 3EH/0 (=) S = 9)f (5,35 + Bs) ds

2
+ 3E

ft(t —§)* LA (¢ - )Bul(s) ds
0

2
+3E

/ (=S4t - 9o (5)dB ()
0

MM, T*\? ~ MM, T*\?
<6 Nrllye + @ell, + 6\ —=—— | kr

al (o) al (a)
MM MgT*\* MM;\?
3 ) |0+ 3 S | cHRH-1)N,,
al'(a) IM(a)
which implies that

lye + eli%8, < 2(llyelZ, + Il %s,)

=a4(p sE)p]EH YO + EMMEIEE| O] + 1612, ).
s€|0,t

Denote the right side of the above inequality by ¥/ (¢). There exists ¢t* € [0, £] such that
¥(©) = 4(PE|y(")|]” + PMPMIARE O] + 91%,)-

Then, for ¢ € [0, T], we have

[ (MM, T\ MM, T*\?
vz afeloforar ) o oS ) ¥

MAAEMET ~
+ 14#) * ((MM1M1)2E||¢<0) [+ 2E0r

ral (a)?
YN MM, T*\*
+2cHQH -1)T* 1/0 ||¢(S)||i‘2’(w,wds+2<ar-7(la)) Nepr(2)
MM, T*\* MM, \?
2"y ) v v ) )

(MA~41

2
F(O{) ) CH(2H— l)Na] +Z2M2M%M%E||¢(O)“2 + ||¢)||2£ah}'

Page 14 of 18
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Taking the norm on both sides above, it follows that

MM, T*\? MM, T*\?
ool <afes( M ) Mlvol o e ) s

MAM2MET®
N 12(#

2
ral ()2 ) X <(]\/Ij\7[11\/[1)2]5||¢(0)||2 + 2E||z7|1?

MM, T"
ol (a)

T
+2cH(2H—1)T2H-1/ H@(s)||io(wu)ds+2<
0 z»
MM, T\ MM \?
2"ty ) o e (e ) v)

~ 2
.\ 3(M]VI]) cH(2H — 1)N0:| + [2M2M%]~\;I%EH¢(0) ”2 + ”¢”2@h}’

2
) Nlvol:

I'(a)

Killv (@)
K

2
which implies that 5 la < 1, where

'Y o\ 2 2472 o\ 2
K= 1202 (MLTEN N (144 %
ol () ail ()

and

~ M2NPMET®\?
K, = 412(MM1M1)2E||¢0||2[1 + 12(#) ] + 4617,

all ()2
M ;\;I 2 MZMZ M2T® 2 2k T2
p122( 20 (1o T ) | (22 L cHQH - 1N,
T'(a) @il ()? a?
MZMZMZ T« 2 T 2
2 1Vp 2 2H-1 ~
+ 96! (W) (E”ZT” +cHQ2H -1)T /0 ||§0(S) ”L‘Z’(W,LI) ds)'

From the assumption, ||y/||? # %" Set I1 = {y € By, |lyl|> < # + 1}. Then there is no
y € 911 such that y = y Wy for some y € (0,1). By Theorem 3.1, we find that W has a fixed
point. Hence & has a fixed point which is a solution to the system (1.1). d

Theorem 3.3 Assume that the conditions of Theorem 3.2 and (Hy) hold. In addition, the
functions f is uniformly bounded on its domain. Then the fractional control system (1.1) is
approximately controllable on [0, T].

Proof Let x* be a fixed point of the operator ®*. Using the stochastic Fubini theorem, we
can get

T
M(T) =zr - A(M +TT) ™! [—%(T)(L¢(O))+EZT+ f g’i(s)dBH(s):|
0
T
+A/ (A + FsT)fl(T—s)“’lﬁ(T—s)f(s,x?) ds
0
T
+A/ (M + FST)_l(T—s)“’lﬁ(T—s)o(s)dBH(s).
0

It follows from the property of f that there exists C > 0 such that ||f(s,x})|> < C. Then
there is a subsequence denoted by {f(s,x*)} weakly converging to f(s). Thus, from the



Han and Yan Advances in Difference Equations (2018) 2018:104 Page 16 of 18

above equation, we obtain

E[wH(T) - 22|
<5|A(+ T7)  [Ezr - Z(D)(L6(0)]]

T
+ 5cH(2H - 1)T2H’1E/ |2 (A + 1) 5s) Higww ds
; :

T 2
+ 5E</ (T -s)*! ||A()J + FST)_lyL(T—S)[f(s,xﬁ‘) —f(s)] || ds)
0
T 2
+ SE(/ (T -s)*! ||A(M + FST)_lyL(T—S)f(s) H ds)
0

T T
+5cH(2H—1)/ f (T =) YT = )% |s — ¢ 212
0 0

x |2 (M +TT) T AUT - 5)o (s) ”ig(\v,u)

x AL+ TF) AUT = 00 @) g4 ds

On the other hand, by assumption (Hj) for all 0 < s < T, the operator A(Al + I'7)™1 — 0
strongly as A — 0+, and, moreover, ||A(A] + ['7)71|| < 1. Thus, by the Lebesgue dominated
convergence theorem and the compactness of .7 (t), we can get E||x*(T) — zr|?> — 0 as

A — 0+. This gives the approximate controllability of (1.1). O
4 Example

In this section, we will show an example to apply our results above. Consider the Sobolev-

type fractional stochastic functional equation with infinite delay of the following form:

D} 1x(t,3) ~ 3y 6:9)] = Ex(6,9) + £ (65t ~ )

+v(t,y)+o(t)dB:t(t), 0<t<1,h>00<y<], 1)
x(t) 0) = x(tr 1)) 0<t=<1,
x(t,)’) = ¢(t,y), 0 fy < 1,—00 <t< 0,

B (¢) is a cylindrical fractional Brownian motion with Hurst index H € (%, 1).
Take U = L([0,1]). Define the operators A: D(A) Cc U — U and L: D(L) Cc U — U by
Ax =x" and Lx = x — x”, where D(A) and D(L) are given by

{x € U,x and x" are absolutely continuous,x” € U,x(0) = x(1) = O}.

Furthermore, A and L can be written as
o0
Ax = Z (%, %,)%,, % € D(A),
n=1

Lx = Z(l +1°) (%, %0)0, % € D(L),

n=1
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where x,(y) = \/g sin(ny), n=1,2,..., is the orthogonal set of eigenvectors of A. Also, for

xel,
Ea | 2 n?
Llx= —— (X%, %) Xy, AL % = —— (%, %) Xy,
;1+n2< 2% ;1+n2< 2

©
S(t)x = Z emt(x,x,,)xn,
n=1

1
1+ n?

S 00 a2 3
yL(t)(xFZZ f 03 (O)e 17" db (x,,)%,.
n=1 0

Clearly, L™! is compact, bounded with ||L7!|| < 1 and AL™! generates a strongly continuous
semigroup S(¢) on U with ||S(¢)|| < 1.
Let /i(s) = e*,s <0, then [ = f_ooo h(s)ds = % Let %), be a phase space endowed with the

norm

0 2 1
1113, = f ) sup (E[o(0)]")" s

Then (%, || - |l»,) is a Banach space. Define an infinite-dimensional space V by V =
{ulu =302, upxy, with Y 07, u% < oo}. The norm in V is defined by [ully = (3o, ufl)%.

Then define a continuous linear mapping B from V into U as Bu = 2uxy + Y oy UnXy
foru=73 "2, u,x, € V. We assume the operator B: V — U is a bounded linear operator
by Bu(t)(y) = v(t,y). In addition, the linear part corresponding to (4.1) is approximately
controllable. Then the system (4.1) can be written in the abstract form of (1.1). Imposing
all the conditions of corresponding coefficients of Theorem 3.3, we can conclude that the
fractional control system (4.1) is approximately controllable on [0, 1].
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