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Abstract
In this paper, we investigate numerical solution of the variable-order fractional Galilei
advection–diffusion equation with a nonlinear source term. The suggested method is
based on the shifted Legendre collocation procedure and a matrix form
representation of variable-order Caputo fractional derivative. The main advantage of
the proposed method is investigating a global approximation for the spatial and
temporal discretizations. This method reduces the problem to a system of algebraic
equations, which is easier to solve. The validity and effectiveness of the method are
illustrated by an easy-to-follow example.
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1 Introduction
Recently, kinetic equations with fractional derivatives were recognized as a useful tool
for description of anomalous diffusion phenomena. Examples include systems exhibit-
ing underground water pollution, Hamiltonian chaos, disordered medium, dynamics of
protein molecules, reactions in complex systems, motions under the influence of optical
tweezers, and more; see reviews on fractional kinetics [1–4]. The kinetic equations with
time-fractional derivative are used for description of subdiffusion processes, that is, those
for which the mean-squared displacement grows in time slower than linearly [5]. Also,
it describes slow relaxation processes that are characterized by stretched exponential or
power-law response function [6]. It became clear that further theoretical investigations
are required to incorporate adequate tools for description of more realistic random pro-
cesses, which are described by a set of characteristic exponents and are therefore of mul-
tifractional type. An adequate kinetic description of these processes requires the use of
generalized fractional kinetics based on the concept of variable-order fractional (V-OF)
operators. This calculus was proposed in [7, 8] and very recently was introduced in physics
[9, 10].

The V-OF operators are nonlocal with singular kernels, which makes the V-OF models
complicated. Hence, solving V-OF models is also more complicated. Numerical compu-
tation of the V-OF operators is the key to understand the behavior and physical meaning
of the V-OF models. Lin et al. [11] investigated the stability and convergence of an ex-
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plicit finite-difference approximation for a nonlinear V-OF diffusion equation. Chen et
al. [12] proposed two numerical schemes for a V-OF anomalous subdiffusion equation,
one with first-order temporal accuracy and fourth-order spatial accuracy and the other
with second-order temporal accuracy and fourth-order spacial accuracy. Yang et al. [13]
proposed a finite difference scheme for solving V-OF reaction–diffusion equation. Ab-
delkawy et al. [14] proposed a new spectral method to achieve high accurate solution for
the V-OF mobile–immobile advection–dispersion model. Chen et al. [15] proposed a nu-
merical method to estimate the V-OF derivatives of an unknown signal in noisy environ-
ment. Tavares et al. [16] presented a numerical tool to solve partial differential equations
involving V-OF Caputo derivatives. Bhrawy and Zaky [17] proposed a numerical method
for solving the V-OF nonlinear cable equation based on shifted Jacobi collocation proce-
dure together with the shifted Jacobi operational matrix for V-OF derivatives. They also
proposed an accurate and robust approach to approximate solutions of V-OF functional
boundary value problems[18]. Zaky et al. [19] proposed the Jacobi wavelets collocation
approach based on the Jacobi wavelets operational matrix of V-OF derivative for solving
a general class of V-OF differential equations arising in turbulent fluid dynamics. Doha
et al. [20, 21] used polynomial collocation techniques to solve V-OF integro–differential
equations. Moghaddam and Tenreiro Machado [22–24] proposed algorithms based on fi-
nite difference approximations and B-spline interpolation for different definitions of V-OF
derivatives.

Spectral methods are of fundamental importance in computational physics because of
their ability in achieving desired solution with a small number of degrees of freedom,
which often allows gains in accuracy with considerable reduction in computational cost
[25]. Collocation method is one of more applicable types of the spectral methods and is fre-
quently used to solve various types of differential equations, such as the Schrödinger equa-
tion [26, 27], Rayleigh–Stokes equation [28], diffusion equation [29], mobile–immobile
advection–dispersion equation [14], and cable equation [17]. It is well known that the ma-
jority of the fractional differential equations have no exact solutions. Therefore, numerical
methods to obtain an approximate solution have become the preferred approach for such
equations [30–37]. Approaches for numerically approximating the solution of fractional
differential equations have been extensively studied; see, e.g., [38–42].

In this paper, we consider the following V-OF Galilei invariant advection–diffusion
equation [43]:

∂v(x, t)
∂t

+ κ
∂v(x, t)

∂x
= 0D

1–γ (x,t)
t

(
κγ

∂2v(x, t)
∂x2

)
+ f (x, t, v), (1.1)

v(x, 0) = g0(x), 0 < x < L, (1.2)

v(0, t) = g1(t), v(L, t) = g2(t), 0 < t ≤ τ , (1.3)

where 0 < γmin ≤ γ (x, t) ≤ γmax < 1, κγ ,κ > 0, and 0D
1–γ (x,t)
t v(x, t) is the V-OF Riemann–

Liouville derivative. The proposed method is based on the shifted Legendre collocation
procedure and a matrix form representation of variable-order Caputo fractional deriva-
tive.

This paper is organized as follows. In Sect. 2, we first present some preliminaries from
fractional calculus and introduce some properties of the shifted Legendre polynomials.
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In Sect. 3, we derive the operational matrix of the V-OF derivative for the shifted Leg-
endre polynomials. In Sect. 4, the V-OF Galilei invariant advection–diffusion equation
with a nonlinear source term is numerically investigated. In Sect. 5, numerical results are
discussed. Finally, In Sect. 6, we outline the main conclusions.

2 Preliminaries
In this section, we recall some mathematical preliminaries of the V-OF operators (see [44])
and relevant properties of Legendre polynomials (see [25, 45–48]).

Definition 2.1 The Caputo and Riemann–Liouville derivatives of a function v(t) of order
γ , when n – 1 < γ ≤ n ∈N, are defined, respectively, as

C
0 Dγ

t v(t) =
1

�(n – γ )

∫ t

0

v(n)(s)
(t – s)γ –n+1 ds,

0D
γ
t v(t) =

1
�(n – γ )

dn

dtn

∫ t

0

v(s)
(t – s)γ –n+1 ds,

(2.1)

where � represents the Euler gamma function.

Definition 2.2 The V-OF Riemann–Liouville derivative γ (t) is given by

0D
γ (t)
t v(t) =

1
�(n – γ (t))

[
dn

dξn

∫ ξ

0

v(η)
(ξ – η)γ (t)–n+1 dη

]
ξ=t

, (2.2)

where n – 1 < γmin < γ (t) < γmax < n, n ∈N.

Definition 2.3 The V-OF Caputo derivative is given by

C
0 Dγ (t)

t v(t) =
1

�(1 – γ (t))

∫ t

0

dnv(s)
dsn

(t – s)γ (t) ds, (2.3)

where n – 1 < γmin < γ (t) < γmax < n, n ∈N.

The two previous V-OF operators are related by

0D
γ (t)
t v(t) =

n–1∑
r=0

v(r)(0)tr–γ (t)

�(r + 1 – γ (t))
+ C

0 Dγ (t)
t v(t). (2.4)

We introduce the following important relations for the V-OF Caputo derivative (0 <
γ (t) ≤ 1):

C
0 Dγ (t)

t
(
λv(t) + μg(t)

)
= λC

0 Dγ (t)
t v(t) + μC

0 Dγ (t)
t g(t), (2.5)

C
0 Dγ (t)

t tβ =

⎧⎨
⎩

0, β = 0,
�(β+1)

�(β+1–γ (t)) tβ–γ (t), β = 1, 2, . . . .
(2.6)

Now, we present some useful mathematical relations for the shifted Legendre polyno-
mials. The classical Legendre polynomials are defined on [–1, 1] and may be generated
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from the three-term recurrence relation:

Pk+1(t) =
2k + 1
k + 1

tPk(t) –
k

k + 1
Pk–1(t), k ≥ 1,

P0(t) = 1, P1(t) = t.

Let us consider the transform t = 2x
L – 1 to define the orthogonal shifted Legendre poly-

nomials PL,i(x) in x ∈ [0, L]. They satisfy the recurrence relation

PL,i+1(x) =
2i + 1
i + 1

(
2x
L

– 1
)

PL,i(x) –
i

i + 1
PL,i–1(x), i = 1, 2, . . . , (2.7)

where PL,0(x) = 1 and PL,1(x) = 2x
L – 1. The orthogonality property of the shifted Legendre

polynomials is

∫ L

0
PL,j(x)PL,k(x)wL(x) dx = �

L
kδjk , (2.8)

where wL(x) = 1, �L
k = L

2k+1 , and δjk is the Kronecker symbol.
An explicit analytic form of PL,i(x) is given by

PL,i(x) =
i∑

k=0

zL,i,kxk , (2.9)

where

zL,i,k = (–1)i+k (i + k)!
(i – k)!(k!)2Lk , (2.10)

which alternatively may be written in the following matrix form:

�L,M(x) = ZLXM(x), (2.11)

where zL,i,k , i, k = 0, 1, . . . , M, are the matrix entries of ZL,

�L,M(x) =
[
PL,0(x), PL,1(x), . . . , PL,M(x)

]T ,

XM(x) =
[
1, x, x2, . . . , xM]T .

(2.12)

Due to property (2.8), the vector XM(x) may be expressed by means of �L,M(x) as

XM(x) = Z–1
L �L,M(x). (2.13)

Two relations at the endpoints

PL,i(0) = (–1)i, PL,i(L) = 1, (2.14)

will be further useful.
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Assume that v(x) is a square-integrable function with respect to the shifted Legendre
weight function. Then, it can be expressed by means of PL,j(L) as

v(x) =
∞∑
j=0

cjPL,j(x), (2.15)

where the coefficients cj are defined by

cj =
1
�

L
j

∫ L

0
v(x)PL,j(x) dx, j = 0, 1, 2, . . . . (2.16)

The function v(x) can be approximated by the first (M + 1) terms as

vM(x) �
M∑
j=0

cjPL,j(x) = CT�L,M(x), (2.17)

where the shifted Legendre coefficient vector C is given by CT = [c0, c1, . . . , cM]. Accord-
ingly, a function v(x, t) of two variables x ∈ [0, L] and t ∈ [0, τ ] can be approximated by
means of the double-shifted Legendre polynomials as

vN ,M(x, t) =
M∑
i=0

N∑
j=0

ai,jPL,i(x)Pτ ,j(t) = �T
τ ,N (t)A�L,M(x), (2.18)

where the shifted Legendre vectors �τ ,N (t) and �L,M(x) are defined similarly to (2.12), and
A is an (N + 1) × (M + 1) matrix of the form

A =

⎛
⎜⎜⎜⎜⎝

a00 a01 · · · a0M

a10 a11 · · · a1M
...

...
. . .

...
aN0 aN1 · · · aNM

⎞
⎟⎟⎟⎟⎠ , (2.19)

where

aij =
1

�
L
i �

τ
j

∫ L

0

∫ τ

0
v(x, t)PL,i(x)Pτ ,j(t) dt dx, i = 0, 1, . . . , M, j = 0, 1, . . . , N .

3 Operational matrices based on Legendre polynomials
The first-order derivative of the shifted Legendre vector �L,M(x) may be written as

d
dx

�L,M(x) = D(1)
L �L,M(x), (3.1)

where D(1)
L is the (M + 1) × (M + 1) operational matrix of derivatives. Accordingly,

d
dx

�L,M(x) = ZL
d

dx
XM(x) = ZL
MXM(x), (3.2)
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where the dimension of the square matrix 
M is (M + 1) × (M + 1); this matrix is the
operational matrix of derivatives of XM(x), and


M = (λij) with λij =

⎧⎨
⎩

j + 1 for i = j + 1, j = 0, 1, . . . , M – 1,

0 otherwise.
(3.3)

Employing expressions (3.2) and (2.13), we have

d
dx

�L,M(x) = ZL
MZ–1
L �L,M(x) = D(1)

L �L,M(x). (3.4)

Accordingly, we provide

D(1)
L = ZL
MZ–1

L . (3.5)

Repeated use of (3.4) enables us to write

dp

dxp �L,M(x) =
(
D(1)

L
)p

�L,M(x) = D(p)
L �L,M(x), p = 1, 2, . . . . (3.6)

Theorem 3.1 The V-OF Caputo derivative of the shifted Legendre vector �τ ,N (t) is given
by

C
0 Dγ (t)

t �τ ,N (t) = Dτ ,γ (t)�τ ,N (t), (3.7)

where n – 1 < γmin < γ (t) < γmax < n, n ∈N, and Dτ ,γ (t) is an (N + 1) × (N + 1) matrix of the
form

Dτ ,γ (t) = Zτ BZ–1
τ , (3.8)

where Zτ is defined in (2.11), and B is an (N + 1) × (N + 1) matrix with elements bij, 0 ≤
i, j ≤ N , defined by

bij =

⎧⎨
⎩

�(i+1)t–γ (t)

�(i+1–γ (t)) for i = j, j = n, n + 1, . . . , N ,

0 otherwise.
(3.9)

Proof Using (2.12) and (2.13) yields

C
0 Dγ (t)

t �τ ,N (t) = C
0 Dγ (t)

t
[
Pτ ,0(t), Pτ ,1(t), . . . , Pτ ,N (t)

]T = Zτ
C
0 Dγ (t)

t XN (t). (3.10)

This, together with (2.6), leads to

C
0 Dγ (t)

t XN (t) =
[

0, . . . ,
�(n + 1)

�(n + 1 – γ (t))
tn–γ (t),

�(n + 2)
�(n + 2 – γ (t))

tn+1–γ (t), . . . ,

�(N + 1)
�(N + 1 – γ (t))

tN–γ (t)
]T

= BXN (t), (3.11)
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where B is an (N + 1) × (N + 1) matrix with entries bij, 0 ≤ i, j ≤ N . Equations (3.10) and
(3.11) yield

C
0 D

γ (t)
t �τ ,N (t) = Zτ BXN (t). (3.12)

Since Zτ is invertible, we have

C
0 Dγ (t)

t �τ ,N (t) = Zτ BZτ
–1Zτ XN (t) = Zτ BZτ

–1�τ ,N (t)

= Dτ ,γ (t)�τ ,N (t), (3.13)

where Dτ ,γ (t) = Zτ BZτ
–1 is an upper triangular matrix. �

This theorem is a generalization of that in [48], where 0 < γmin < γ (t) < γmax < 1 and τ = 1.

4 The collocation method
After the construction of the V-OF differentiation matrices of Caputo type, we now use
the Legendre–Gauss–Lobatto collocation technique in combination with the shifted Leg-
endre operational matrix of V-OF fractional differentiation.

First, v(x, t) is approximated by means of the double-shifted Legendre polynomials as

vN ,M(x, t) =
M∑
i=0

N∑
j=0

ai,jPL,i(x)Pτ ,j(t) = �T
τ ,N (t)A�L,M(x), (4.1)

where A is an (N + 1) × (M + 1) unknown matrix.
Employing Eqs. (2.4), (2.5), (3.6), (3.7), and (4.1), we obtain

0D
1–γ (x,t)
t

(
∂2v(x, t)

∂x2

)
= C

0 D1–γ (x,t)
t

(
∂2v(x, t)

∂x2

)
+

∂2v(x, t)
∂x2

∣∣∣∣
t=0

tγ (x,t)–1

�(γ (x, t))

= �T
τ ,N (t)DT

τ ,1–γ (x,t)AD(2)
L �L,M(x)

+ �T
τ ,N (0)AD(2)

L �L,M(x)
tγ (x,t)–1

�(γ (x, t))
, (4.2)

∂v(x, t)
∂t

= �T
τ ,N (t)

(
D(1)

τ

)T A�L,M(x), (4.3)

∂v(x, t)
∂x

= �T
τ ,N (t)AD(1)

L �L,M(x), (4.4)

v(x, 0) = �T
τ ,N (0)A�L,M(x),

v(0, t) = �T
τ ,N (t)A�L,M(0),

v(L, t) = �T
τ ,N (t)A�L,M(L).

(4.5)

By (4.1)–(4.5) we have

�T
τ ,N (t)

(
D(1)

τ

)T A�L,M(x) + κ
[
�T

τ ,N (t)AD(1)
L �L,M(x)

]

= κγ

[
�T

τ ,N (t)DT
τ ,1–γ (x,t)AD(2)

L �L,M(x)
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+ �T
τ ,N (0)AD(2)

L �L,M(x)
tγ (x,t)–1

�(γ (x, t))

]

+ f
(
x, t,�T

τ ,N (t)A�L,M(x)
)
, (4.6)

�T
τ ,N (0)A�L,M(x) = g0(x),

�T
τ ,N (t)A�L,M(0) = g1(t),

�T
τ ,N (t)A�L,M(L) = g2(t).

(4.7)

Let xi (0 ≤ i ≤ M) be the shifted Legendre–Gauss–Lobatto nodes, and let tj (0 ≤ j ≤ N – 1)
be the shifted Legendre roots of Pτ ,N (t), where Pτ ,N (tj) = 0 (0 ≤ j ≤ N – 1). Substituting
these nodes into (4.6)–(4.7), we can rewrite the collocation scheme as follows:

�T
τ ,N (tj)

(
D(1)

τ

)T A�L,M(xi) + κ
[
�T

τ ,N (tj)AD(1)
L �L,M(xi)

]

= κγ

[
�T

τ ,N (tj)DT
τ ,1–γ (xi,tj)AD(2)

L �L,M(xi)

+ �T
τ ,N (0)AD(2)

L �L,M(xi)
tγ (xi ,tj)–1

�(γ (xi, tj))

]

+ f
(
xi, tj,�T

τ ,N (tj)A�L,M(xi)
)
,

1 ≤ i ≤ M – 1 (0 ≤ j ≤ N – 1), (4.8)

�T
τ ,N (0)A�L,M(xi) = g0(xi), 0 ≤ i ≤ M,

�T
τ ,N (tj)A�L,M(x0) = g1(tj), 0 ≤ j ≤ N – 1,

�T
τ ,N (tj)A�L,M(xM) = g2(tj), 0 ≤ j ≤ N – 1.

(4.9)

These equations can be combined to produce a nonlinear algebraic system. Therefore, the
coefficients ai,j, i = 0, 1, . . . , M, j = 0, 1, . . . , N , can be achieved. As a result, the approximate
solution vN ,M(x, t) can be evaluated.

5 Numerical example
Consider the V-OF Galilei invariant advection–diffusion equation

∂v(x, t)
∂t

+
∂v(x, t)

∂x
= 0D

1–γ (x,t)
t

(
∂2v(x, t)

∂x2

)
+ R(x, t, v) (5.1)

with the initial and boundary conditions

v(x, 0) = 0, 0 < x < 1,

v(0, t) = t2, v(1, t) = et2, 0 < t ≤ 1,
(5.2)

where

R(x, t, v) = v(x, t) – v2(x, t) + ext
(

2 + ext3 – 2
tγ (x,t)

�(2 + γ (x, t))

)
. (5.3)

The exact solution is

v(x, t) = ext2.
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Table 1 The maximum absolute errors

γ (x, t) Method [43] Proposed method

τ 2 = h2 = 1
256 N =M = 4 N =M = 8 N =M = 12

10–xt
300 1.1311× 10–4 41806× 10–5 4.8553× 10–11 6.5749× 10–16

20–ext
600 9.2323× 10–5 4.1813× 10–5 4.8554× 10–11 9.9033× 10–16

12+x3–t5
300 3.7142× 10–4 4.1810× 10–5 3.9710× 10–11 6.0284× 10–16

15+cos(xt)
450 3.7155× 10–5 4.1810× 10–5 3.9711× 10–11 5.4710× 10–16

10–sin(xt)
310 9.6551× 10–5 4.1808× 10–5 4.8554× 10–11 7.0597× 10–16

10+(xt)2–(xt)3
300 1.2258× 10–5 4.1808× 10–5 4.8552× 10–11 6.9103× 10–16

13–xt+cos(xt)
400 1.6057× 10–4 4.1804× 10–5 4.8551× 10–11 6.0096× 10–16

11+(xt)2–sin(xt)
330 2.0982× 10–5 4.1815× 10–5 4.8553× 10–11 5.3889× 10–16

18–sin2(xt)+cos3(xt)
630 9.0181× 10–5 4.1785× 10–5 4.8618× 10–11 4.9293× 10–16

Figure 1 The space-time graphs of the AE functions at γ (x, t) = 16+(xt)2–sin3(xt)+cos4(xt)
500

We compare our results with those obtained by Chen et al. [43]. For various choices
of γ (x, t), N , and M, the maximum absolute errors are listed in Table 1. Meanwhile, the
results of [43] are presented in the first column of this table. Obviously, our method is
more accurate than the method proposed in [43]. Moreover, Fig. 1 displays the space-time
graph of the absolute error (AE) functions between the approximate and exact solutions
for γ (x, t) = 16+(xt)2–sin3(xt)+cos4(xt)

500 with N = M = 6 and N = M = 12, respectively. To demon-
strate the convergence of the proposed method, in Fig. 2, we plot the logarithmic graph of
the maximum absolute errors (log10 Error) with γ (x, t) = 10–sin(xt)

310 . The numerical results of
this example show that the numerical errors decay rapidly as N increases. Also, all values
of γ (x, t) are accurate and can be simply obtained.

6 Conclusions
In this paper, we proposed an efficient method for solving the V-OF Galilei invariant
advection–diffusion equation with a nonlinear source term. The proposed method based
on the Legendre–Gauss–Lobatto collocation technique combined with the associated op-
erational matrices of V-OF derivatives. This algorithm was employed for solving a class of
variable-order fractional differential equations. The method has the advantage of trans-
forming the problem into the solution of a system of algebraic equations, which greatly
simplifies it. Finally, we presented a numerical example to demonstrate the efficiency of
the proposed method.
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Figure 2 Convergence of problem (5.1)
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