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Abstract
The Kolmogorov model has been applied to many biological and environmental
problems. We are particularly interested in one of its variants, that is, a Gauss-type
predator–prey model that includes the Allee effect and Holling type-III functional
response. Instead of using classic first order differential equations to formulate the
model, fractional order differential equations are utilized. The existence and
uniqueness of a nonnegative solution as well as the conditions for the existence of
equilibrium points are provided. We then investigate the local stability of the three
types of equilibrium points by using the linearization method. The conditions for the
existence of a Hopf bifurcation at the positive equilibrium are also presented. To
further affirm the theoretical results, numerical simulations for the coexistence
equilibrium point are carried out.

Keywords: Fractional order differential equations; Predator–prey model; Allee effect;
Functional response; Stability; Hopf bifurcation

1 Introduction
Fractional calculus is an extension of classical calculus that generalizes the order of deriva-
tives and integrals to a non-integer order. Fractional calculus was first discussed more than
300 years ago by Leibniz and L’Hôpital [1], who considered derivatives of order α = 1

2 . In
the last few decades, fractional calculus has been widely used in many fields such as en-
gineering [2–4], mechanics [5, 6], physics [7, 8], chemistry [9, 10], and biology [11–13].
For some dynamic phenomena, models with fractional order derivatives provide a better
and more efficient description than those with classical derivatives [14]. Models with frac-
tional order derivatives can take different forms depending on the system understudy and
purpose of the model. Among them, fractional differential equations (FDEs) and fractional
partial differential equations (FPDEs) are most often applied to represent continuous and
deterministic systems. FDEs and FPDEs have been mathematically studied from several
different perspectives, yielding methods for solving FDEs [15–19] and FPDEs [20–26] and
characterization of the asymptotic behavior of solutions [27–30].

Recently, many researchers have used fractional differential equations to develop mod-
els for predator–prey interactions [31–34], atmospheric dispersion [35], pharmacokinet-
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ics [36], HIV infection [37], and bioreactors [38]. The predator–prey model has been ap-
plied to describe the relationship between two species in biological systems in which one
a predator feeds on the other its prey [39]. Fractional order predator–prey models have
been used by many researchers, who also discussed the stability and numerical solutions
of the models [32, 33, 40, 41]. Moreover, some studies showed the conditions for existence
of a Hopf bifurcation [42–44] and the appearance of a limit cycle [45].

The Kolmogorov model is a general continuous time predator–prey model, consisting
of a system of first order differential equations [46]. There are many types of Kolmogorov
models such as the Lotka–Volterra model [47], Gauss-type models [48], Hsu model [49],
Kuang and Freedman model [50], and Huang and Merrill model [51]. Among them, the
Gauss-type predator–prey models have been widely used to formulate population models
[52–55]. A crucial phenomenon in biology is the decrease in per capita growth rate at low
population densities [56], which was first described by Warder Clyde Allee in the 1930s
[57]. Several researchers are interested in the Allee effect for multi-species systems and
have included the Allee effect term in Gauss-type predator–prey models [58, 59]. In ad-
dition, many population models [60–62] are often associated with a functional response,
which refers to the predation rate per predator as a function of prey density [63, 64] and
predator density [65–67]. There are a variety of functional responses such as the Holling
type-I–III functions [68], Holling type-IV function [69], the simplified Holling type-IV
function [70], the Beddington–DeAngelis function [66], the Crowley–Martin function
[71].

In 2010, Eduardo et al. [72] studied a Gauss-type predator–prey model with Allee effect
on prey and Holling type-III functional response and examined the global behavior of this
model. They identified three important assumptions as regards the interactions between
prey and predator:

• the prey population is affected by the Allee effect,
• the functional response is Holling type-III, and
• the predator is a generalist species; see details in Ref. [73].
The model is given by

dx
dt

= r
(

1 –
x
K

)
(x – m)x –

sx2

x2 + a2 y,

dy
dt

=
(

px2

x2 + a2 – c
)

y,

with the initial conditions x(t0) = x0 and y(t0) = y0,

(1)

where x = x(t) and y = y(t) are the population sizes of prey and predator at time t, respec-
tively; the sizes may be numbers of individuals or density. In order to represent biolog-
ical populations, all parameters in model (1) are positive; that is, r, K , m, s, p, a, c > 0 and
a, m < K . The meaning of the parameters in model (1) is given as follows:

• r is the growth rate of the prey.
• K is the environmental capacity of the prey.
• m is the minimum viable population.
• s is the maximum per capita consumption rate.
• a is the amount of prey at which predation rate is maximal.
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• p is the conversion efficiency of reduction rate of the predator.
• c is the natural per capita death rate of the predator.
In model (1), the Allee effect is defined by the term r(1 – x

K )(x – m)x and the Holling
type-III functional response is represented by the term sx2

x2+a2 . This functional response de-
scribes a behavior in which the number of prey consumed per predator initially increases
quickly as the density of prey grows and levels off with further increase in prey density
[74].

The most famous definitions of fractional order derivatives are the Grünwald–Letnikov
[75], Riemann–Liouville [76], and Caputo [77] definitions. The Caputo definition is very
useful because in this case the derivative of a constant is zero and the initial conditions
for the fractional order differential equations can be provided in the same manner as for
the classical integer case, which has a clear physical meaning [78]. This paper aims to
construct a fractional Gauss-type predator–prey model with Allee effect and Holling type-
III functional response in the Caputo sense by modifying model (1). We analyze the local
stability of the equilibria for the model using the linearization method. Moreover, given
a derivative order, the conditions for the existence of a Hopf bifurcation of the positive
equilibrium are obtained.

This article is organized as follows: In Sect. 2, the definition of a fractional order deriva-
tive in the Caputo sense and some important theorems for fractional order systems are
introduced. The model is then developed along with the existence and uniqueness of a
nonnegative solution of the model in Sect. 3. In Sect. 4, we analyze the local stability of
the equilibrium points and examine the conditions for the existence of a Hopf bifurcation
at the positive equilibrium. Some numerical examples to support the theoretical results
are shown in Sect. 5. Finally, the conclusions of this study are presented in Sect. 6.

2 Preliminaries
In this section, the definition of a fractional derivative in the Caputo sense is given. Fur-
thermore, definitions of an equilibrium point and some important theorems of the local
stability of a fractional order system are presented.

Definition 2.1 ([77]) Let k ∈ N, f ∈ Ak[t0, T], where Ak[t0, T] is the set of all functions
f : [t0, T] −→ R, such that f (k–1) is absolutely continuous, and t ∈ [t0, T]. Then, for k – 1 <
α < k, the Caputo fractional derivative of order α is defined by

C
t0 Dα

t f (t) =
1

�(k – α)

∫ t

t0

(t – τ )k–α–1f (k)(τ ) dτ ,

where �(·) denotes the Gamma function [79].

Theorem 2.2 ([80]) The Laplace transform of the Caputo fractional derivative of order α

for 0 < α < 1 is

L
{C

0 Dα
t f (t)

}
(s) = s

αF (s) – s
α–1f (0),

where F (s) = L{f (t)}(s) and s is a real or complex parameter.
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Theorem 2.3 ([77]) Let β > 0 and b ∈C. The Laplace transform of Eβ ,1(–btβ ) is

L
{

Eβ ,1
(
–btβ

)}
(s) =

sβ–1

sβ + b
,

where Eβ ,1(·) denotes the Mittag-Leffler function [79].

The initial value problem for the Caputo fractional differential system, consisting of n
equations for 0 < α < 1, is given by

C
t0 Dα

t X(t) = f
(
t, X(t)

)
with X(t0) = X0, (2)

where f : [t0,∞) ×� −→ R
n is piecewise continuous in t and locally Lipschitz continuous

in X on [t0,∞) × �,� ⊂R
n.

An equilibrium point of system (2) and the stability of the equilibrium point are de-
scribed by the following definition and theorems.

Definition 2.4 ([81]) A point X∗ is called an equilibrium point of system (2) if and only if
f (t, X∗) = 0.

Suppose that an equilibrium point of system (2) is X∗ = 0. If X∗ �= 0, then it can be shifted
to the origin by changing a variable [82]: Y (t) = X(t) – X∗. System (2) can be written in
terms of the new variable Y (t) as

C
t0 Dα

t Y (t) = C
t0 Dα

t
(
X(t) – X∗) = f

(
t, X(t)

)
= f

(
t, Y (t) + X∗) = g

(
t, Y (t)

)
,

where g(t, 0) = 0 and the system has equilibrium at the origin.

Theorem 2.5 ([33]) Let J(X∗) denote the Jacobian matrix of system (2) evaluated at equi-
librium point X∗. The eigenvalues of J(X∗) are λi, where i = 1, . . . , n. Then equilibrium point
X∗ is a saddle point if some eigenvalues λi satisfy | arg(λi)| > απ

2 and some others satisfy
| arg(λi)| < απ

2 .

Theorem 2.6 ([1, 33]) Considering the system (2),
(i) equilibrium point X∗ is locally asymptotically stable if and only if all eigenvalues λi,

i = 1, . . . , n of J(X∗) satisfy | arg(λi)| > απ
2 ,

(ii) equilibrium point X∗ is stable if and only if all eigenvalues λi, i = 1, . . . , n of J(X∗)
satisfy | arg(λi)| ≥ απ

2 and eigenvalues with | arg(λi)| = απ
2 have the same geometric

multiplicity and algebraic multiplicity, and
(iii) equilibrium point X∗ is unstable if and only if there exist eigenvalues λi for some

i = 1, . . . , n of J(X∗) which satisfy | arg(λi)| < απ
2 .

3 Fractional order model
In this section, we construct the fractional Gauss-type predator–prey model with Allee
effect and Holling type-III functional response by modifying model (1). We subsequently
show the existence and uniqueness of a nonnegative solution.
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Starting with model (1), we replace the first order derivatives in the model with the
Caputo fractional order derivatives. Consequently, a new model with fractional differential
equations can be written as:

C
t0 Dα

t x = r
(

1 –
x
K

)
(x – m)x –

sx2

x2 + a2 y,

C
t0 Dα

t y =
(

px2

x2 + a2 – c
)

y,
(3)

where 0 < α < 1 with initial x(t0) = x0 and y(t0) = y0.
Let

X(t) =

(
x(t)
y(t)

)
, X0 =

(
x0

y0

)
, and

f
(
X(t)

)
=

(
f1

f2

)
=

(
r(1 – x

K )(x – m)x – sx2

x2+a2 y
( px2

x2+a2 – c)y

)
.

Then model (3) can be written as C
t0 Dα

t X(t) = f (X(t)) with X0 =
( x0

y0

)
.

3.1 Existence and uniqueness of a nonnegative solution
Let R2

+ = {X = (x, y)T ∈R
2 | x ≥ 0, y ≥ 0} be the nonnegative quadrant of the xy-plane.

From model (3), we can verify that fi, ∂fi
∂x , and ∂fi

∂y for i = 1, 2 are continuous inR
2
+. Accord-

ing to a lemma in reference [83], we find that f (X(t)) satisfies a local Lipschitz condition
with respect to X in R

2
+. Therefore, by Remark 3.8 in Ref. [82], fractional order model (3)

has a unique solution in R
2
+.

A requirement for the biological significance of the model, that the solution is nonneg-
ative for t > t0 if the initial solution of model (3) starts in R

2
+, will be considered in the next

subsection.

3.2 Nonnegative solution
Theorem 3.1 If x(t0) ≥ 0 and y(t0) ≥ 0, then the solution X(t) of model (3) remains in R

2
+.

Proof This theorem is proved by contradiction.
Let X0 =

( x0
y0

) ∈R
2
+, and X(t) for t ≥ t0 be the solution of model (3).

Suppose there exists a solution X(t) that moves away from R
2
+. Then there are two pos-

sibilities: it passes through either the x-axis or y-axis. The proof will be divided into these
two cases.

Case 1: If solution X(t) passes through the x-axis, then there exists t∗ ≥ t0 such that
y(t∗) = 0 and x(t∗) > 0. Moreover, there exists t1 > t∗ such that t1 is sufficiently close to t∗,
y(t) < 0, and x(t) > 0 for all t ∈ (t∗, t1]. From model (3), we have C

t0 Dα
t y = px2y

x2+a2 – cy and it
follows that

C
t0 Dα

t y >
px2y

x2 + a2 for all t ∈ (
t∗, t1

]
. (4)

Since y(t) < 0, p > px2(t)
x2(t)+a2 , and inequality (4) holds, we obtain

C
t0 Dα

t y > py. (5)



Baisad and Moonchai Advances in Difference Equations  (2018) 2018:82 Page 6 of 20

Applying the Laplace transform to both sides of inequality (5) yields

s
αY (s) – s

α–1y(t0) > pY (s),
(
s
α – p

)
Y (s) > s

α–1y(t0),

Y (s) >
sα–1y(t0)
sα – p

,

(6)

where Y (s) = L{y(t)}(s).
Applying the inverse Laplace transform to both sides of inequality (6) gives

y(t) > y(t0)Eα,1
(
ptα

)
for all t ∈ (

t∗, t1
]
. (7)

Since y(t0) ≥ 0 and inequality (7) holds in this case, we have y(t) > 0 for all t ∈ (t∗, t1], which
contradicts y(t) < 0 for all t ∈ (t∗, t1].

Case 2: If solution X(t) passes through the y-axis, then there exists t∗ ≥ t0 such that
x(t∗) = 0 and y(t∗) > 0. Additionally, there exists t1 > t∗ such that t1 is sufficiently close to
t∗, x(t) < 0, and y(t) > 0 for all t ∈ (t∗, t1]. From model (3), we have C

t0 Dα
t x = r(1 – x

K )(x –
m)x – sx2

x2+a2 y, which leads to

C
t0 Dα

t x > –
sx2

x2 + a2 y,

C
t0 Dα

t x > –
sx2

a2 y for all t ∈ (
t∗, t1

]
.

(8)

From the second equation of model (3), we have

C
t0 Dα

t y =
(

px2

x2 + a2 – c
)

y <
px2

x2 + a2 y < py.

Taking the Laplace transform of both sides of the above inequality and then applying the
inverse Laplace transform, we get

y(t) < y(t0)Eα,1
(
ptα

)
for all t ∈ (

t∗, t1
]
.

Thus, y(t) < M for some M ≥ 0 and t ∈ (t∗, t1]. From inequality (8) and the above result,
we obtain

C
t0 Dα

t x > –
sx2

a2 M.

Since t1 is sufficiently near t∗, we have an x(t) that is close to 0 for all t ∈ (t∗, t1]. Thus,
–x2(t) > x(t) and then

C
t0 Dα

t x >
sM
a2 x. (9)

Taking the Laplace transform of both sides of inequality (9) and then applying the inverse
Laplace transform give

x(t) > x(t0)Eα,1

(
sM
a2 tα

)
for all t ∈ (

t∗, t1
]
. (10)
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However, since x(t0) ≥ 0 and inequality (10) holds, x(t) > 0 for all t ∈ (t∗, t1], which contra-
dicts x(t) < 0 for all t ∈ (t∗, t1].

Considering both Case 1 and Case 2, we conclude that the solution of model (3) remains
in R

2
+ if the initial solution starts in this region. �

4 Main results
4.1 Equilibrium points and stability analysis
According to Definition 2.4, an equilibrium point of model (3) is obtained by solving the
following equations:

C
t0 Dα

t x = 0, and C
t0 Dα

t y = 0,

that is,

x
[

r
(

1 –
x
K

)
(x – m) –

sx
x2 + a2 y

]
= 0,

y
(

px2

x2 + a2 – c
)

= 0.

We have the following four equilibrium points:
(i) the extinction equilibrium point: E0 = (0, 0),

(ii) the predator-free equilibrium points: E1 = (m, 0) and E2 = (K , 0),
(iii) the coexistence equilibrium point: E3 = (x∗, y∗), where

x∗ =

√
ca2

p – c
and y∗ =

r
sx∗

(
1 –

x∗

K

)(
x∗ – m

)(
x∗2

+ a2). (11)

Since the populations of prey and predator are nonnegative, equilibrium point E3 =
(x∗, y∗) exists whenever p > c.

Next the local stability of the equilibrium points is analyzed using the linearization
method. The Jacobian matrix of model (3) evaluated at point (x, y) is given by

J(x, y) =

⎡
⎣ G(x, y) – sx2

x2+a2

2pa2x
(x2+a2)2 y px2

x2+a2 – c

⎤
⎦ , (12)

where G(x, y) = x[r(1 – 2x–m
K ) – s(a2–x2)

(x2+a2)2 y] + [r(1 – x
K )(x – m) – sx

x2+a2 y].
By using Theorems 2.5 and 2.6, we obtain the stabilities of the four equilibrium points,

which are discussed in the following theorems.

Theorem 4.1 Equilibrium point E0 = (0, 0) of model (3) is locally asymptotically stable.

Proof From Eq. (12), the Jacobian matrix of model (3) evaluated at equilibrium point E0 =
(0, 0) is given by

J(0, 0) =

[
–rm 0

0 –c

]
.

Hence, the eigenvalues of J(0, 0) are λ1 = –rm < 0 and λ2 = –c < 0. Consequently, arg(λ1) =
arg(λ2) = π , which leads to | arg(λ1)| > απ

2 and | arg(λ2)| > απ
2 for 0 < α < 1.
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Therefore, by Theorem 2.6, we conclude that equilibrium point E0 = (0, 0) is locally
asymptotically stable. �

Theorem 4.2 Equilibrium point E1 = (m, 0) of model (3) is unstable and is a saddle point
if (p–c)m2

ca2 < 1.

Proof From Eq. (12), the Jacobian matrix of model (3) evaluated at equilibrium point E1 =
(m, 0) is given by

J(m, 0) =

[
rm(1 – m

K ) – sm2

m2+a2

0 pm2

m2+a2 – c

]
.

Hence, the eigenvalues of J(m, 0) are λ1 = rm(1 – m
K ) and λ2 = pm2

m2+a2 – c. Since m < K ,
we have λ1 > 0. Then arg(λ1) = 0, which satisfies the condition | arg(λ1)| < απ

2 . By using
Theorem 2.6, equilibrium point E1 = (m, 0) is unstable.

If (p–c)m2

ca2 < 1, then λ2 < 0. Hence, arg(λ2) = π , which results in | arg(λ2)| > απ
2 .

According to Theorem 2.5, equilibrium point E1 = (m, 0) is a saddle point if (p–c)m2

ca2 < 1. �

Theorem 4.3 Equilibrium point E2 = (K , 0) of model (3) is a saddle point if (p–c)K2

ca2 > 1 and
is locally asymptotically stable if (p–c)K2

ca2 < 1.

Proof By using Eq. (12), the Jacobian matrix of model (3) evaluated at equilibrium point
E2 = (K , 0) is given by

J(K , 0) =

[
–r(K – m) – sK2

K2+a2

0 pK2

K2+a2 – c

]
.

Hence, the eigenvalues of J(K , 0) are λ1 = –r(K – m) and λ2 = pK2

K2+a2 – c. We have λ1 < 0
because m < K . Hence, arg(λ1) = π leading to | arg(λ1)| > απ

2 . If (p–c)K2

ca2 > 1, then λ2 > 0.
Thus, arg(λ2) = 0, which results in | arg(λ2)| < απ

2 . On the other hand, if (p–c)K2

ca2 < 1, then
λ2 < 0. Then arg(λ2) = π , which satisfies | arg(λ2)| > απ

2 .
Therefore, by Theorem 2.5 and 2.6, equilibrium point E2 = (K , 0) is a saddle point if

(p–c)K2

ca2 > 1 and is locally asymptotically stable if (p–c)K2

ca2 < 1. �

Theorem 4.4 Equilibrium point E3 = (x∗, y∗) of model (3) is locally asymptotically stable
if one of the following conditions holds:

(i) tr(J(x∗, y∗)) ≤ 0.
(ii) tr(J(x∗, y∗)) > 0, tr2(J(x∗, y∗)) – 4 det(J(x∗, y∗)) < 0, and

| tr2(J(x∗, y∗)) – 4 det(J(x∗, y∗))|1/2 > tr(J(x∗, y∗)) tan( απ
2 ).

Proof By using Eq. (12), the Jacobian matrix of model (3) evaluated at equilibrium point
E3 = (x∗, y∗) is given by

J
(
x∗, y∗) =

⎡
⎣ G(x∗, y∗) – sx∗2

x∗2 +a2

2pa2x∗
(x∗2 +a2)2 y∗ 0

⎤
⎦ ,

where G(x∗, y∗) = x∗[r(1 – 2x∗–m
K ) – s(a2–x∗2

)
(x∗2 +a2)2 y∗].
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Then the determinant and trace, respectively, of the Jacobian matrix J(x∗, y∗) are

det
(
J
(
x∗, y∗)) =

[
sx∗2

x∗2 + a2

][
2pa2x∗

(x∗2 + a2)2
y∗

]
> 0 (13)

and

tr
(
J
(
x∗, y∗)) = x∗

[
r
(

1 –
2x∗ – m

K

)
–

s(a2 – x∗2 )
(x∗2 + a2)2

y∗
]

. (14)

Thus, the eigenvalues of J(x∗, y∗) are written as

λ1 =
1
2
(
tr
(
J
(
x∗, y∗)) +

[
tr2(J

(
x∗, y∗)) – 4 det

(
J
(
x∗, y∗))]1/2),

λ2 =
1
2
(
tr
(
J
(
x∗, y∗)) –

[
tr2(J

(
x∗, y∗)) – 4 det

(
J
(
x∗, y∗))]1/2).

(15)

(i) Assume that tr(J(x∗, y∗)) ≤ 0. The proof will be divided into three cases.
Case 1: If tr(J(x∗, y∗)) = 0, then, by Eq. (15), we obtain a pair of complex conjugate eigen-

values λ1 and λ2 = λ̄1. Since Re(λ1) = Re(λ2) = tr(J(x∗, y∗)) = 0, we have arg(λ1) = π
2 and

arg(λ2) = –π
2 leading to | arg(λ1)| > απ

2 and | arg(λ2)| > απ
2 .

By Theorem 2.6, equilibrium point E3 = (x∗, y∗) is locally asymptotically stable.
Case 2: If tr(J(x∗, y∗)) < 0 and tr2(J(x∗, y∗)) – 4 det(J(x∗, y∗)) ≥ 0, then according to Eq. (15),

the eigenvalues of J(x∗, y∗) are λ1 < 0 and λ2 < 0. Consequently, we obtain the condition
| arg(λ1)| > απ

2 and | arg(λ2)| > απ
2 .

Hence, by Theorem 2.6, the equilibrium point E3 = (x∗, y∗) is locally asymptotically sta-
ble.

Case 3: If tr(J(x∗, y∗)) < 0 and tr2(J(x∗, y∗))–4 det(J(x∗, y∗)) < 0, then, by Eq. (15), we obtain
a pair of complex conjugate eigenvalues λ1 and λ2 = λ̄1. Since tr(J(x∗, y∗)) < 0, we have
Re(λ1) = Re(λ2) = tr(J(x∗, y∗)) < 0. Thus, | arg(λ1)| > απ

2 and | arg(λ2)| > απ
2 .

Therefore, by Theorem 2.6, equilibrium point E3 = (x∗, y∗) is locally asymptotically sta-
ble.

By considering Case 1, Case 2, and Case 3, we conclude that equilibrium point E3 =
(x∗, y∗) is locally asymptotically stable if tr(J(x∗, y∗)) ≤ 0.

(ii) Assume that tr(J(x∗, y∗)) > 0, tr2(J(x∗, y∗)) – 4 det(J(x∗, y∗)) < 0 and | tr2(J(x∗, y∗)) –
4 det(J(x∗, y∗))|1/2 > tr(J(x∗, y∗)) tan( απ

2 ). By Eq. (15), we have a pair of complex conjugate
eigenvalues λ1 and λ2 = λ̄1 such that Im(λ1) = – Im(λ2) = [4 det(J(x∗, y∗)) – tr2(J(x∗, y∗))]1/2 >
0 and Re(λ1) = Re(λ2) = tr(J(x∗, y∗)) > 0. From the assumptions, we obtain Im(λ1) >
Re(λ1) tan( απ

2 ) and – Im(λ2) > Re(λ2) tan( απ
2 ). These imply that απ

2 < arg(λ1) < π
2 and

–π
2 < arg(λ2) < –απ

2 , which satisfy the conditions | arg(λ1)| > απ
2 and | arg(λ2)| > απ

2 , respec-
tively.

According to Theorem 2.6, equilibrium point E3 = (x∗, y∗) is locally asymptotically sta-
ble. �

Theorem 4.5 Equilibrium point E3 = (x∗, y∗) of model (3) is unstable if one of the following
conditions holds:

(i) tr2(J(x∗, y∗)) – 4 det(J(x∗, y∗)) ≥ 0 and tr(J(x∗, y∗)) > 0.
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(ii) tr2(J(x∗, y∗)) – 4 det(J(x∗, y∗)) < 0, tr(J(x∗, y∗)) > 0, and
| tr2(J(x∗, y∗)) – 4 det(J(x∗, y∗))|1/2 < tr(J(x∗, y∗)) tan( απ

2 ).

Proof (i) Assume that tr2(J(x∗, y∗)) – 4 det(J(x∗, y∗)) ≥ 0 and tr(J(x∗, y∗)) > 0. From Eq. (13)
in Theorem 4.4, we have det(J(x∗, y∗)) > 0. Then, by Eq. (15), we obtain λ1 > 0 and λ2 > 0,
which lead to | arg(λ1)| < απ

2 and | arg(λ2)| < απ
2 .

Hence, by Theorem 2.6, the equilibrium point E3 = (x∗, y∗) is unstable.
(ii) Assume that tr2(J(x∗, y∗)) – 4 det(J(x∗, y∗)) < 0, tr(J(x∗, y∗)) > 0, and | tr2(J(x∗, y∗)) –

4 det(J(x∗, y∗))|1/2 < tr(J(x∗, y∗)) tan( απ
2 ). From Eq. (15), we obtain a pair of complex con-

jugate eigenvalues λ1 and λ2 = λ̄1 such that Im(λ1) = – Im(λ2) = [4 det(J(x∗, y∗)) – tr2(J(x∗,
y∗))]1/2 > 0 and Re(λ1) = Re(λ2) = tr(J(x∗, y∗)) > 0. By the assumptions, we obtain Im(λ1) <
Re(λ1) tan( απ

2 ) and – Im(λ2) < Re(λ2) tan( απ
2 ). These imply that 0 < arg(λ1) < απ

2 and –απ
2 <

arg(λ2) < 0, then | arg(λ1)| < απ
2 and | arg(λ2)| < απ

2 .
Therefore, by Theorem 2.6, equilibrium point E3 = (x∗, y∗) is unstable. �

4.2 Existence of a Hopf bifurcation
A Hopf bifurcation occurs when a system has a pair of complex conjugate eigenvalues of
the Jacobian matrix at an equilibrium point and when the stability of the equilibrium point
changes from stable to unstable as a bifurcation parameter crosses a critical value [84, 85].
From the results of Sect. 4.1, we observe that the order of derivatives has an effect on the
stability of model (3). Thus, we can choose the order to be the bifurcation parameter. The
conditions for existence of a Hopf bifurcation in a fractional order system are different
from integer order systems. There are some studies that considered the existence of Hopf
bifurcations in fractional order systems [86, 87]. In this study, we use the conditions for
the existence of a Hopf bifurcation which were introduced by Xiang Li and Ranchao Wu
[87]. The conditions for the existence are modified for our system as given below.

Theorem 4.6 ([87]; Existence of Hopf bifurcation) When bifurcation parameter α passes
through the critical value α∗ ∈ (0, 1), fractional order system (3) undergoes a Hopf bifurca-
tion at the equilibrium point if the following conditions hold:

(a) the Jacobian matrix of the system (3) at the equilibrium point has a pair of complex
conjugate eigenvalues λ1,2 = θ ± iω, where θ > 0;

(b) m(α∗) = 0, where m(α) = απ
2 – min1≤i≤2 | arg(λi)|;

(c) dm(α)
dα

|α=α∗ �= 0.

Remark 1 Condition (b) indicates that α∗ is the switching point of stability and condi-
tion (c) guarantees that m(α) can change sign when the bifurcation parameter α passes
through the critical value α∗ [87].

We then establish the conditions for the existence of a Hopf bifurcation at the positive
equilibrium point as the order of derivatives crosses a critical value. The result is presented
as the following theorem.

Theorem 4.7 Model (3) undergoes a Hopf bifurcation at equilibrium point E3 = (x∗, y∗)
when bifurcation parameter α passes through the critical value α∗ = 2

π
arctan[(| tr2(J(x∗,

y∗)) – 4 det(J(x∗, y∗))|1/2)/(tr(J(x∗, y∗)))] if tr2(J(x∗, y∗)) – 4 det(J(x∗, y∗)) < 0 and tr(J(x∗,
y∗)) > 0.
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Proof Assume that tr2(J(x∗, y∗)) – 4 det(J(x∗, y∗)) < 0, tr(J(x∗, y∗)) > 0, and the critical value
α∗ = 2

π
arctan[ | tr2(J(x∗ ,y∗))–4 det(J(x∗ ,y∗))|1/2

tr(J(x∗ ,y∗)) ].
Define θ = 1

2 tr(J(x∗, y∗)) and ω = 1
2 | tr2(J(x∗, y∗)) – 4 det(J(x∗, y∗))|1/2. By the second as-

sumption, we have θ > 0. According to the first assumption and Eq. (15), we have a pair
of complex conjugate eigenvalues λ1,2 = θ ± iω, with θ > 0. Hence, condition (a) in Theo-
rem 4.6 holds.

From the second assumption and m(α) = απ
2 – min1≤i≤2 | arg(λi)|, we obtain

m
(
α∗) =

α∗π
2

– min
1≤i≤2

∣∣arg(λi)
∣∣

=
α∗π

2
– arctan

(
ω

θ

)

= arctan

(
ω

θ

)
– arctan

(
ω

θ

)

= 0.

Then condition (b) in Theorem 4.6 holds.
Finally, from the definition of m(α), we have

dm(α)
dα

∣∣∣∣
α=α∗

=
π

2
�= 0.

This implies that condition (c) holds.
Therefore, from Theorem 4.6, model (3) undergoes a Hopf bifurcation at equilibrium

point E3 = (x∗, y∗) when bifurcation parameter α passes through the critical value α∗. �

5 Numerical simulations
In this section, we present numerical examples and simulate model (3) to illustrate the re-
sults of Sect. 4. However, we only show the numerical examples for the coexistence equilib-
rium point. There are many numerical methods for solving nonlinear fractional differen-
tial equations such as the predictor-corrector method [15, 88], Adomian decomposition
method [16], variational iteration method [17], and Adams method [89]. However, the
Adams method is often used for solving nonlinear fractional differential equations [90–
92] and is useful for studying the dynamic behavior (especially long time behavior) of the
solutions [45]. Thus, in this study, the Adams method is used to solve model (3) by the
Matlab software.

The goals of the numerical simulations are to identify the effects of different parameter
values and of variations of the derivative order α on the dynamic behavior of the model
(3). The discussion of these effects is divided into the two following subsections.

5.1 The effect of different parameter values
We assign three different sets of parameters. In each set, we calculate the coexistence equi-
librium point E3 = (x∗, y∗) of the model by using Eq. (11). With these parameters, the deter-
minant and trace of the Jacobian matrix J(x∗, y∗) are calculated by using Eqs. (13) and (14).

In Fig. 1, we set the parameters in the model as s = 236, r = 4, K = 100, m = 1, a = 60,
p = 4, and c = 2. With these parameters, the coexistence equilibrium point is E3 = (60, 48).
We obtain tr(J(60, 48)) = –45.6 < 0, which satisfy sufficient condition (i) in Theorem 4.4.
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Figure 1 Dynamic behavior of model (3) with several initial conditions and the following parameters: s = 236,
r = 4, K = 100,m = 1, a = 60, p = 4, and c = 2. (a) Derivative order α = 0.7 and (b) derivative order α = 0.9

According to Theorem 4.4, equilibrium point E3 = (60, 48) is locally asymptotically stable,
which implies that a trajectory converges to equilibrium point E3 = (60, 48) if the initial
conditions start close enough to this equilibrium as shown in Fig. 1. The dynamic behav-
iors of interacting prey (x) and predator (y) for the order α = 0.7 with the initial values
(x0, y0) = (50, 40), (50, 55), (75, 55), (80, 45) are shown in Fig. 1(a). For comparison, the rela-
tionships of the two species for α = 0.9 with (x0, y0) = (51, 45), (53, 48), (75, 50), (70, 47) are
shown in Fig. 1(b).

In Fig. 2, we set s = 156, r = 3, K = 100, m = 1, a = 40, p = 4, and c = 2. The coexis-
tence equilibrium point for these parameters is E3 = (40, 36) and we obtain det(J(40, 36)) =
140.4 and tr(J(40, 36)) = 25.2. The result satisfies the sufficient condition (i) in Theo-
rem 4.5 because tr(J(40, 36)) > 0 and tr2(J(40, 36)) – 4 det(J(40, 36)) = 73.44 > 0. There-
fore, according to Theorem 4.5, equilibrium point E3 = (40, 36) is unstable, which im-
plies that all the trajectories diverge from this equilibrium point as shown in Fig. 2.
Figure 2(a) shows the simulation for the order α = 0.4 with the initial values (x0, y0) =
(41, 35), (37, 36.5), (35.5, 35.5), (42, 36). For comparison, Fig. 2(b) shows the dynamic be-
havior for α = 0.85 with (x0, y0) = (40, 35), (40, 37), (38, 36), (42, 36).
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Figure 2 Dynamic behavior of model (3) with several initial conditions and the following parameters: s = 156,
r = 3, K = 100,m = 1, a = 40, p = 4, and c = 2. (a) Derivative order α = 0.4 and (b) derivative order α = 0.85

The simulations presented in the two figures above indicate that the stability of the equi-
librium points does not depend on the order α ∈ (0, 1). This result is consistent with the
theorems in the previous section.

In Fig. 3, we set s = 102, r = 8, K = 100, m = 3, a = 51, p = 2, and c = 1 as pa-
rameters in the model, then the coexistence equilibrium point is E3 = (51, 188.16).
We obtain det(J(51, 188.16)) = 188.16 and tr(J(51, 188.16)) = 4.08 > 0, which lead to
tr2(J(51, 188.16)) – 4 det(J(51, 188.16)) = –735.99 < 0. Since the order α appears in con-
dition (ii) of Theorem 4.4 and 4.5, the stability of equilibrium point E3 = (51, 188.16) is de-
pendent on the value of the order α ∈ (0, 1). For order α = 0.75, we get | tr2(J(51, 188.16)) –
4 det(J(51, 188.16))|1/2 > tr(J(51, 188.16)) tan( 0.75π

2 ). According to Theorem 4.4, equilibrium
point E3 = (51, 188.16) is locally asymptotically stable as shown in Fig. 3(a). In addition, if
order α = 0.95, then | tr2(J(51, 188.16))–4 det(J(51, 188.16))|1/2 < tr(J(51, 188.16)) tan( 0.95π

2 ).
According to Theorem 4.5, equilibrium point E3 = (51, 188.16) is unstable, which is shown
in Fig. 3(b). These simulations are run with the initial values (x0, y0) = (51, 189), (51, 187),
(50, 188.16), (52, 188.16).



Baisad and Moonchai Advances in Difference Equations  (2018) 2018:82 Page 14 of 20

Figure 3 Dynamic behavior of model (3) with several initial conditions and the following parameters: s = 102,
r = 8, K = 100,m = 3, a = 51, p = 2, and c = 1. (a) Derivative order α = 0.75 and (b) derivative order α = 0.95

The simulation results in Fig. 3 indicate that the order α of model (3) has an effect on
the stability of equilibrium point E3. Next, we demonstrate how the order α can cause a
Hopf bifurcation at E3 for model (3).

5.2 The effect of varying the order α

We choose parameters in model (3) as s = 0.56, r = 0.02, K = 100, m = 2, a = 30, p = 1,
and c = 0.5. By using Eq. (11) with these parameters, the coexistence equilibrium point
is found to be E3 = (30, 42). It follows from Eqs. (13) and (14) that det(J(30, 42)) = 0.2 and
tr(J(30, 42)) = 0.25, respectively. We obtain tr2(J(30, 42)) – 4 det(J(30, 42)) = –0.72 < 0 and
the critical value in Theorem 4.7 is α∗ = 2

π
arctan( |–0.72|1/2

0.25 ) = 0.817. We simulate model (3)
by using the above parameters with initial values (x0, y0) = (35, 45) and setting the deriva-
tive order α = 0.79, 0.80, 0.83, and 0.95. The simulation results are shown in Fig. 4.

In Figs. 4(a) and 4(b), numerical simulations are shown for the orders α = 0.79 and
α = 0.80, respectively, in which both values satisfy α < α∗. By using these orders and the
parameters which are specified above, condition (ii) in Theorem 4.4 is satisfied. Conse-
quently, equilibrium point E3 = (30, 42) is locally asymptotically stable. Figures 4(a) and
4(b) show that the trajectory converges to equilibrium point E3 = (30, 42).
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Figure 4 Effect of the derivative order α on the dynamic behavior of model (3) with the following
parameters: s = 0.56, r = 0.02, K = 100,m = 2, a = 30, p = 1, and c = 0.5. (a) Derivative order α = 0.79,
(b) derivative order α = 0.80, (c) derivative order α = 0.83, and (d) derivative order α = 0.95
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Figure 5 Effect of the derivative order α on the dynamic behavior of model (3) with the following
parameters: s = 0.56, r = 0.02, K = 100,m = 2, a = 30, p = 1, and c = 0.5. (a) Derivative order α = 0.9 and
(b) derivative order α = 0.99

However, if we use α = 0.83 and α = 0.95 in which both values satisfy α > α∗, then, ac-
cording to Theorem 4.5, equilibrium point E3 = (30, 42) is unstable. The simulation results
indicate that the trajectory diverges from equilibrium point E3, which is shown in Figs. 4(c)
and 4(d) for the orders α = 0.83 and α = 0.95, respectively.

The above results indicate that equilibrium point E3 = (30, 42) loses its stability when
the order α is increased to pass through the critical value α∗, which implies that a Hopf
bifurcation occurs. This result is consistent with Theorem 4.7.

In addition, Figs. 4(c) and 4(d) illustrate the appearance of an attracting limit cycle of
model (3). In further simulations, we use the same set of parameters as in Fig. 4, but we
change the initial values to (x0, y0) = (28, 40) and (100, 120) and the derivative orders to
α = 0.9 and 0.99. The simulations reveal that there exists an attracting limit cycle of model
(3) as shown in Fig. 5(a) for α = 0.9 and Fig. 5(b) for α = 0.99. However, the authors of
studies in Refs. [93–95] suggest that exact periodic solutions do not exist for fractional
order differential equations systems. Therefore, the limit cycle appearing in Fig. 4 and
Fig. 5 cannot be an exact periodic solution of model (3).
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6 Conclusions
In this paper, we have studied the dynamic behavior of a fractional Gauss-type predator–
prey model with Allee effect and Holling type-III functional response. The model was
constructed by starting with the first order model as shown in Eq. (1). We showed the ex-
istence and uniqueness of a nonnegative solution of the model. We used the linearization
method to classify the local stability of the three types of equilibrium points. In addition,
we obtained the conditions and critical value α∗ for occurrence of a Hopf bifurcation at
the positive equilibrium point. Finally, numerical simulations were used to show the dy-
namic behavior of interaction between prey and predator and to verify the validity of the
theoretical results. The simulation results illustrated that the order α is a factor affecting
the dynamic behavior and is responsible for a Hopf bifurcation. Moreover, the numerical
results showed the appearance of an attracting limit cycle of model (3). However, this limit
cycle cannot be an exact periodic solution of the model.
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