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1 Introduction
The importance of fractional calculus, i.e. the study of differentiation and integration to
non-integer orders, started to be appreciated during the last few decades, mainly because
many successful models were developed in various branches of science and engineering.
There are several different definitions for derivatives and integrals (together referred to
as differintegrals) in the fractional sense, which are classified in different categories. For
example, the classical Riemann–Liouville and Caputo formulae are defined by integral
transforms with power function kernels [1–4], while some more recent formulae [5–9]
use integral transforms with various other kernel functions.

Fractional derivatives and integrals have found many applications across a huge vari-
ety of fields of science—for example in financial models [10], geohydrology [11], chaotic
systems [12], epidemiology [13–15], drug release kinetics [16–19], nuclear dynamics [20],
viscoelasticity [21], complexity theory [22], bioengineering [23], image processing [24],
and so on. One of the reasons for their broad usefulness is their non-locality: ordinary
derivatives are local operators, while fractional ones (at least according to most defini-
tions) are non-local, having some degree of memory. For this reason, they are often useful
in problems involving global optimisation, such as those appearing in control theory.

Fractional calculus is one of the most swiftly growing areas in mathematics, and dur-
ing recent years, researchers have been trying to use it in the treatment of dynamics of
complex systems [22, 25]. Some of these have complicated dynamics which cannot be de-
scribed properly with classical fractional models, and therefore it has been necessary to
develop new fractional operators. In this paper, we shall consider fractional calculus ac-
cording to a relatively new definition [7], usually referred to as the AB formula, which has
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a stronger connection to the non-locality properties of fractional calculus. In this model,
the fractional integral operator is defined by

ABIα
a+ f (t) =

1 – α

B(α)
f (t) +

α

B(α)
RLIα

a+ f (t),

while the fractional differential operator can be defined in two different ways, labelled ABR
and ABC for Riemann–Liouville type and Caputo type:

ABRDα
a+ f (t) =

B(α)
1 – α

d
dt

∫ t

a
f (x)Eα

(
–α

1 – α
(t – x)α

)
dx;

ABCDα
a+ f (t) =

B(α)
1 – α

∫ t

a
f ′(x)Eα

(
–α

1 – α
(t – x)α

)
dx.

In each case the functions and variables used satisfy the following requirements [26]: a <
t < b in R; α ∈ (0, 1); B(α) is a normalisation function satisfying B > 0 and B(0) = B(1) = 1;
and f : [a, b] → R is an L1 function or, in the case of the ABC derivative, a differentiable
function with f ′ ∈ L1.

Certain fundamental results of calculus have already been established in the AB model:
Laplace transforms [7], integration by parts [27], the product rule and chain rule [26], etc.
But as the idea is still so new, much remains to be done in this area. Furthermore, the
AB model has found various applications, for example in chaos theory [28], variational
calculus [27], and oscillators [29].

Specifically, our aim is to prove generalised versions of the mean value theorem and Tay-
lor’s theorem in the AB model of fractional calculus. Analogous results are already known
in the standard Riemann–Liouville [30] and Caputo [31] models, and versions of the mean
value theorem for fractional difference operators have been proved in both the Caputo–
Fabrizio model [32] and the AB model [33], but a fractional mean value theorem in the
continuous AB model has not been established up until now. We shall also demonstrate
some real-world applications of our results for modelling problems in fluid dynamics using
a new fractional Boussinesq equation.

Our paper is structured as follows. In Sect. 2 we prove the main results and all required
lemmas, and in Sect. 3 we redconsider some example Taylor expansions and discuss po-
tential applications of our results.

2 Main results
2.1 The mean value theorem
The following result has been proved for example in [34], using Laplace transforms, and
also in [26] using only the definition of AB derivatives and integrals.

Theorem 2.1 (AB Newton–Leibniz theorem) AB integrals and derivatives of Caputo type
satisfy the following inversion relation:

ABIα
a+

ABCDα
a+ f (t) = f (t) – f (a) (1)

for 0 < α < 1, a < t < b in R, and f : [a, b] → R differentiable such that f ′ and ABCDα
a+ f are

both in L1[a, b].
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We can use this fact to prove the following analogue of the mean value theorem for
fractional derivatives in the AB model.

Theorem 2.2 (AB mean value theorem) Let 0 < α < 1, a < b in R, and f : [a, b] →R differ-
entiable such that f ′ ∈ L1[a, b] and ABCDα

a+ f ∈ C[a, b]. Then, for any t ∈ [a, b], there exists
ξ ∈ [a, t] such that

f (t) = f (a) +
1 – α

B(α)
ABCDα

a+ f (t) +
(t – a)α

B(α)�(α)
ABCDα

a+ f (ξ ). (2)

Proof By Theorem 2.1, we have

f (t) – f (a) = ABIα
a+

(ABCDα
a+ f (t)

)

=
1 – α

B(α)
ABCDα

a+ f (t) +
α

B(α)
RLIα

a+
(ABCDα

a+ f (t)
)

=
1 – α

B(α)
ABCDα

a+ f (t) +
α

B(α)�(α)

∫ t

a
(t – x)α–1(ABCDα

a+ f (x)
)

dx.

Now, by the integral mean value theorem, since ABCDα
a+ f (x) is continuous and (t – x)α–1 is

integrable and positive, there exists ξ ∈ (a, t) such that

f (t) – f (a) =
1 – α

B(α)
ABCDα

a+ f (t) +
α

B(α)�(α)
ABCDα

a+ f (ξ )
∫ t

a
(t – x)α–1 dx

=
1 – α

B(α)
ABCDα

a+ f (t) +
α

B(α)�(α)
ABCDα

a+ f (ξ )
(t – a)α

α
,

as required. �

For interest’s sake we also include the following corollary, another form of the ABC frac-
tional mean value theorem in terms of an inequality.

Corollary 2.1 With all notations and assumptions as in Theorem 2.2, if f is monotonic
(increasing or decreasing), then

f (t) ≥ f (a) +
[

1 + Eα

(
–α

1 – α
(t – a)α

)]–1 (t – a)α

B(α)�(α)
ABCDα

a+ f (ξ ) (3)

for some ξ ∈ (a, t).

Proof We shall start from equation (2) to derive this inequality. Firstly, using the integral
mean value theorem again, we can write the ABC derivative as

1 – α

B(α)
ABCDα

a+ f (t) =
∫ t

a
f ′(x)Eα

(
–α

1 – α
(t – x)α

)
dx

= Eα

(
–α

1 – α
(t – c)α

)∫ t

a
f ′(x) dx

=
(
f (t) – f (a)

)
Eα

(
–α

1 – α
(t – c)α

)



Fernandez and Baleanu Advances in Difference Equations  (2018) 2018:86 Page 4 of 11

for some c ∈ (a, t), since Eα is continuous and f ′ is integrable and has constant sign. We
substitute this into (2) to find

f (t) – f (a) =
(
f (t) – f (a)

)
Eα

(
–α

1 – α
(t – c)α

)
+

(t – a)α

B(α)�(α)
ABCDα

a+ f (ξ ),

and therefore

f (t) = f (a) +
[

1 – Eα

(
–α

1 – α
(t – c)α

)]–1 (t – a)α

B(α)�(α)
ABCDα

a+ f (ξ ).

Since the Mittag–Leffler function on a negative argument is completely monotone [35],
the result follows. �

2.2 Taylor’s theorem
Before starting to prove analogues of Taylor’s theorem for fractional AB derivatives, we
first establish the following lemma.

Lemma 2.1 If α ∈ (0, 1) and a < b in R and f : [a, b] → R is a differentiable function such
that f ′ and all functions of the form (ABCDα

a+)mf (t), m ∈N, are L1 functions, then

(ABIα
a+

)m(ABCDα
a+

)mf (t) –
(ABIα

a+
)m+1(ABCDα

a+
)m+1f (t)

=
(ABCDα

a+)mf (a)
B(α)m

m∑
k=0

(m
k
)
(1 – α)m–kαk

�(kα + 1)
(t – a)kα (4)

for all m ∈N.

Proof By Theorem 2.1, we know that

(
1 – ABIα

a+
ABCDα

a+
)
f (t) = f (a). (5)

So the left-hand side of equation (4) can be written as follows, where we denote ABIα
a+ and

ABCDα
a+ by simply Iα and Dα , respectively, for ease of notation:

(
Iα

)m(
Dα

)mf (t) –
(
Iα

)m+1(Dα
)m+1f (t)

=
(
Iα

)m(
Dα

)mf (t) –
(
Iα

)m(
IαDα

)(
Dα

)mf (t)

=
(
Iα

)m(
1 – IαDα

)(
Dα

)mf (t) =
(
Iα

)m((
Dα

)mf (a)
)
,

where for the last step we used identity (5). Denoting the constant (Dα)mf (a) by A, we have

(ABIα
a+

)m(A) =
(

1 – α

B(α)
+

α

B(α)
RLIα

a+

)m

(A)

=
1

B(α)m

m∑
k=0

(
m
k

)
(1 – α)m–kαk RLIkα

a+ (A)

=
A

B(α)m

m∑
k=0

(
m
k

)
(1 – α)m–kαk (t – a)kα

�(kα + 1)
,

as required. �
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Now we are finally in a position to prove the following main result, our first analogue of
Taylor’s theorem for fractional derivatives in the ABC model.

Theorem 2.3 (AB Taylor series about t = a) If α ∈ (0, 1) and n ∈ N and a < b in R

and f : [a, b] → R is a differentiable function such that f ′ and all functions of the form
(ABCDα

a+)mf (t), m ∈N, are L1 functions, then for all t ∈ [a, b],

f (t) =
n∑

m=0

Sα,m(t – a)
(ABCDα

a+
)mf (a) + Sα,n+1(t – a)

(ABCDα
a+

)n+1f (ξ ) (6)

for some ξ ∈ (a, t), where the function S is defined by

Sα,m(x) :=
m∑

k=0

(m
k
)
(1 – α)m–kαk

B(α)m�(kα + 1)
xkα . (7)

Proof The result of Lemma 2.1 can be rewritten as

(ABIα
a+

)m(ABCDα
a+

)mf (t) –
(ABIα

a+
)m+1(ABCDα

a+
)m+1f (t)

= Sα,m(t – a)
(ABCDα

a+
)mf (a),

valid for any m ∈ N. Summing this identity over m to form a telescoping series, we get

f (t) –
(ABIα

a+
)n+1(ABCDα

a+
)n+1f (t) =

n∑
m=0

Sα,m(t – a)
(ABCDα

a+
)mf (a).

Thus it will suffice to prove that

(ABIα
a+

)n+1(ABCDα
a+

)n+1f (t) = Sα,n+1(t – a)
(ABCDα

a+
)n+1f (ξ ). (8)

To establish (8), we use the mean value theorem for integrals once again, this time with
one of the ‘functions’ involved being actually a distribution written in terms of the Dirac
delta.

(ABIα
a+

)n+1(ABCDα
a+

)n+1f (t)

=
(

1 – α

B(α)
+

α

B(α)
RLIα

a+

)n+1(ABCDα
a+

)n+1f (t)

=
n+1∑
k=0

(n+1
k

)
(1 – α)n+1–kαk

B(α)n+1
RLIkα

a+
((ABCDα

a+
)n+1f (t)

)

=
(

1 – α

B(α)

)n+1(ABCDα
a+

)n+1f (t)

+
n+1∑
k=1

(n+1
k

)
(1 – α)n+1–kαk

B(α)n+1�(kα)

∫ t

a
(t – x)kα–1(ABCDα

a+
)n+1f (x) dx

=
∫ t

a

[(
1 – α

B(α)

)n+1

δ(t – x) +
n+1∑
k=1

(n+1
k

)
(1 – α)n+1–kαk

B(α)n+1�(kα)
(t – x)kα–1

](ABCDα
a+

)n+1f (x) dx



Fernandez and Baleanu Advances in Difference Equations  (2018) 2018:86 Page 6 of 11

=
(ABCDα

a+
)n+1f (ξ )

∫ t

a

[(
1 – α

B(α)

)n+1

δ(t – x)

+
n+1∑
k=1

(n+1
k

)
(1 – α)n+1–kαk

B(α)n+1�(kα)
(t – x)kα–1

]
dx

=
(ABCDα

a+
)n+1f (ξ )

[(
1 – α

B(α)

)n+1

+
n+1∑
k=1

(n+1
k

)
(1 – α)n+1–kαk

B(α)n+1�(kα + 1)
(t – a)kα

]

= Sα,n+1(t – a)
(ABCDα

a+
)n+1f (ξ ),

as required. �

In order to get an infinite Taylor series expansion for a given function f (t), it suffices to
impose the following convergence condition on the remainder term:

Sα,n(t – a)
∥∥(ABCDα

a+
)nf

∥∥ → 0 as n → ∞, (9)

where the norm used is the uniform norm on [a, t].
One disadvantage of Theorem 2.3 is that for many functions f , the ABC fractional

derivative ABCDα
a+ f (t) evaluated at the starting point t = a is zero. We can see this by con-

sidering the definition: since the ABC derivative is given by an integral from a to t, it will
evaluate to zero given certain conditions on the behaviour of f (t) near t = a. Thus, we
present the following generalisation of Theorem 2.3, inspired by the work of [36].

Theorem 2.4 (AB Taylor series—general case) If α ∈ (0, 1) and n ∈ N and a < b in R

and f : [a, b] → R is a differentiable function such that f ′ and all functions of the form
(ABCDα

a+)mf (t), m ∈N, are L1 functions, then for all c, t ∈ [a, b],

f (t) =
n∑

m=0

�m
(ABCDα

a+
)mf (c) + Rn+1, (10)

where the sequence of functions �m is defined recursively by

�0,k = Sα,k(t – a), �m,k = �m–1,k – �m–1,m–1Sα,k–m+1(c – a) (11)

and �m = �m,m, the functions Sα,m being defined by (7), and the remainder term Rn+1 is a
linear combination of terms of the form (ABCDα

a+)n+1f (ξ ) for ξ ∈ (a, b).

Proof We use formula (6) from Theorem 2.3 as our starting point, and apply it multiple
times in different ways to derive (10).

Replacing t by c in equation (6), and replacing f by its ABC derivatives as appropriate,
yields the following formulae for any fixed n (where we use the fact that Sα,0 = 1):

f (a) = f (c) –
n∑

m=1

Sα,m(c – a)
(ABCDα

a+
)mf (a)

– Sα,n+1(c – a)
(ABCDα

a+
)n+1f (ξ0),
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ABCDα
a+ f (a) = ABCDα

a+ f (c) –
n–1∑
m=1

Sα,m(c – a)
(ABCDα

a+
)m+1f (a)

– Sα,n(c – a)
(ABCDα

a+
)n+1f (ξ1),

(ABCDα
a+

)2f (a) =
(ABCDα

a+
)2f (c) –

n–2∑
m=0

Sα,m(c – a)
(ABCDα

a+
)m+2f (a)

– Sα,n–1(c – a)
(ABCDα

a+
)n+1f (ξ2),

...

Substituting each of these equations in turn into (6) yields the following sequence of iden-
tities:

f (t) = �0,0f (a) +
n∑

m=1

�0,m
(ABCDα

a+
)mf (a) + R0,n+1

= �0,0f (c) +
n∑

m=1

[
�0,m – �0,0Sα,m(c – a)

](ABCDα
a+

)mf (a) + R1,n+1

= �0,0f (c) + �1,1
ABCDα

a+ f (a) +
n∑

m=2

�1,m
(ABCDα

a+
)mf (a) + R1,n+1

= �0,0f (c) + �1,1
ABCDα

a+ f (c)

+
n∑

m=2

[
�1,m – �1,1Sα,m+1(c – a)

](ABCDα
a+

)mf (a) + R2,n+1

= �0,0f (c) + �1,1
ABCDα

a+ f (c) + �2,2
(ABCDα

a+
)2f (a)

+
n∑

m=3

�2,m
(ABCDα

a+
)mf (a) + R2,n+1

= · · · ,

where the �k,m are defined by (11) and the successive remainders are given by

R0,n+1 = �0,n+1
(ABCDα

a+
)n+1f (ξ );

Rk+1,n+1 = Rk,n+1 – �k,kSα,n–k+1(c – a)
(ABCDα

a+
)n+1f (ξk).

After n iterations of this process, we arrive at the final result:

f (t) = �0,0f (c) + �1,1
ABCDα

a+ f (c) + �2,2
(ABCDα

a+
)2f (a)

+ · · · + �n,n
(ABCDα

a+
)nf (a) + Rn,n+1.

Since �m = �m,m by definition, and letting Rn+1 = Rn,n+1, we discover equation (10) as re-
quired. Note that ξ ∈ (a, t) and ξm ∈ (a, c) for all m. �

Iterated ABC differintegrals to arbitrary order would be very difficult to compute di-
rectly. Fortunately, we can use the series formula from [26] to derive a significantly simpler
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expression for (ABCDα
a+)mf as follows:

(ABCDα
a+

)mf (t) =

[
B(α)
1 – α

∞∑
n=0

(
–α

1 – α

)n
RLIαn+1

a+
d
dt

]m

f (t)

=
B(α)m

(1 – α)m

∑
n1,...,nm

(
–α

1 – α

)∑
ni

RLIα
∑

ni+1
a+

d
dt

f (t)

=
B(α)m

(1 – α)m

∞∑
N=0

(
N + m – 1

m – 1

)(
–α

1 – α

)N
RLIαN+1

a+ f ′(t), (12)

where this series is locally uniformly convergent in t. Using formula (12) for the iterated
ABC derivative makes the Taylor series (6) and (10) easier to compute for specific individ-
ual functions f . See the next section for an example.

Unfortunately, given the complexity of the formula for the remainder term Rn+1, it will
be difficult to tell whether and when series (10) converges as n goes to infinity. But we
certainly have a valid finite series result, which can be verified computationally even for
large values of n.

3 Examples and applications
As a basic example of the main result Theorem 2.4, let us consider what the series looks
like with the particular function f (t) = (t – a)β .

Using expression (12) for the iterated ABC derivative, we find that in this case

(ABCDα
a+

)mf (t)

=
(

B(α)
1 – α

)m ∞∑
N=0

(
N + m – 1

m – 1

)(
–α

1 – α

)N
�(β + 1)

�(β + αN + 1)
(t – a)β+αN . (13)

So the ABC Taylor series for this f (t) is given by (10) with the iterated ABC derivatives
and the coefficients �m given respectively by (13) and (11). I.e.:

f (t) =
n∑

m=0

�m

(
B(α)
1 – α

)m ∞∑
N=0

(
N + m – 1

m – 1

)(
–α

1 – α

)N
�(β + 1)

�(β + αN + 1)
(c – a)β+αN

+

[
�0,n+1

(ABCDα
a+

)n+1(ξ – a)β

–
n–1∑
k=0

�k,kSα,n–k+1(c – a)
(ABCDα

a+
)n+1(ξk – a)β

]
, (14)

where the � and S functions are defined by (11) and (7), and the constants ξ , ξ1, . . . , ξn–1

are in the interval (a, max(c, t)).
Finally, we shall present an application of the new Taylor series given by Theorem 2.3.
The paper [37] used a fractional Taylor series for Caputo derivatives, namely the result of

[31], to derive a new fractional Boussinesq equation, assuming a power law for the changes
of flux in a control volume, as well as deriving a linear form of the same equation under an
extra physical assumption. In the paper [38], this differential equation was used to model
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a water table profile between two parallel subsurface drains in both homogeneous and
heterogeneous soils, and this application was verified by experiment.

In the problem of modelling unconfined groundwater, the inflow component in the x
and y directions of fluid mass flux is given by

M(x) = �yρqx, (15)

M(y) = �xρqy, (16)

where ρ is the fluid density and qx, qy are the components in the x and y directions of the
specific discharge. We assume that the change of flux in the x and y directions are power-
law functions of order α and β , respectively. The fractional Taylor series for M given by
(6) can be truncated after two terms to yield

M(x + �x) = �y
(

ρqx +
[

1 – α

B(α)
+

α(�x)α

B(α)�(α + 1)

]
∂α(ρqx)

∂xα

)
, (17)

M(y + �y) = �x
(

ρqy +
[

1 – β

B(β)
+

β(�y)β

B(β)�(β + 1)

]
∂β (ρqy)

∂yβ

)
, (18)

where the αth derivatives here are defined by the ABC formula. Thus, subtracting equa-
tions (17)–(18) from equations (15)–(16), we get

M(x) – M(x + �x) = –�y
[

1 – α

B(α)
+

(�x)α

B(α)�(α)

]
∂α(ρqx)

∂xα
, (19)

M(y) – M(y + �y) = –�x
[

1 – β

B(β)
+

(�y)β

B(β)�(β)

]
∂β (ρqy)

∂yβ
. (20)

The relevant equation describing water mass conservation is [39]

�t
([

M(x) – M(x + �x)
]

+
[
M(y) – M(y + �y)

]
+ ρN

)

= ρ�x�yS
[
z(t + �t – z(t)

]
,

where x, y, z are the three dimensions. As �t → 0, this becomes

[
M(x) – M(x + �x)

]
+

[
M(y) – M(y + �y)

]
+ ρN = ρ�x�yS

∂h
∂t

.

Substituting in equations (19)–(20) to this, we find the following equation:

–
[

(�x)–1 1 – α

B(α)
+

(�x)α–1

B(α)�(α)

]
∂α(ρqx)

∂xα

–
[

(�y)–1 1 – β

B(β)
+

(�y)β–1

B(β)�(β)

]
∂β (ρqy)

∂yβ
+ ρN = ρS

∂h
∂t

. (21)

Assuming that ρ is constant (i.e. that the fluid is incompressible), equation (21) becomes

–
[

(�x)–1 1 – α

B(α)
+

(�x)α–1

B(α)�(α)

]
∂αqx

∂xα

–
[

(�y)–1 1 – β

B(β)
+

(�y)β–1

B(β)�(β)

]
∂βqy

∂yβ
+ N = S

∂h
∂t

. (22)
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Thus we obtain a fractional partial differential equation of Boussinesq type to model un-
confined groundwater. This differs from the other equations suggested so far in the liter-
ature, because of the Mittag–Leffler kernel used to define the fractional derivative.

4 Conclusions
During the last few years, a lot of attention was paid to modelling the dynamics of anoma-
lous systems using fractional calculus. In our view, the best way is to start with fundamen-
tal principles appearing in nature, and after that to apply fractional techniques.

In this manuscript, we have proved the mean value theorem and Taylor’s theorem for
derivatives defined in terms of a Mittag–Leffler kernel. Formulae (6) and (10) obtained for
Taylor’s theorem in the ABC context appear different from classical and previous results,
mainly due to the replacement of power functions with a more general form of summand.

These results can be used to model real-world problems such as the motion of uncon-
fined groundwater, and we hope that they may find more such applications in the future.
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