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Abstract
In this paper, we investigate the problem of finite-time stability (FTS) of linear
non-autonomous systems with time-varying delays. By constructing an appropriated
function, we derive some explicit conditions in terms of matrix inequalities ensuring
that the state trajectories of the system do not exceed a certain threshold over a
pre-specified finite time interval. Finally, two examples are given to show the
effectiveness of the main results.
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1 Introduction
During the past decades, finite time stability (FTS) in linear systems has received con-
siderable attention since it was first introduced in 1960s. FTS is a system property which
concerns the quantitative behavior of the state variables over an assigned finite-time in-
terval. A system is FTS if, given a bound on the initial condition, its state trajectories do
not exceed a certain threshold during a pre-specified time interval. Hence, FTS enables us
to specify quantitative bounds on the state of a linear system and plays an important role
in addressing transient performances of the systems. Therefore, in recent years, many in-
teresting results for FTS have been proposed, see [1–5] for instances. It should be noticed
that FTS and Lyapunov asymptotic stability (LAS) are completely independent concepts.
Indeed, a system can be FTS but not LAS, and vice versa [6–8]. Asymptotic stability in
dynamical systems implies convergence of the system trajectories to an equilibrium state
over the infinite horizon. However, in practice, it is desirable that a dynamical system
possesses FTS, that is, its state norm does not exceed a certain threshold in finite time.
Furthermore, LAS is concerned with the qualitative behavior of a system and it does not
involve quantitative information (e.g., specific estimates of trajectory bounds), whereas
FTS involves specific quantitative information.

In the process of investigating linear systems, time delays are frequently encountered
[9–12]. And in hardware implementation, time delays usually cause oscillation, instabil-
ity, divergence, chaos, or other bad performances of neural networks. In recent years, var-
ious interesting results have been obtained for the FTS of linear autonomous systems. For
linear time-invariant systems with constant delay, some finite-time stability conditions
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have been derived in terms of feasible linear matrix inequalities based on the Lyapunov–
Krasovskii functional methods [6, 13–17]. It is worth noting that non-autonomous phe-
nomena often occur in many realistic systems; for instance, when considering a long-term
dynamical behavior of the system, the parameters of the system usually change along with
time [18–22]. Moreover, stability analysis for non-autonomous systems usually requires
specific and quite different tools from the autonomous ones (systems with constant co-
efficients). To our knowledge, there are a few results concerned with the FTS of non-
autonomous systems with time-varying delays. In addition, it should be noted that the
conditions for FTS of the time-varying system are usually based on the Lyapunov or Ric-
cati matrix differential equation [7, 23, 24], which leads to indefinite matrix inequalities
and lacks effective computational tools to solve them. Therefore, when dealing with the
FTS of time-varying systems with delays, an alternative approach is clearly needed, which
motivates our present investigation.

In present paper, the problems of FTS are investigated for linear non-autonomous sys-
tems with discrete and distributed time-varying delays. By constructing an appropriated
function, some sufficient conditions are derived to guarantee the FTS of the addressed
linear non-autonomous systems. We do not impose any restriction on the states of the
system in this sense, which is better than the results in [25]. The rest of this paper is orga-
nized as follows. In Sect. 2, some notations, definitions, and a lemma are given. In Sect. 3,
we present the main results. Two examples are provided in Sect. 4 to demonstrate the
effectiveness of the proposed criteria. Section 5 shows the summary of this paper.

2 Preliminaries
Notations Let R denote the set of real numbers, R+ the set of positive numbers, Rn

the n-dimensional real spaces equipped with the norm ‖x‖∞ = maxi∈n
¯
|xi| and R

n×m the
n × m-dimensional real spaces. I denotes the identity matrix with appropriate dimen-
sions and � = {1, 2, . . . , n}. For any interval J ⊆ R, set S ⊆R

k (1 ≤ k ≤ n), C(J , S) = {ϕ : J →
S is continuous}. F = {μ : R+ →R+ is continuously differentiable} and A ∨ B = max{A, B}
for constants A and B. u = (ui), v = (vi) in R

n, u ≥ v iff ui ≥ vi, ∀i ∈ �; u � v iff ui > vi,
i ∈ �.

Consider the following linear non-autonomous system with time-varying delays:

⎧
⎨

⎩

ẋ(t) = A(t)x(t) + D(t)x(t – τ (t)) + G(t)
∫ t

t–κ(t) x(s) ds, t ≥ 0,

x(t) = φ(t), t ∈ [–d, 0],
(1)

where x(t) ∈ R
n is the state; A(t) = (aij(t)) ∈ R

n×n, D(t) = (dij(t)) ∈ R
n×n, and G(t) =

(gij(t)) ∈ R
n×n are the system matrices; τ (t) and κ(t) are time-varying delays satisfying

0 ≤ τ ≤ τ (t) ≤ τ̄ , 0 ≤ κ(t) ≤ κ̄ , t ≥ 0; φ(t) = (φi(t)) ∈ C([–d, 0],Rn) is the initial condition,
where d = τ̄ ∨ κ̄ . Denote |φi| = sup–d≤t≤0 |φi(t)| and ‖φ‖∞ = maxi∈� |φi|.

Definition 1 (Amato et al. [7]) Assume that x(t,φ) = x(t, 0,φ) is the solution of system (1)
through (0,φ). Given three positive constants r1, r2, T with r1 < r2, linear non-autonomous
system (1) is said to be FTS with respect to (T , r1, r2) if

‖φ‖∞ ≤ r1
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implies that

∥
∥x(t,φ)

∥
∥∞ ≤ r2, t ∈ [0, T].

Definition 2 (Liao et al. [26]) Let I := [0, +∞), f (t) ∈ C(I,R). For any t ∈ I , the following
derivative

D+f (t) := lim
h→0+

1
h
(
f (t + h) – f (t)

)
= lim

h→0+
sup

1
h
(
f (t + h) – f (t)

)

is called right-upper derivative of f (t).

Let A(t) = (aij(t)), D(t) = (dij(t)), and G(t) = (gij(t)) be given matrices with continuous
elements. We make the following assumptions which are usually used for a time-varying
system (also see [27]). For given T > 0, assume that:

(A1) aii(t) ≤ āii, i ∈ �, |aij(t)| ≤ āij, i �= j, i, j ∈ �, t ∈ [0, T].
(A2) |dij(t)| ≤ d̄ij, |gij(t)| ≤ ḡij, i, j ∈ �, t ∈ [0, T].

We denote A = (āij), D = (d̄ij), G = (ḡij). Next, we recall here some properties of a Metzler
matrix. For more details, one can refer to [28]. A matrix A = (aij) is called a Metzler matrix
if aij ≤ 0 whenever i �= j and all principal minors of A are positive. The following lemma is
used in our main results.

Lemma 1 (Hien et al. [29]) Let A = (aij) be an off-diagonal non-positive matrix, aii > 0,
i ∈ �. Then the following statements are equivalent:

(i) A is a nonsingular M-matrix.
(ii) Reλk(A) > 0 for all eigenvalues λk(A) of A.

(iii) There exist a matrix B ≥ 0 and a scalar s > ρ(B) such that A = sIn – B, where
ρ(B) = max{|λk(A)|} denotes the spectral radius of B.

(iv) There exist a vector ξ ∈ R
n and ξ � 0 such that Aξ � 0.

(v) There exist a vector η ∈R
n and η � 0 such that ATη � 0.

3 Main results
We are now in a position to state our main result as follows. In this section, we shall in-
vestigate the FTS of the linear non-autonomous system by constructing an appropriated
function and using the Metzler matrix method.

Theorem 1 Under assumptions (A1) and (A2), linear non-autonomous system (1) is FTS
with respect to (T , r1, r2), if there exist three positive scalars r1, r2, and T with r1 < r2, a
function μ(t) ∈ F , and three constants βi, i = 1, 2, 3, satisfying

(
μ(t) ∨ 1

) ≤ mr2

Mr1
, t ∈ [0, T],

μ(t – τ (t))
μ(t)

≤ β1,

∫ t
t–κ(t) μ(s) ds

μ(t)
≤ β2,

μ′(t)
μ(t)

≥ β3.
(2)

Moreover, there exists a vector ξ ∈R
n such that

M0ξ � 0, (3)

where M0 = A + β1D + β2G – β3I , m = mini∈� ξi, M = maxi∈� ξi.
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Proof If there exists ξ ∈R
n satisfying (3), then we have

(A + β1D + β2G – β3I)ξ � 0,

that is,

n∑

j=1

(āij + β1d̄ij + β2ḡij)ξj ≤ β3ξi, ∀i ∈ �. (4)

For convenience, let x(t) = x(t, 0,φ) be the solution of (1) through (0,φ). It follows from (1)
that

D+∣
∣xi(t)

∣
∣ = sgn

(
xi(t)

)
ẋi(t)

≤ aii(t)
∣
∣xi(t)

∣
∣ +

n∑

j=1,j �=i

∣
∣aij(t)

∣
∣
∣
∣xj(t)

∣
∣ +

n∑

j=1

∣
∣dij(t)

∣
∣
∣
∣xj

(
t – τ (t)

)∣
∣

+
n∑

j=1

∣
∣gij(t)

∣
∣
∫ t

t–κ(t)

∣
∣xj(s)

∣
∣ds

≤ āii
∣
∣xi(t)

∣
∣ +

n∑

j=1,j �=i

āij
∣
∣xj(t)

∣
∣ +

n∑

j=1

d̄ij
∣
∣xj

(
t – τ (t)

)∣
∣

+
n∑

j=1

ḡij

∫ t

t–κ(t)

∣
∣xj(s)

∣
∣ds, ∀t ≥ 0, i ∈ �, (5)

where D+ denotes the Dini upper-right derivative.
Denote the functions Vi(t), i ∈ �, as follows:

Vi(t) =

⎧
⎨

⎩

1
m‖φ‖∞ξi, t ∈ [–d, 0),
1
m‖φ‖∞ξi(μ(t) ∨ 1), t ∈ [0, T],

we have

āiiVi(t) +
n∑

j=1,j �=i

āijVj(t) +
n∑

j=1

d̄ijVj
(
t – τ (t)

)
+

n∑

j=1

ḡij

∫ t

t–κ(t)
Vj(s) ds

=
1
m

‖φ‖∞

(

āiiμ(t)ξi +
n∑

j=1,j �=i

āijμ(t)ξj +
n∑

j=1

d̄ijμ
(
t – τ (t)

)
ξj +

n∑

j=1

ḡijξj

∫ t

t–κ(t)
μ(s) ds

)

=
1
m

‖φ‖∞μ(t)

(

āiiξi +
n∑

j=1,j �=i

āijξj +
n∑

j=1

d̄ij
μ(t – τ (t))

μ(t)
ξj +

n∑

j=1

ḡijξj

∫ t
t–κ(t) μ(s) ds

μ(t)

)

≤ 1
m

‖φ‖∞μ(t)

(

āiiξi +
n∑

j=1,j �=i

āijξj +
n∑

j=1

d̄ijβ1ξj +
n∑

j=1

ḡijβ2ξj

)

≤ 1
m

‖φ‖∞μ(t)
n∑

j=1

(āij + β1d̄ij + β2ḡij)ξj
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≤ 1
m

‖φ‖∞μ(t)β3ξi

≤ 1
m

‖φ‖∞μ(t)
μ′(t)
μ(t)

ξi

=
1
m

‖φ‖∞μ′(t)ξi, ∀t ∈ [0, T], i ∈ �. (6)

Thus, it follows from (6) that

V̇i(t) ≥ āiiVi(t) +
n∑

j=1,j �=i

āijVj(t) +
n∑

j=1

d̄ijVj
(
t – τ (t)

)
+

n∑

j=1

ḡij

∫ t

t–κ(t)
Vj(s) ds, t ≥ 0.

We claim that

∣
∣xi(t)

∣
∣ ≤ Vi(t), ∀t ∈ [0, T], i ∈ �.

Let

ρi(t) =
∣
∣xi(t)

∣
∣ – Vi(t), t ≥ –d.

Then we have

∣
∣xi(t)

∣
∣ ≤ |φi| ≤ ‖φ‖∞ ≤ 1

m
ξi‖φ‖∞ = Vi(t), t ∈ [–d, 0],

and hence

ρi(t) ≤ 0, t ∈ [–d, 0], i ∈ �.

Next, we claim

D+ρi(t) ≤ 0, t ∈ [0, T].

If not, assume that there exist an index i ∈ � and t1 ∈ (0, T] such that

ρi(t1) = 0, ρi(t) > 0, t ∈ (t1, t1 + δ), δ > 0

and

ρj(t) ≤ 0, ∀t ∈ [–d, t1], j ∈ �.

Then

D+ρi(t1) > 0.

However, it follows from (5) and (6) that for t ∈ [0, t1],

D+ρi(t) ≤ āiiρi(t) +
n∑

j=1,j �=i

āijρj(t) +
n∑

j=1

d̄ijρj
(
t – τ (t)

)
+

n∑

j=1

ḡij

∫ t

t–k(t)
ρj(s) ds

≤ āiiρi(t),
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therefore,

D+ρi(t1) ≤ 0,

which yields a contradiction. This shows that

ρi(t) ≤ 0, t ∈ [0, T], i ∈ �,

thus, we obtain

∣
∣xi(t)

∣
∣ ≤ 1

m
‖φ‖∞ξi

(
μ(t) ∨ 1

)
, t ∈ [0, T], i ∈ �.

Consequently,

∥
∥x(t)

∥
∥∞ ≤ 1

m
‖φ‖∞‖ξ‖∞

(
μ(t) ∨ 1

) ≤ M
m

‖φ‖∞
(
μ(t) ∨ 1

)
, t ∈ [0, T]. (7)

If ‖φ‖∞ ≤ r1, then it follows from (2) and (7) that

∥
∥x(t)

∥
∥∞ ≤ r2, ∀t ∈ [0, T].

This shows that system (1) is FTS with respect to (T , r1, r2). The proof is complete. �

Corollary 1 Under assumptions (A1) and (A2), linear non-autonomous system (1) is FTS
with respect to (T , r1, r2) if there exist three positive scalars r1, r2, and T with r1 < r2, a
function μ(t) that is monotonous increasing and μ(t) ≥ 1, t ∈ [0, T], and three constants
βi, i = 1, 2, 3, satisfying

μ(T) ≤ mr2

Mr1
, t ∈ [0, T],

μ(t – τ (t))
μ(t)

≤ β1,

∫ t
t–κ(t) μ(s) ds

μ(t)
≤ β2 = κ̄ ,

μ′(t)
μ(t)

≥ β3.

Moreover, there exists a vector ξ ∈R
n such that

M0ξ � 0,

where M0 = A + β1D + κ̄G – β3I , m = mini∈� ξi, M = maxi∈� ξi.

Corollary 2 Under assumptions (A1) and (A2), linear non-autonomous system (1) is FTS
with respect to (T , r1, r2), if there exist three positive scalars r1, r2, and T with r1 < r2, a
function μ(t) ≡ μ > 0, and three scalars βi, i = 1, 2, 3, satisfying

μ ≤ mr2

Mr1
, t ∈ [0, T],

1 ≤ β1, κ(t) ≤ β2, β3 ≤ 0.



Yang and Li Advances in Difference Equations  (2018) 2018:101 Page 7 of 10

Moreover, there exists a vector ξ ∈R
n such that

M0ξ � 0,

where M0 = A + β1D + β2G – β3I , m = mini∈� ξi, M = maxi∈� ξi.

Remark 1 In [25], Hien considered the FTS of system (1) and derived some conditions
for exponential estimation. In this paper, we study the FTS of system (1) via the auxiliary
function μ, and some new sufficient conditions for FTS, which are different from the re-
sults in [25], are derived. In other words, our development result is more general than the
result in [25].

4 Example
In this section, we present two numerical examples to illustrate the effectiveness of the
proposed results.

Example 1 Consider the following system:

ẋ(t) = A(t)x(t) + D(t)x
(
t – τ (t)

)
+ G(t)

∫ t

t–κ(t)
x(s) ds, t ≥ 0, (8)

where

A(t) =

(
–4 | cos t|

sin2 2t –4

)

, D(t) =

(
sin2 t | cos 2

√
t|

0 cos2 t

)

,

G(t) =

(
| sin

√
t| 0

sin2 3t | cos 2t|

)

,

and τ (t) = | sin 4t|, κ(t) = | cos t|.
It is easy to see that (A1) and (A2) hold, and then we have

A =

(
–4 1
1 –4

)

, D =

(
1 1
0 1

)

, G =

(
1 0
1 1

)

.

Let

μ(t) = 1 + 0.01t, t ≥ 0.

Thus, we have

μ(t – τ (t))
μ(t)

=
1 + 0.01(t – τ (t))

1 + 0.01t
≤ 1,

∫ t
t–κ(t) μ(s) ds

μ(t)
=

∫ t
t–κ(t)(1 + 0.01s) ds

1 + 0.01t
≤ (1 + 0.01t)κ(t)

1 + 0.01t
= κ(t) ≤ κ̄ ,

μ′(t)
μ(t)

=
0.01

1 + 0.01t
≥ 0.01

1 + 0.01T
.
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Figure 1 Simulation for Example 1 when (T , r1, r2) = (21.3144, 1, 1.213144)

Let

β1 = 1, β2 = κ̄ , β3 =
0.01

1 + 0.01T
.

It should be noted that system (8) does not satisfy the Lyapunov stability conditions pro-
posed in [27]. More precisely, in this case the matrix M = A + D + κ̄G is not invertible,
and hence it does not satisfy conditions of Theorem 2.5 in [27]. However, M0 = M – β3I
satisfies (3) and the domain of the solution ξ ∈ R2 of (3) is defined by 2

2+β3
ξ1 < ξ2 < 2+β3

2 ξ1.
Case I. Let us take r1 = 1, r2 = 1.25, and then system (8) is FTS with respect to (T , r1, r2)

for any finite time 0 < T ≤ Tmax = 25, and in this case β3 = 0.08. Note that in [25], the
maximum value of T is Tmax = 21.3144. Hence, our result is more general than [25].

Case II. Let us take r1 = 1, when T = 21.3144, we obtain β3 = 0.8243 and r2 = 1.213144.
It should be mentioned that the simulation in Fig. 1 of Example 1 is FTS with respect to

(T , r1, r2), but not LAS.

Example 2 Consider system (8) with parameters as follows:

A(t) =

⎛

⎜
⎝

–4 | cos t| | sin 2t|
sin2 3t –3 –2
| sin 4t| –2 –4

⎞

⎟
⎠ , D(t) =

⎛

⎜
⎝

cos2 t 0 | cos 4t|
0 cos2 3t 0

sin2 4t 0 | sin 5t|

⎞

⎟
⎠ ,

G(t) =

⎛

⎜
⎝

| sin t| sin2 t 0
sin2 2t 0 0

0 0 | sin 5t|

⎞

⎟
⎠ ,

and τ (t) = | cos 2t|, κ(t) = | cos 3t|.
It is easy to see that (A1) and (A2) hold, and we have

A =

⎛

⎜
⎝

–4 1 1
1 –3 –2
1 –2 –4

⎞

⎟
⎠ , D =

⎛

⎜
⎝

1 0 1
0 1 0
1 0 1

⎞

⎟
⎠ , G =

⎛

⎜
⎝

1 1 0
1 0 0
0 0 1

⎞

⎟
⎠ .
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Figure 2 Simulation for Example 2 when (T , r1, r2) = (15, 1, 2.5)

Let

μ(t) = 0.5 + 0.05t, t ≥ 0.

Thus, we have

μ(t – τ (t))
μ(t)

=
0.5 + 0.05(t – τ (t))

0.5 + 0.05t
≤ 1,

∫ t
t–κ(t) μ(s) ds

μ(t)
=

∫ t
t–κ(t)(0.5 + 0.05s) ds

0.5 + 0.05t
≤ (0.5 + 0.05t)κ(t)

0.5 + 0.05t
= κ(t) ≤ κ̄ ,

μ′(t)
μ(t)

=
0.05

0.5 + 0.05t
≥ 0.05

0.5 + 0.05T
.

Let

β1 = 1, β2 = κ̄ , β3 =
0.05

0.5 + 0.05T
.

In this case the matrix M = A + D + κ̄G is not invertible, and hence it does not satisfy
conditions of Theorem 2.5 in [27]. However, M0 = M – β3I satisfies (3) and the domain
of the solution ξ ∈ R3 of (3) is defined by

2ξ2 + 2ξ3 < (2 + β3)ξ1, 2ξ1 – 2ξ3 < (2 + β3)ξ2, 2ξ1 – 2ξ2 < (2 + β3)ξ3.

Let us take r1 = 1, r1 = 2.5, and then system (8) is FTS with respect to (T , r1, r2) for any
finite time 0 < T ≤ Tmax = 15, and in this case β3 = 0.04, see Fig. 2.

5 Conclusion
In the present paper, we have investigated the FTS of a class of non-autonomous systems
with time-varying delays. Some new sufficient conditions for FTS have been derived in
terms of inequalities for a type of Metzler matrixes. Finally, two examples were provided
to show the effectiveness of the proposed method.
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