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Abstract

This paper investigates the problems of robust stability and stabilization of LTI
fractional-order systems with poly-topic and two-norm bounded uncertainties. Firstly,
some sufficient conditions of the robust asymptotical stable for such fractional-order
uncertain systems are derived. Secondly, the robust stabilizing state-feedback
controller is designed. All the results are obtained in terms of linear matrix inequalities
(LMIs). Lastly, three numerical examples are provided to demonstrate the correctness
and effectiveness of the proposed approaches.
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1 Introduction
The fractional calculus dates from the 17th century [1], and it can be defined as a classical
mathematical notion and a generalization of the ordinary differentiation and integration
not necessarily integer. The significance of fractional-order representation is that it is more
adequate to describe real world systems than those of integer-order models [2]. Fractional-
order calculus is focused on the whole time and space, but the integer-order calculus only
concerned with local attribute at particular time and a certain position [3]. Due to these
advantages, fractional calculus is developing fast [4, 5], and its various applications are
extensively used in many fields of science and engineering: in material engineering [6],
chaos systems [7-9], economic systems [10], robotics [11], and in many more [12—16].
Stability and stabilization is fundamental to all systems, certainly including fractional-
order systems. Some interesting stability results have been achieved including fractional-
order linear time-invariant systems, nonlinear systems, linear delayed systems, commen-
surate and incommensurate systems [17-22]. In [17], the key is to find a linear ordinary
system that possesses the same stability property as the fractional-order system, and then
the stability analysis was converted into the domain of ordinary systems which was well
established and understood. In [18, 19], the method based on the Lyapunov function is
used to study the stability for fractional-order system. In [20], the Linear Matrix Inequal-
ity (LMI) stability conditions are overviewed. The stability of a class of commensurate and
incommensurate nonlinear fractional-order systems is studied in [21, 22].
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Due to the perturbations and uncertainties in modeling, operating and manufacturing
of real systems, robust stability analysis and control is much more important. As pre-
sented in [23-26], significant results have been proposed for the robust stability problem
of fractional-order system with interval uncertainties. In [26], the general interval uncer-
tainties mean that the interval uncertainties exist both in the coefficients and orders of the
fractional-order system. Necessary and sufficient conditions are proposed to check the
robust stability of general interval fractional-order system. The robust stability and sta-
bilization of fractional-order system with poly-topic uncertainties are studied in [27-29].
The same problem for system with norm bounded uncertainty is considered in [30].

Reviewing the research reported above, it is obvious that the stability and stabilizing
controller design for LTI fractional-order systems with poly-topic and two-norm bounded
uncertainties have not been studied so far. Motivated by this consideration, the purpose
of this paper is to investigate the robust stability and stabilization of dynamical systems
whose characteristics are of fractional order with poly-topic and two-norm bounded un-
certainties assuming that the nominal fractional-order systems are already asymptotically
stable.

The rest of this paper is organized as follows. In Sect. 2, the problem formulation and
some necessary preliminaries are described. In Sect. 3, the robust stability conditions of
fractional-order system with poly-topic and two-norm bounded uncertainties are derived.
Also, the robust stabilization via state-feedback control is proposed. And three numerical
examples and their simulation results are discussed in Sect. 4 and finally conclusions are
given in Sect. 5.

For convenience, the following notations are used throughout this paper: R” and Z* are
the set of n-dimensional Euclidean space and the set of positive integers, respectively; R**"
and C™" are the set of # x 1 real matrices and complex matrices, separately. M”, M and
M* are the transpose, conjugate and the transpose conjugate of M, respectively. sym(M)
stands for the expression M* + M, | M|| is the two-norm of M, I, is the identity matrix of

order 7, e denotes the symmetric component in a matrix.

2 Model description and preliminary

In this paper the well-known Caputo definition for fractional derivatives is adopted, be-
cause the Laplace transform of the Caputo derivative allows utilization of initial values
of classical integer-order derivatives with clear physical interpretations. The Caputo frac-

tional derivative [2] is defined as follows:

asf(t) 1 L)
—05)/0 = dr, t>0. (1)

D)= - e
Here T is the Gamma function, which is defined as I'(«@) = (¢ = 1), and m -1 <a <m, m €
Z*. From a mathematic point of view, the fractional order can be any real even complex
number. In engineering applications, « is a real number related to physical parameters and
lies in (0,2). Here, this paper focuses on the robust stability and stabilization problem of
uncertain fractional-order system in which « is a real number in (0, 1).

Consider the following uncertain LTI fractional-order system:

Dx(t) = Ay )x(t) + B(y )ul®). 2)
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In this equation, x(t) € R” is the system state vector, and u(t) € R™ is the control input
vector, A(y) € R is the system matrix, and B(y) € R” is the input matrix; they are
both convex poly-topic sets described by

N N
Aly) = Z Vil B(y) = Z viBi, (3)
i=1 i=1

where y; (i =1,2,...,N) are time-invariant uncertainties which satisfy y; > 0, ZZI y;=1.
And two-norm uncertainties are included in A;, B;, they could be represented as follows:

Ai = Ai + AA,', and AA,' = DAiFAiEAi: (4)
BL' = BL' + AB,‘, and AB, = DBiFBiEBL'- (5)
Here A; and B; are the nominal part of system matrix and input matrix, respectively; AA;
and AB; are the additive uncertainty part of system matrix and input matrix, separately;

Dy; € R, Dg; € R™" and Ey; € R1V", Ep; € R22*! are known real constant matrices,

Fy; € R*9 and Fp; € R™2*92 are uncertain matrices which satisfy the following:
1 Faill2 < pair 1 Fgill2 < pai- (6)
In order to derive the main results of the paper, the following lemmas are presented firstly.

Lemmal ([31]) LetA € R"",0<a <1, then D*x(t) = Ax(t) is asymptotically stable if and
only if | arg(spec(A))| > a7, where spec(A) is the spectrum (set of all eigenvalues) of A, arg()
is the amplitude function.

Lemma 2 ([32]) Let A€ R"™",0<a <1 and 0 = (1 —a)r/2. The fractional-order system
Dx(t) = Ax(t) is asymptotically stable if and only if there exists a positive definite Hermi-
tian matrix X = X*, X € C"™", such that

sym(A(rX +7X)) <0. (7)
0i

Herer=¢e

Lemma 3 ([33]) For any matrices X, Y with appropriate dimension, the following inequal-
ity holds for any B > 0:

Xty +YTX < gxTx + gtyTy. (8)

Lemma 4 ([34]) For a real matrix ® = ®7, the following conditions are equivalent:
(O] (o}
1) ®-= |: 11 12] <0,
[ ] q322
(2) @11 <0, Dy — DL, P71 P12 <0,

(3) @22 < 0, cI)11 - qDquDEZIq)E <0.
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3 Main results

3.1 Robust stability analysis

When u(¢) = 0, the following uncertain state space model is usually considered in the con-
text of robustness analysis and synthesis for fractional-order systems:

N
D*x(t) = (Z VilA; + DAiFAiEAi)>x(t)~ )

i=1

Theorem 3.1 The LTI fractional-order system with poly-topic and two-norm bounded
uncertainties in (9) is robustly asymptotically stable if there exist matrices X; = X} > 0,
X; e C™" g >0foralli,j=1,2,...,N such that

sym(A,-(rX,» +7X;)) + &;,Da; DY .

. o <0. (10)
ij
Ef(rX; +7X)) _g[ql

Proof If there exists a positive definite Hermitian matrix X; = X! > 0, X; € C"", and
for linear system it is obvious that X(y) = Zfil viXi, A(y) = Zﬁl viA;. So according to
Lemma 2, the system is robustly stable if the following equation is satisfied:

sym(A(rX + ?)_()) <0

N N N
& sym Z |:Vi(121i + DaiFaiEa;) (V Z yiXi+ 7 Z Vi)_(i>:| <0
i=1 i=1 i=1
N
=4 Z )/i2 [sym[ﬁi(rXi + ;"Xl) + DA,‘FAL‘EA,‘(VX,‘ + }_")_(l)]] (1 1)
i=1
N-1 N
+ Z Z y,»yj{sym[(;li(r)(j + ?)_(,») + DaiFaEai(rX; + ?)_(,»))

i=1 j=i+l

+A1'(7'Xi + ;)_(1) + DAjFA/EAj(VXi + l_”)_(,)]} <0.
Note that, if Egs. (12)—(14) hold, then inequality (11) is satisfied;

Sym[Ai(er' +7X;) + DaiEaiEa;(rX; + 7")_(,»)] <0 (i=1,2,...,N), (12)
sym[zzl,-(er +7X;) + DaiFaiEai(rX; + ?)_(/)] <0

(i=12,....N-1;j=i+1,...,N), (13)
sym[zzlj(rX,» +7X;) + DajFAiEaj(rX; + 7X;)] < 0

(i=1,2,....,.N-1;j=i+1,...,N). (14)

And based on Lemma 3, there exist &; >0 (i=1,2,...,N); £;>0,¢; >0 (i=1,2,...,N-1;
j=i+1,...,N) such that

sym(Da:FaiEai(rX; + 7X;)) < eaDaiDh; + 67 p3:(rX; + 7X))"EL Eai(rX; + 7X2), (15)
sym(DAiFAiEA,-(er + ?)_(,»)) < sijDA,-DL + si;l,of\i(rX,' + ?)_(,»)TELEA,-(rX,' + ?)_(,»), (16)

sym(DA,-FA,-EA,»(rXi + ;’)_(l)) < S/iDA/‘DZ‘v/ + sj’ilpﬁj(rX,» + l_")_(i)TEEEA}'(VX,‘ + l_”)_(,) (17)
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Substitute (15) into (12), (16) into (13), and (17) into (14), respectively. Then based on

Lemma 4, inequalities (12)—(14) can be written as

sym(A;(rX; + 7X;)) + eaD DY, °

. . <0, &;>0,i=1,2,...,N, (18)
EA,‘(VX,' + VX,‘) —p—iilql
sym(Ai(rX,' + ?)_(,»)) + gz'jDAiDii °
5 4 <0,
Ex(rX; + 7X;) —%Iql
£;>0,i=1,2,...,N-1Lj=i+1,..,N, (19)
sym(Aj(rXi + ;")_(,)) + SjiDAng]‘ L]
-5 i <0,
EAj(rXi + }"Xl') _%IQI
Aj
£i>0,i=12,...,N-1j=i+1,...,N. (20)

Note that the above condition (18)—(20) can be further rewritten as

A
i

sym(A;(rX; + 7X;)) + e;Da; DY, .

- . <0 forallij=1,2,...,N. (21)
Efi(rX; +7X)) -1,
Pai
By Lemma 2, the system is robustly asymptotically stable. This ends the proof. O

3.2 Robust stabilization of fractional-order uncertain linear systems
In this section, we consider the linear state-feedback control for fractional-order systems
(2), that is,

u(t) = Kx(t). (22)

Theorem 3.2 The LTI fractional-order system with poly-topic and two-norm bounded
uncertainties in (2) is robustly asymptotically stable if there exist matrices X; = X > 0,
X; e ", Re R, 815> 0, 805 >0, forall i,j = 1,2,...,N, such that

sym(;\,'(rX,» + ;‘)_(]) + Bl‘Rj) + 81,'}'DA,'DL- + 82ijDBiD173; [ ] °
Exi(rX; +7X)) _%Iql . <0. (23)
Ai
EgiR; o -3,

The state-feedback controller gain matrix is determined as

N N
K= Z yiRi Z(in + ;’)_(i)_l. (24)
i=1 i=1
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Proof Since it is obvious that X(y) = Zf\il viX;, A(y) = Zf\il yiA;, according to Lemma 2,

the system is robustly stable if the following equation is satisfied:
sym((A + BK)(rX +7X)) <0
N
< Z yi2{sym[Ai(rXi + ;')_(l) + BiR,‘ + DBiFBiEBiRi + DA,‘FAiEAl'(TXi + ;’)_(,)]}
i=1

N-1 N . __ . (25)
+ Z Z y,»yj{sym[(Ai(rX,» +7Xj) + DaiFaiE4i(rX; + X))
i=1 j=i+l

+ élRl + DBiFBiEBiR/)

+ Aj(}"Xi + ;)_(1) + DA]'FA/‘EA}'(VX,‘ + l_”)_(l) + BjRi + DBjFBjEBjRi]} <0.
If Egs. (26)—(28) hold, then inequality (25) is satisfied;

sym[Ai(rX; + 7X;) + BiR; + DpiFgiEpiR; + DaiFaiEai(rX; +7X;)] < 0
(i=1,2,...,N), (26)
sym[Ai(rX; + 7X)) + DaiFaiEai(rX; + 7X)) + BiR; + Dy;F5:EpiR;] < 0
(i=1,2,....N-1;j=i+1,...,N), (27)
syrn[zzlj(rXi +7X;) + D gjFo;E4i(rX; + FX;) + EjR,» + DBjFBjEB,Ri] <0

(i=1,2,....,.N-1;j=i+1,...,N). (28)

According to Lemma 3, there exist £1;;,82;; > 0 (i = 1,2,...,N); €15, 82 > 0, &1, 82 > 0 (i =
1,2,...,N-1;j=i+1,...,N), such that

sym(DaiFaiEai(rX; + 7X;)) < e1:DaiDy; + €102, Xs + X)) "EQEai(rX; +7X)),  (29)
sym(Dp;FgiEgiR;) < €5i;Dp;:Dy; + &5 p; R} Eg;EgiR;, (30)
sym(DAiFA,'EAi(rX,' + 7)_(/)) < ethA,»Dii + 81_i}pﬁi(rX,- + ?)_(i)TELEA,'(rX,» +7X)), (31)
sym(DpiFsiEpiR)) < £2iDpiDy; + 63 pp R EgEniR;, (32)
sym(DA,'FAjEA,'(rXi + 7")_(,»)) < slﬁDA,'Dij + sl_j%pjj(r)(i + ?)_(i)TEijEA,»(rXi +7X)), (33)

sym(DB,-FB,»EB,»R,-) < SZjiDBngj + SiﬁpélRTEg]EB/Rz (34')

l

Substitute (29)—(30) into (26), (31)—(32) into (27), and (33)—(34) into (28), respectively.
Then based on Lemma 4, for &1;;,82; >0 (i = 1,2,...,N); e15,€25 > 0, €185 > 0 (i =
1,2,...,N-1;j=i+1,...,N) inequalities (26)—(28) can be written as

sym(Ai(rX,- + I_")_(l) + Bl‘Ri) + gliiDAiD,{i + 82iiDBiD£l' (] °
EA,'(}"XZ‘ + ;’)_(,) —%Iql ® < O, (35)
Ai
EgiR; 0 —%g[qz
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sym(A;(rX; + 7X;) + BiR)) + 15D aiDy; + £2iiDpiDy; ° °
Exi(rX; + X)) _%Iql . <0, (36)
1 B P
i EpR; 0 - pié]@ i
—sym(Aj(rXi + ;‘)_(l) + BjRi) + 81]'iDA]'D‘£j + 82]'[D31‘D£/ o [ ]
Exj(rX; + X)) —%Im . <0. (37)
j
EgR; o -Zr,
L Pg "

Note that the above condition (35)—(37) is equivalent to inequality (23). By Lemma 2, the
system is robustly asymptotically stable. This completes the proof. O

4 Numerical examples

In this section, three numerical examples are given to illustrate the use of the proposed
theoretical results. Some comparisons with recent relevant publications are shown in the
first example, then the second example deals with the stability analysis of fractional-order
linear systems with poly-topic and two-norm bounded uncertainties. And a feedback con-
troller is designed in the third example. The objective is to show the application of the
obtained results.

4.1 Example 1
In this example, the method is applied to an uncertain fractional-order linear system with
the parameters described in the following [30]. This system has two-norm bounded un-

certainty only, it is a special case of Theorem 3.1 in this paper. We have

3 2 -1 05 1 0
Ai=|-30 15 -1|, Du=|-04 02 0 |,
20 20 -1 01 -01 -06
01 03 04 0.0083 0.0166 0.0249
En=|0 01 05|, Fu={00332 00415 0.0499
0 0 05 0.0582 0.0665 0.0748

Using Theorem 3.1, for i = j = 1, the time response of selected system within the uncer-
tainty is shown in Fig. 1.

This is the same result as in Ref. [30]; it indicates the correctness of Theorem 3.1. But
in [30], the norm bounded uncertainty is only considered, and the poly-topic uncertainty
is not taken into consideration. This paper is just to deal with the two-norm bounded and
poly-topic uncertainties simultaneously. But in [30], the robust stability bounds on the
uncertainties are also derived. That is also our next work to do in the future.

4.2 Example 2

Consider a fractional-order linear system (9) with the following parameters:

N=2, «=09, =01 =09,

Page 7 of 13



Li Advances in Difference Equations (2018) 2018:88 Page 8 of 13

)

e e s
T

“a 5 W0 15 0
tima

X,

y 5 n 15 EY
temy

X, (1)

| !
a 5 10 15 w0
limo

Figure 1 The time response of the system in paper [30]

A -1 02 0.11 0.12
A= , Dy, = ,
03 -1.2 0.21 0.11

Jo12 o021 £ _[012 021]
71065 051 71065 051
. [-09 o7 [0.05 0.16 |
Ay = , Dy, = ,

05 -15 0.18 0.76
£ _[017 031 o _[019 025]
271068 076 271058 049 |

According to Theorem 3.1, it follows that the above fractional-order system is robustly
asymptotically stable. By using the LMI toolbox provided by MATLAB, a feasible solution

of an LMI condition is obtained as follows:

€11 = 607672, €12 = 09883, €21 = 876725, €92 = 08390,

[332398 18577 _[0.4608 0.0287
"7 18577 321176 | >7 00287 03303

The time response of the fractional-order system with initial state x1initial = %2initial = 0.1 is
described in Fig. 2, which shows that all the states are convergent.

From Theorem 3.1, it is obvious that the robust stability condition has no relationship
with y;. Three randomly selected cases for comparison are:

(1) Casel:y; =0.1, 5 = 0.9,

(2) Case2:971=0.9,y,=0.1,

(3) Case3:y1 =04, y, =0.6.
The time response of the system in these cases are simulated in Fig. 3.

From Fig. 3 it can be seen that all x; (£), x,(¢) are stable regardless of the value of y;, which
is consistent with Theorem 3.1. The validity of the theorem is illustrated from another

point of view.
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3.5 T T T T

X, (0
- X5(t) H

15 20 25

time

Figure 2 The time response of the system with 3 =0.1, ¥, =09

3.5 T T T T
X

’ t) in case(1)

X (t) in case(1)

(
S
4() in case(2)
(
(
(

X

- X,(t) in case(2) [l

2

X, (t) in case(3)

1

X, (t) in case(3) |

2

x(t)

20 25

time

Figure 3 The time response of the system in 3 cases

4.3 Example 3

Consider the following fractional-order linear system:

-25 52 -15 01 012 0.2
Ai=|-33 45 -08], D4y =1021 011 03],
30 40 -70 09 07 05
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x 10°
6 T T T T T T T T T
) in case(1)
) in case(1)
i 1
51 ) in case(1)
) in case(2)
) in case(2)
) in case(2)
ar ) in case(3)
xz(t) in case(3)
xa(t) in case(3)
£ 3+
x
2
1+
0 ! L ! ! L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
time
Figure 4 The time response of the system in three cases

0.12 0.65 0.76 2 1 15
E;n=1068 076 087, Fu=|51 6|,
045 021 0.39 3 4

0.8 098 0.35 0.23
Bi=| 2|, Dp;=]015 0.24 039,
1.2 0.65 028 043
0.12 076 092 0.21
Ep =065, Fp=(0.73 045 0.65 |,
0.28 076 027 0.19
-35 5 -1 01 0.65 0.83
Ay=| =2 5 081, Dy =1052 054 02
40 26 -7 0.13 043 0.65
0.12 0.65 0.76 1 08 1.2
Es=1068 076 087, Fp=]11 31 25/,
045 021 0.39 22 35 08
1.2 0.89 0.53 0.32
By=124{, Dp, =054 041 0.87],

1.0 0.66 0.54 0.68

’
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x(t)

5
time

Figure 5 The time response of the system in three cases

0.12

Epy =065, Fp =

0.28

N =2, o =045.

Also we consider the cases for comparison:
(1) Casel:y;=0.1, 5, =0.9,
(2) Case2:y; =09, y,=0.1,
(3) Case3:y; =04, y, =0.6.

0.12
0.56
0.91

’

According to Theorem 3.1, the system is not robustly asymptotically stable. The time re-

sponse of the fractional-order system is described in Fig. 4, which shows that all its states

are not convergent when the control input u(¢) = 0.

By using Theorem 3.2, the fractional-order system with u(z) = Kx(¢) is determined to be

asymptotically stabilized, which is shown in Fig. 5.

Different y; are corresponding to different feedback gain matrices, and the stabilizing

state-feedback gain matrices are obtained:

(1) Casel, K= [—40.7700 —-40.3679 —27.1365];
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(2) Case2, K= [—28.2832 -35.7695 —27.0709];

(3) Case 3, K=[—36.0874 _38.6435 —27.1119].

5 Conclusion

In this paper, some new results have been proposed for the robust stability and stabiliza-
tion of the fractional-order system with poly-topic and two-norm bounded uncertainties
when 0 < « < 1. Firstly, a sufficient condition for robust stabilization has been derived; sec-
ondly, the corresponding linear state-feedback stabilizing controller has been designed if
the robust stabilization condition is not satisfied. Both of them are presented using the
linear matrix inequality approaches, with the help of the LMI toolbox in MATLAB, and
three numerical examples have been given to demonstrate the effectiveness of the pro-
posed method.
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