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Abstract
Recently, Jarad et al. in (Adv. Differ. Equ. 2017:247, 2017) defined a new class of
nonlocal generalized fractional derivatives, called conformable fractional derivatives
(CFDs), based on conformable derivatives. In this paper, sufficient conditions are
established for the oscillation of solutions of generalized fractional differential
equations of the form

{
aD

α,ρx(t) + f1(t, x) = r(t) + f2(t, x), t > a,

limt→a+ aI
j–α,ρx(t) = bj (j = 1, 2, . . . ,m),

wherem = �α�, aDα,ρ is the left-fractional conformable derivative of order α ∈C,
Re(α) ≥ 0 in the Riemann–Liouville setting and aI

α,ρ is the left-fractional
conformable integral operator. The results are also obtained for CFDs in the Caputo
setting. Examples are provided to demonstrate the effectiveness of the main result.
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1 Introduction
Fractional calculus is still being developed continuously and its operators are used to
model complex systems where the kernel of the fractional operators reflects the non-
locality [2, 3]. The singularity of the kernel of the fractional operators has recently mo-
tivated researchers to present new types of fractional operators with nonsingular kernels
and their discrete versions [4–12]. This new trend added another approach in defining
fractional derivatives and integrals. In classical fractional operators, the fractionalizing
process depends on iterating the weighted usual integrals or some local type derivatives
in the way to get the factorial function and then replace it by the gamma function. The the-
ory of fractional calculus with operators having nonsingular kernels depends on a limiting
approach via dirac delta functions. Indeed, the fractional derivative with the nonsingular
kernel is first defined so that in the limiting case α → 0 we get the function itself and
when α → 1 we get the usual derivative of the function. Then the corresponding integral
operators are evaluated by the help of Laplace transforms for functions whose convolu-

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1554-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1554-6&domain=pdf
mailto:babdallah@psu.edu.sa


Abdalla Advances in Difference Equations  (2018) 2018:107 Page 2 of 15

tion with the nonsingular kernel vanishes at the starting point a. The oscillation theory for
fractional differential and difference equations was studied by some authors (see [13–21]),
thus several definitions of fractional derivatives and fractional integral operators exist in
the literature. In this article, we study the oscillation of fractional operators defined by
the first approach mentioned above. Namely, we investigate the oscillation of a class of
generalized fractional derivatives defined in [1] by iterating the local conformable deriva-
tive developed in [22]. We shall name this derivative the conformable fractional derivative
(CFD). Although both the CFD with its Caputo setting and the Katugampola-type deriva-
tive studied in [23–25] coincide when a = 0, they are very different from each other. In
fact, the kernel of CFDs depends on the end points a and b which causes many differences
from the Katugampola-type one. We shall study the oscillation of conformable fractional
differential equation of the form

⎧⎨
⎩aD

α,ρx(t) + f1(t, x) = r(t) + f2(t, x), t > a,

limt→a+ aI
j–α,ρx(t) = bj (j = 1, 2, . . . , m),

(1)

where m = �α�, aD
α,ρ is the left-fractional conformable derivative of order α ∈C, Re(α) ≥

0 in the Riemann–Liouville setting and aI
α,ρ is the left-fractional conformable integral

operator.
The objective of this paper is to study the oscillation of conformable fractional differen-

tial equations of the form (1). This will generalize the results obtained in [13, 14] when we
take a = 0.

This paper is organized as follows. Section 2 introduces some notations and provides
the definitions of conformable fractional integral and differential operators together with
some basic properties and lemmas that are needed in the proofs of the main theorems.
In Sect. 3, the main theorems are presented. Section 4 is devoted to the results obtained
for the conformable fractional operators in the Caputo setting where we also remark the
oscillation of Katugampola-type fractional operators. Examples are provided in Sect. 5 to
demonstrate the effectiveness of the main theorems.

2 Notations and preliminary assertions
The left conformable derivative starting from a of a function f : [a,∞) → R of order 0 <
ρ ≤ 1 is defined by

(
aTρ f

)
(t) = lim

ε→0

f (t + ε(t – a)1–ρ) – f (t)
ε

.

If (Tρ f )(t) exists on (a, b), then (aTρ f )(a) = limt→a+ (aTρ f )(t).
If f is differentiable, then

(
aTρ f

)
(t) = (t – a)1–ρ f ′(t). (2)

The corresponding left conformable integral is defined as

aI
ρ f (x) =

∫ x

a
f (t)

dt
(t – a)1–ρ

, 0 < ρ ≤ 1.

For the extension to the higher order ρ > 1, see [22].
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Definition 2.1 ([1]) The left-fractional conformable integral operator is defined by

aI
α,ρ f (x) =

1
�(α)

∫ x

a

(
(x – a)ρ – (t – a)ρ

ρ

)α–1 f (t) dt
(t – a)1–ρ

, (3)

where α ∈ C, Re(α) ≥ 0.

Definition 2.2 ([1]) The left-fractional conformable derivative of order α ∈ C, Re(α) ≥ 0
in the Riemann–Liouville setting is defined by

aD
α,ρ f (x) = m

a Tρ
(

aI
m–α,ρ)f (x)

=
m
a Tρ

�(m – α)

∫ x

a

(
(x – a)ρ – (t – a)ρ

ρ

)m–α–1 f (t) dt
(t – a)1–ρ

,

where m = �Re(α)�, m
a Tρ = aTρ

aTρ · · · aTρ︸ ︷︷ ︸
m times

and aTα is the left conformable differential
operator presented in (2).

Definition 2.3 ([1]) The left-Caputo fractional conformable derivative of order α ∈ C,
Re(α) ≥ 0 is defined by

C
a D

α,ρ f (x) = aI
m–α,ρ(m

a Tρ f (x)
)

=
1

�(m – α)

∫ x

a

(
(x – a)ρ – (t – a)ρ

ρ

)m–α–1 m
a Tρ f (t)

(t – a)1–ρ
dt. (4)

The following identity (see [1]) is essential to solving linear conformable fractional dif-
ferential equations:

(
aI

α,ρ(t – a)ρν–ρ
)
(x) =

1
ρα

�(ν)
�(α + v)

(x – a)ρ(α+ν–1), Re(ν) > 0. (5)

Lemma 2.1 (Young’s inequality [26])
(i) Let X, Y ≥ 0, u > 1, and 1

u + 1
v = 1, then XY ≤ 1

u Xu + 1
v Y v.

(ii) Let X ≥ 0, Y > 0, 0 < u < 1, and 1
u + 1

v = 1, then XY ≥ 1
u Xu + 1

v Y v, where equalities
hold if and only if Y = Xu–1.

3 Oscillation of conformable fractional differential equations in the frame of
Riemann

In this section we study the oscillation theory for equation (1).

Lemma 3.1 ([1]) Let Re(α) > 0, m = –[– Re(α)], f ∈ L(a, b), and aI
α,ρ f ∈ Cm

ρ,a[a, b]. Then

aI
α,ρ(

aD
α,ρ f (x)

)
= f (x) –

m∑
j=1

aD
α–j,ρ f (a)

ρα–j�(α – j + 1)
(x – a)ρα–ρj.

Using Lemma 3.1, we can write the solution representation of (1) as

x(t) =
m∑

j=1

aD
α–j,ρx(a)

ρα–j�(α – j + 1)
(t – a)ρα–ρj + aI

α,ρF(t, x), (6)

where F(t, x) = r(t) + f2(t, x) – f1(t, x) and ρ > 0.
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A solution of (1) is said to be oscillatory if it has arbitrarily large zeros on (0,∞); other-
wise, it is called nonoscillatory. An equation is said to be oscillatory if all of its solutions
are oscillatory.

We prove our results under the following assumptions:

xfi(t, x) > 0 (i = 1, 2), x 
= 0, t ≥ 0, (7)∣∣f1(t, x)
∣∣ ≥ p1(t)|x|β and

∣∣f2(t, x)
∣∣ ≤ p2(t)|x|γ , x 
= 0, t ≥ 0, (8)∣∣f1(t, x)

∣∣ ≤ p1(t)|x|β and
∣∣f2(t, x)

∣∣ ≥ p2(t)|x|γ , x 
= 0, t ≥ 0, (9)

where p1, p2 ∈ C([0,∞), (0,∞)) and β , γ are positive constants.
Define

	(t) = �(α)
m∑

j=1

aD
α–j,ρ f (a)

ρα–j�(α – j + 1)
(t – a)ρα–ρj (10)

and


(t, T1) =
∫ T1

a

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 F(s, x(s)) ds
(s – a)1–ρ

. (11)

Theorem 3.2 Let f2 = 0 in (1) and condition (7) hold. If

lim inf
t→∞

(
tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 r(s) ds
(s – a)1–ρ

= –∞, (12)

and

lim sup
t→∞

(
tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 r(s) ds
(s – a)1–ρ

= ∞, (13)

for every sufficiently large T , then every solution of (1) is oscillatory.

Proof Let x(t) be a nonoscillatory solution of equation (1) with f2 = 0. Suppose that T1 > a
is large enough so that x(t) > 0 for t ≥ T1. Hence, (7) implies that f1(t, x) > 0 for t ≥ T1.
Using (3), we get from (6)

�(α)x(t) = �(α)
m∑

j=1

aD
α–j,ρ f (a)

ρα–j�(α – j + 1)
(t – a)ρα–ρj

+
∫ T1

a

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 F(s, x(s)) ds
(s – a)1–ρ

+
∫ t

T1

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 r(s) – f1(s, x(s)) ds
(s – a)1–ρ

≤ 	(t) + 
(t, T1) +
∫ t

T1

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 r(s) ds
(s – a)1–ρ

, (14)

where 	 and 
 are defined in (10) and (11), respectively.
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Multiplying (14) by ( tρ
ρ

)1–α , we get

0 <
(

tρ

ρ

)1–α

�(α)x(t)

≤
(

tρ

ρ

)1–α

	(t) +
(

tρ

ρ

)1–α


(t, T1)

+
(

tρ

ρ

)1–α ∫ t

T1

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 r(s) ds
(s – a)1–ρ

. (15)

Take T2 > T1. We consider two cases as follows.
Case (1): Let 0 < α ≤ 1. Then m = 1 and ( tρ

ρ
)1–α	(t) = b1tρ–ρα(t – a)ρα–ρ .

Since the function h1(t) = tρ–ρα(t – a)ρα–ρ is decreasing for ρ > 0 and α < 1, we get for
t ≥ T2

∣∣∣∣
(

tρ

ρ

)1–α

	(t)
∣∣∣∣ = |b1|tρ–ρα(t – a)ρα–ρ

≤ |b1|Tρ–ρα
2 (T2 – a)ρα–ρ := c1(T2). (16)

The function h2(t) = tρ–ρα[(t – a)ρ – (s – a)ρ]α–1 is decreasing for ρ > 0 and α < 1. Thus, we
get

∣∣∣∣
(

tρ

ρ

)1–α


(t, T1)
∣∣∣∣

=
∣∣∣∣
(

tρ

ρ

)1–α ∫ T1

a

(
(t – a)ρ – (s – a)ρ

ρ

)α–1[
r(s) + f2

(
s, x(s)

)
– f1

(
s, x(s)

)] ds
(s – a)1–ρ

∣∣∣∣
≤

∫ T1

a

(
tρ

ρ

)1–α(
(t – a)ρ – (s – a)ρ

ρ

)α–1∣∣r(s) + f2
(
s, x(s)

)
– f1

(
s, x(s)

)∣∣ ds
(s – a)1–ρ

≤
∫ T1

a

(
Tρ

2
ρ

)1–α(
(T2 – a)ρ – (s – a)ρ

ρ

)α–1

× ∣∣r(s) + f2
(
s, x(s)

)
– f1

(
s, x(s)

)∣∣ ds
(s – a)1–ρ

:= c2(T1, T2) for t ≥ T2. (17)

Then, from equation (15) and for t ≥ T2, we get

(
tρ

ρ

)1–α ∫ t

T1

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 r(s) ds
(s – a)1–ρ

≥ –
[
c1(T2) + c2(T1, T2)

]
,

hence

lim inf
t→∞

(
tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 r(s) ds
(s – a)1–ρ

≥ –
[
c1(T2) + c2(T1, T2)

]
> –∞,

which contradicts condition (12).
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Case (2): Let α > 1. Then m ≥ 2. Also, ( t–a
t )ρα–ρ < 1 for α > 1 and ρ > 0. The function

h3(t) = (t – a)ρ–ρj is decreasing for j > 1 and ρ > 0. Thus, for t ≥ T2, we have

∣∣∣∣
(

tρ

ρ

)1–α

	(t)
∣∣∣∣ =

∣∣∣∣∣
(

tρ

ρ

)1–α

�(α)
m∑

j=1

bj(t – a)ρα–ρj

ρα–j�(α – j + 1)

∣∣∣∣∣
=

∣∣∣∣∣
(

t – a
t

)ρα–ρ

�(α)
m∑

j=1

bj(t – a)ρ–ρj

ρ1–j�(α – j + 1)

∣∣∣∣∣
≤ �(α)

m∑
j=1

|bj|(t – a)ρ–ρj

ρ1–j�(α – j + 1)

≤ �(α)
m∑

j=1

|bj|(T2 – a)ρ–ρj

ρ1–j�(α – j + 1)
:= c3(T2). (18)

Also, since ( tρ
ρ

)1–α < 1 and ( (t–a)ρ–(s–a)ρ
tρ )α–1 < 1 for α > 1 and ρ > 0, we get

∣∣∣∣
(

tρ

ρ

)1–α


(t, T1)
∣∣∣∣

=
∣∣∣∣
(

tρ

ρ

)1–α ∫ T1

a

(
(t – a)ρ – (s – a)ρ

ρ

)α–1[
r(s) + f2

(
s, x(s)

)
– f1

(
s, x(s)

)] ds
(s – a)1–ρ

∣∣∣∣
≤

∫ T1

a

(
(t – a)ρ – (s – a)ρ

tρ

)α–1∣∣r(s) + f2
(
s, x(s)

)
– f1

(
s, x(s)

)∣∣ ds
(s – a)1–ρ

≤
∫ T1

a

∣∣r(s) + f2
(
s, x(s)

)
– f1

(
s, x(s)

)∣∣ ds
(s – a)1–ρ

:= c4(T1). (19)

From (15), (18), and (19), we conclude that

(
tρ

ρ

)1–α ∫ t

T1

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 r(s) ds
(s – a)1–ρ

≥ –
[
c3(T2) + c4(T1)

]

for t ≥ T2. Hence

lim inf
t→∞

(
tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 r(s) ds
(s – a)1–ρ

≥ –
[
c3(T2) + c4(T1)

]
> –∞,

which contradicts condition (12). Therefore, we conclude that x(t) is oscillatory. In case
x(t) is eventually negative, similar arguments lead to a contradiction with condition (13).

�

Theorem 3.3 Let conditions (7) and (8) hold with β > γ . If

lim inf
t→∞

(
tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 [r(s) + H(s)] ds
(s – a)1–ρ

= –∞, (20)

and

lim sup
t→∞

(
tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 [r(s) – H(s)] ds
(s – a)1–ρ

= ∞, (21)
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for every sufficiently large T , where

H(s) =
β – γ

γ
p

γ
γ –β

1 (s)
[
γ p2(s)

β

] β
β–γ

, (22)

then every solution of (1) is oscillatory.

Proof Let x(t) be a nonoscillatory solution of equation (1), say x(t) > 0 for t ≥ T1 > a. Let
s ≥ T1. Using conditions (7) and (8), we get

f2(s, x) – f1(s, x) ≤ p2(s)xγ (s) – p1(s)xβ(s).

Let X = xγ (s), Y = γ p2(s)
βp1(s) , u = β

γ
, and v = β

β–γ
, then from part (i) of Lemma 2.1 we get

p2(s)xγ (s) – p1(s)xβ(s) =
βp1(s)

γ

[
xγ (s)

γ p2(s)
βp1(s)

–
γ

β

(
xγ (s)

) β
γ

]

=
βp1(s)

γ

[
XY –

1
u

Xu
]

≤ βp1(s)
γ

1
v

Y v = H(s), (23)

where H is defined by (22). Then from equation (6) we obtain

�(α)x(t) = 	(t) + 
(t, T1) +
∫ t

T1

(
(t – a)ρ – (s – a)ρ

ρ

)α–1

× [r(s) + f2(s, x(s)) – f1(s, x(s))] ds
(s – a)1–ρ

≤ 	(t) + 
(t, T1) +
∫ t

T1

(
(t – a)ρ – (s – a)ρ

ρ

)α–1

× [r(s) + p2(s)xγ (s) – p1(s)xβ(s)] ds
(s – a)1–ρ

≤ 	(t) + 
(t, T1) +
∫ t

T1

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 [r(s) + H(s)] ds
(s – a)1–ρ

. (24)

The rest of the proof is the same as that of Theorem 3.2 and hence is omitted. �

Theorem 3.4 Let α ≥ 1 and suppose that (7) and (9) hold with β < γ . If

lim sup
t→∞

(
tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 [r(s) + H(s)] ds
(s – a)1–ρ

= ∞ (25)

and

lim inf
t→∞

(
tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 [r(s) – H(s)] ds
(s – a)1–ρ

= –∞ (26)

for every sufficiently large T , where H is defined by (22), then every bounded solution of (1)
is oscillatory.
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Proof Let x(t) be a bounded nonoscillatory solution of equation (1). Then there exist con-
stants M1 and M2 such that

M1 ≤ x(t) ≤ M2 for t ≥ a. (27)

Assume that x is a bounded eventually positive solution of (1). Then there exists T1 > a
such that x(t) > 0 for t ≥ T1 > a. Using conditions (7) and (9), we get f2(s, x) – f1(s, x) ≥
p2(s)xγ (s) – p1(s)xβ(s). Using (ii) of Lemma 2.1 and similar to the proof of (23), we find

p2(s)xγ (s) – p1(s)xβ(s) ≥ H(s) for s ≥ T1.

From (6) and similar to (24), we obtain

�(α)x(t) = 	(t) + 
(t, T1) +
∫ t

T1

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 [r(s) + H(s)] ds
(s – a)1–ρ

.

Multiplying by ( tρ
ρ

)1–α , we get

(
tρ

ρ

)1–α

�(α)x(t) ≥
(

tρ

ρ

)1–α

	(t) +
(

tρ

ρ

)1–α


(t, T1)

+
(

tρ

ρ

)1–α ∫ t

T1

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 [r(s) + H(s)] ds
(s – a)1–ρ

. (28)

Take T2 > T1. We consider two cases as follows.
Case (1): Let α = 1. Then (16) and (17) are still correct. Hence, from (28) and using (27),

we find that

M2�(α) ≥
(

tρ

ρ

)1–α

�(α)x(t) ≥ –c1(T2) – c2(T1, T2)

+
(

tρ

ρ

)1–α ∫ t

T1

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 [r(s) + H(s)] ds
(s – a)1–ρ

for t ≥ T2. Thus, we get

lim sup
t→∞

(
tρ

ρ

)1–α ∫ t

T1

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 [r(s) + H(s)] ds
(s – a)1–ρ

≤ c1(T2) + c2(T1, T2) + M2�(α) < ∞,

which contradicts condition (25).
Case (2): Let α > 1. Then (18) and (19) are still true. Hence, from (28) and using (27), we

find that

M2�(α)
(

tρ

ρ

)1–α

≥ –c3(T2) – c4(T1)

+
(

tρ

ρ

)1–α ∫ t

T1

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 [r(s) + H(s)] ds
(s – a)1–ρ
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for t ≥ T2. Since limt→∞( tρ
ρ

)1–α = 0 for α > 1, we conclude that

lim sup
t→∞

(
tρ

ρ

)1–α ∫ t

T1

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 [r(s) + H(s)] ds
(s – a)1–ρ

≤ c3(T2) + c4(T1) < ∞,

which contradicts condition (25). Therefore, we conclude that x(t) is oscillatory. In case
x(t) is eventually bounded negative, similar arguments lead to a contradiction with con-
dition (26). �

4 Oscillation of conformable fractional differential equations in the frame of
Caputo

In this section, we study the oscillation of conformable fractional differential equations in
the Caputo setting of the form

⎧⎨
⎩

C
a D

α,ρx(t) + f1(t, x) = r(t) + f2(t, x), t > a
k
aTρx(a) = bk (k = 0, 1, . . . , m – 1),

(29)

where m = �α� and C
a D

α,ρ is defined by (4).

Lemma 4.1 [1] Let f ∈ Cm
ρ,a[a, b], α ∈ C. Then

aI
α,ρ(C

a D
α,ρ f (x)

)
= f (x) –

m–1∑
k=0

k
aTρ f (a)(x – a)ρk

ρkk!
.

Using Lemma 4.1, the solution representation of (29) can be written as

x(t) =
m–1∑
k=0

k
aTρx(a)(t – a)ρk

ρkk!
+ aI

α,ρF(t, x), (30)

where F(t, x) = r(t) + f2(t, x) – f1(t, x) and ρ > 0.
Define

χ (t) = �(α)
m–1∑
k=0

k
aTρx(a)(t – a)ρk

ρkk!
. (31)

Theorem 4.2 Let f2 = 0 in (29) and condition (7) hold. If

lim inf
t→∞

(
tρ

ρ

)1–m ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 r(s) ds
(s – a)1–ρ

= –∞ (32)

and

lim sup
t→∞

(
tρ

ρ

)1–m ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 r(s) ds
(s – a)1–ρ

= ∞ (33)

for every sufficiently large T , then every solution of (29) is oscillatory.
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Proof Let x(t) be a nonoscillatory solution of equation (29) with f2 = 0. Suppose that T1 > a
is large enough so that x(t) > 0 for t ≥ T1. Hence (7) implies that f1(t, x) > 0 for t ≥ T1. Using
(3), we get from (30)

�(α)x(t) = �(α)
m–1∑
k=0

k
aTρx(a)(t – a)ρk

ρkk!

+
∫ T1

a

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 F(s, x(s)) ds
(s – a)1–ρ

+
∫ t

T1

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 r(s) – f1(s, x(s)) ds
(s – a)1–ρ

≤ χ (t) + 
(t, T1) +
∫ t

T1

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 r(s) ds
(s – a)1–ρ

, (34)

where χ and 
 are defined in (31) and (11), respectively.
Multiplying (34) by ( tρ

ρ
)1–m, we get

0 <
(

tρ

ρ

)1–m

�(α)x(t)

≤
(

tρ

ρ

)1–m

χ (t) +
(

tρ

ρ

)1–m


(t, T1)

+
(

tρ

ρ

)1–m ∫ t

T1

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 r(s) ds
(s – a)1–ρ

. (35)

Take T2 > T1. We consider two cases as follows.
Case (1): Let 0 < α ≤ 1. Then m = 1 and ( tρ

ρ
)1–mχ (t) = �(α)b0.

The function h4(t) = ( (t–a)ρ–(s–a)ρ
ρ

)α–1 is decreasing for ρ > 0, t > T2 > s, and α < 1. Thus,
we get

∣∣∣∣
(

tρ

ρ

)1–m


(t, T1)
∣∣∣∣

=
∣∣∣∣
∫ T1

a

(
(t – a)ρ – (s – a)ρ

ρ

)α–1[
r(s) + f2

(
s, x(s)

)
– f1

(
s, x(s)

)] ds
(s – a)1–ρ

∣∣∣∣
≤

∫ T1

a

(
(t – a)ρ – (s – a)ρ

ρ

)α–1∣∣r(s) + f2
(
s, x(s)

)
– f1

(
s, x(s)

)∣∣ ds
(s – a)1–ρ

≤
∫ T1

a

(
(T2 – a)ρ – (s – a)ρ

ρ

)α–1∣∣r(s) + f2
(
s, x(s)

)
– f1

(
s, x(s)

)∣∣ ds
(s – a)1–ρ

:= c5(T1, T2).

Then, from equation (35) and for t ≥ T2, we get

(
tρ

ρ

)1–m ∫ t

T1

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 r(s) ds
(s – a)1–ρ

≥ –
[
�(α)b0 + c5(T1, T2)

]
,
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hence

lim inf
t→∞

(
tρ

ρ

)1–m ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 r(s) ds
(s – a)1–ρ

≥ –
[
�(α)b0 + c5(T1, T2)

]
> –∞,

which contradicts condition (32).
Case (2): Let α > 1. Then m ≥ 2. Also, ( t–a

t )ρm–ρ < 1 for m ≥ 2 and ρ > 0. The function
h3(t) = (t – a)ρ(k–m+1) is decreasing for k < m – 1 and ρ > 0. Thus, for t ≥ T2, we have

∣∣∣∣
(

tρ

ρ

)1–m

χ (t)
∣∣∣∣ =

∣∣∣∣∣
(

tρ

ρ

)1–m

�(α)
m–1∑
k=0

k
aTρx(a)(t – a)ρk

ρkk!

∣∣∣∣∣
=

∣∣∣∣∣
(

t – a
t

)ρm–ρ

�(α)
m–1∑
k=0

k
aTρx(a)(t – a)ρ(k–m+1)

ρk–m+1k!

∣∣∣∣∣
≤ �(α)

m–1∑
k=0

|kaTρx(a)|(t – a)ρ(k–m+1)

ρk–m+1k!

≤ �(α)
m–1∑
k=0

|kaTρx(a)|(T2 – a)ρ(k–m+1)

ρk–m+1k!
:= c6(T2). (36)

Also, since ( tρ
ρ

)1–m < 1 and ( (t–a)ρ–(s–a)ρ
tρ )α–1 < 1 for α > 1 and ρ > 0, and similar to (19) we

get

∣∣∣∣
(

tρ

ρ

)1–m


(t, T1)
∣∣∣∣ ≤ c4(T1).

Then, from (35) and (36), we get a contradiction with condition (32). Therefore, we con-
clude that x(t) is oscillatory. In case x(t) is eventually negative, similar arguments lead to
a contradiction with condition (33). �

We state the following two theorems without proof.

Theorem 4.3 Let conditions (7) and (8) hold with β > γ . If

lim inf
t→∞

(
tρ

ρ

)1–m ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 [r(s) + H(s)] ds
(s – a)1–ρ

= –∞

and

lim sup
t→∞

(
tρ

ρ

)1–m ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 [r(s) – H(s)] ds
(s – a)1–ρ

= ∞

for every sufficiently large T , where H is defined by (22), then every solution of (29) is oscil-
latory.

Theorem 4.4 Let α ≥ 1 and suppose that (7) and (9) hold with β < γ . If

lim sup
t→∞

(
tρ

ρ

)1–m ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 [r(s) + H(s)] ds
(s – a)1–ρ

= ∞
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and

lim inf
t→∞

(
tρ

ρ

)1–m ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 [r(s) – H(s)] ds
(s – a)1–ρ

= –∞

for every sufficiently large T , where H is defined by (22), then every bounded solution of (29)
is oscillatory.

5 Examples
In this section, we construct numerical examples to illustrate the effectiveness of our the-
oretical results.

Example 5.1 Consider the Riemann conformable fractional differential equation

⎧⎪⎪⎨
⎪⎪⎩

aD
α,ρx(t) + x5(t) ln(t + e)

= 2ρα (t–a)ρ(2–α)

�(3–α) + [(t – a)10ρ – (t – a) 2
3 ρ] ln(t + e) + x 1

3 (t) ln(t + e),

limt→a+ aI
1–α,ρx(t) = 0, 0 < α < 1,ρ > 0,

(37)

where m = 1, f1(t, x) = x5(t) ln(t + e), r(t) = 2ρα (t–a)ρ(2–α)

�(3–α) + [(t – a)10ρ – (t – a) 2
3 ρ] ln(t + e), and

f2(t, x) = x 1
3 (t) ln(t + e). It is easy to verify that conditions (7) and (8) are satisfied for β = 5,

γ = 1
3 and p1(t) = p2(t) = ln(t + e). However, we show in the following that condition (20)

does not hold. For every sufficiently large T ≥ 1 and all t ≥ T , we have r(t) > 0. Calculating
H(s) as defined by (22), we find that H(s) = 14(15)– 15

14 ln(s + e) ≥ 0.77. Then, using (5) with
ν = 1, we get

lim inf
t→∞

(
tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 [r(s) + H(s)] ds
(s – a)1–ρ

≥ lim inf
t→∞

(
tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 H(s) ds
(s – a)1–ρ

≥ lim inf
t→∞ 0.77

(
tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 (s – T)0 ds
(s – a)1–ρ

= lim inf
t→∞ 0.77

(
tρ

ρ

)1–α

�(α)
(

aI
α,ρ(s – T)0)(t)

= lim inf
t→∞

0.77tρ

ρα

(
t – T

t

)ρα

= ∞.

However, using (5) with ν = 3, one can easily verify that x(t) = (t – a)2ρ is a nonoscillatory
solution of (37). The initial condition is also satisfied because

aI
1–α,ρ(t – a)2ρ =

2ρα–1(t – a)ρ(3–α)

�(4 – α)
.

Example 5.2 Consider the conformable fractional differential equation

⎧⎨
⎩aD

α,ρx(t) + x3(t) = sin t,

limt→a+ aI
1–α,ρx(t) = 0, 0 < α < 1,

(38)
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where f1(t, x) = x3(t), r(t) = sin t, and f2(t, x) = 0. Then condition (7) holds. Furthermore,
one can easily check that

lim inf
t→∞

(
tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 sin s ds
(s – a)1–ρ

= –∞

and

lim sup
t→∞

(
tρ

ρ

)1–α ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 sin s ds
(s – a)1–ρ

= ∞.

This shows that conditions (12) and (13) of Theorem 3.2 hold. Hence, every solution of
(38) is oscillatory.

Example 5.3 Consider the Caputo conformable fractional differential equation

⎧⎨
⎩

C
a D

α,ρx(t) + etx3(t) = ρα (t–a)ρ(1–α)

�(2–α) + (t – a)3ρet ,

x(a) = 0, 0 < α < 1,ρ > 0,
(39)

where m = 1, f1(t, x) = etx3(t), r(t) = ρα (t–a)ρ(1–α)

�(2–α) , and f2(t, x) = 0. Then condition (7) is sat-
isfied. However, condition (32) does not hold since

lim inf
t→∞

(
tρ

ρ

)1–m ∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 r(s) ds
(s – a)1–ρ

≥ lim inf
t→∞

∫ t

T

(
(t – a)ρ – (s – a)ρ

ρ

)α–1 (s – T)0 ds
(s – a)1–ρ

= lim inf
t→∞

1
αρα

(t – T)ρα = ∞.

Using (2), (5) with ν = 2 and the fact that

C
a D

α,ρ(t – a)ρ(ν–1) = aI
1–α,ρ

aTρ(t – a)ρ(ν–1),

one can easily check that x(t) = (t – a)ρ is a nonoscillatory solution of (39).

Remark 5.1 The oscillation of fractional differential equations in the frame of Katu-
gampola-type fractional derivatives studied in [23–25] can be investigated in a similar
way as we have done in this article for CFDs and their Caputo settings. The reader can
verify sufficient conditions and the proofs by observing the kernel which is free from the
starting point a.

6 Conclusion
In this article, the oscillation theory for conformable fractional differential equations was
studied. Sufficient conditions for the oscillation of solutions of Riemann conformable frac-
tional differential equations of the form (1) were given in three theorems in Sect. 3. As
ρ → 1 in these theorems, we get the results obtained in [13] and [14] when a = 0. The main
approach is based on applying Young’s inequality which will help us in obtaining sharper
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conditions. The oscillation for the Caputo conformable fractional differential equations
has been investigated as well. Numerical examples have been presented to demonstrate
the effectiveness of the obtained results. We shall discuss the case when ρ → 0 in the
future work. Namely, we shall discuss the oscillation of Hadamard-type fractional differ-
ential equations with kernels both depending or not depending on the starting point.
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