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Abstract
To study the finite-time control of plasma glucose for diabetic patients with impulsive
injections of insulin, we propose an impulsive differential equation model with initial
and boundary conditions. The goal of glucose control is supposed to be achieved if
the system has a solution, otherwise the goal cannot be achieved. By constructing
two comparison systems and using a comparison principle, several conditions under
which the system has a solution are obtained. Furthermore, some numerical
simulations are given. The results show that a relatively higher initial insulin level is
beneficial for the glucose control. For a predefined finite time, injection dose and
injection period are two important adjustable factors which can guarantee the
achievement of the control goal.
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1 Introduction
Diabetes mellitus, as a common chronic disease, is characterized by high concentration
level of plasma glucose due to the body’s inability to produce insulin or the ineffective uti-
lization of the insulin produced. Diabetes mellitus is generally classified into three main
types: type 1 diabetes, commonly seen in children and young adolescents, is caused by
the malfunction of the body’s immune system and almost no insulin is produced from the
pancreas; type 2 diabetes, commonly seen in adults, is thought to be caused by the dysfunc-
tion of the glucose–insulin regulatory system such as insulin resistance, so that body cells
cannot absorb glucose timely by utilizing insulin; and gestational diabetes, which is first
detected during pregnancy for glucose intolerance of various degrees. In recent decades,
the number of diabetic patients increased rapidly all over the world and diabetes has come
to be seen as an epidemic disease worldwide. Long-term complications of this disease, in-
cluding possible blindness, amputation and kidney failure, affect hundreds of millions of
people around the world. Based on such a reality, many researchers are motivated to study
the pathogenesis and therapy of diabetes and other problems associated with it.

Current therapies for diabetic patients include taking medications, insulin supplemen-
tation and dietary adjustment. The subcutaneous injection of insulin is usually carried out
through a syringe or insulin pump. Insulin pump is a medical device to administrate in-
sulin or its analogs. In clinical practice, an insulin pump is popularly used in the therapy
for both type 1 and type 2 diabetes and it can greatly relieve the pain of diabetic patients
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[1–9]. Even so, the life style of the patients is still seriously affected, for example, patients
have to inject insulin manually before meals to avoid hyperglycemia, and the injection dose
needs to be carefully computed according to the carbohydrate to be ingested [4, 5]. So in
recent years, researchers have been attempting to solve technological problem to develop
an artificial pancreas [10, 11], which can substitute the endocrine functionality of a real
and healthy pancreas [4, 12, 13].

In order to carefully choose the correct dose of insulin and the right time of injection,
several mathematical models have been constructed and studied. However, most of these
studies focused on the change of the glucose concentration after a sufficiently long time.
But in some clinical situations, glucose concentration needs to be controlled under a cer-
tain level in a finite time. For example, critically ill patients whose plasma glucose is in an
extremely high level need to drop their glucose concentration in a relatively short time. In
this paper, we propose an impulsive differential equation model for insulin injection with
finite-time control. Through qualitative analysis, we shall give the conditions under which
the glucose concentration can be controlled in a range predefined.

The rest of the paper is organized as follows. In Sect. 2, a mathematical model of im-
pulsive injection of insulin with initial and boundary value conditions is formulated. In
Sect. 3, the existence of the solution is discussed by comparison theorem. Finally, some
discussions and numerical simulations are provided in Sect. 4.

2 Model formulation
Mathematical models of insulin therapy for diabetes have played an important role in un-
derstanding the pharmacological mechanism of insulin in treating diabetes mellitus, and
they are also applied to anticipate the efficacy of different therapeutic schedules. In order
to design effective control strategies for plasma glucose, researchers have formulated many
models to simulate interactions of glucose and insulin. For example, the glucose–insulin
regulatory system of normal people was studied in [14–18], and the insulin sensitivity is
considered as a whole in [19–22]. In order to determine the main cause of the sustained
oscillation of the endocrine metabolic system, delay differential equation models are pro-
posed in [23–26]. Doran et al. [27] formulated a mathematical model to study the insulin
therapy for critically ill patients in ICU and insulin infusion was considered. Noticed that
the insulin injection is a relatively transient behavior in the whole course of therapy, so it
can be see as a pulse. Impulsive differential equation models have a big advantage in de-
scribing such kind of behaviors. For now, several impulsive differential equation models
have been proposed to study the impulsive injection of insulin in diabetes treatments [4,
9, 12].

Most of the studies in the literature focused on the dynamical behaviors in infinite time,
corresponding to the long-term control of the plasma glucose level. However, in clinic
practice, when the glucose concentration is at a level much higher than normal, the life
of the patient will be threatened in a very short time. So how to lower the glucose con-
centration in a given time is considered by the doctor. That is to say, the glucose concen-
tration is required to be reduced to a normal level in a given time which is finite. As far
as we know, there is very little study about the finite-time control of the glucose concen-
tration. Based on our previous work about glucose control, in this paper we construct a
new mathematical model for the finite-time control of plasma glucose, and qualitatively
analyze conditions under which the goal of control can be achieved.
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In [4], Huang et al. extended the model proposed by Li, Kuang and Mason [16, 23] by
incorporating periodic impulsive injection of insulin, and the model is as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dG(t)
dt = Gin – σ2G – a(c + mI

n+I )G + b,
dI(t)

dt = σ1G2

α2
1 +G2 – diI(t),

}

, t �= kτ ,

G(t+) = G(t),
I(t+) = I(t) + σ ,

}

, t = kτ ,
(1)

where G(t) and I(t) are the glucose concentration and insulin concentration in the plasma
at time t, respectively. Gin is the average glucose input, σ2G(t) represents the insulin-
independent glucose uptake and aG(c + mI(t)

n+I(t) ) stands for the insulin-dependent glucose
consumption. b > 0 and di > 0 are the hepatic glucose production rate and the insulin
degradation rate, respectively. σ1G2(t)

α2
1 +G2(t) represents the insulin secretion reacted to the ele-

vated glucose concentration. σ1, σ2, α1, a, c, m and n are positive and have same meanings
as in [4]. The parameters σ (mU) > 0 and τ (min) > 0 are the dose and period of insulin
injection, respectively, that is, σ (mU) insulin is injected impulsively each τ time. The mo-
ment immediately after the kth injection is denoted t = kτ+ here.

Model (1) was proposed to study the change of the glucose concentration in infinite
time with periodic injections of insulin, and the authors of [4] did provide several injec-
tion strategies in the long term to lower plasma glucose level efficiently and reduce the
economic cost of the patients. However, considering some common clinic situation when
a patient is threatened by a high plasma glucose level, the glucose concentration is re-
quired to be controlled within an ideal range by injecting insulin in a given time. The
long-term injection strategies are no longer applicable in this case. In view of this situ-
ation, we propose the following differential equation model with impulsive injection of
insulin and finite-time control of glucose:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dG(t)
dt = Gin – σ2G – a(c + mI

n+I )G + b,
dI(t)

dt = σ1G2

α2
1 +G2 – diI(t),

}

, t �= kτ ,

G(t+) = G(t),
I(t+) = I(t) + σ ,

}

, t = kτ ,

G(0) = G(0+) = G0 > 0, GL < G(T) ≤ GU < G0,
I(0) = I(0+) = I0 > 0,

(2)

where T is a given finite time, τ is still the period of insulin injection and k = 1, 2, . . . ,
p – 1, pτ = T . σ (mU) > 0 is also the dose in each injection. G0 is the initial level of the
glucose concentration which is much higher than the normal level. GU and GL are the
upper and lower bounds of plasma concentration that people can tolerate. If the glucose
concentration is controlled between GU and GL, both hypoglycemia and hyperglycemia
can be avoided. Our aim is to make sure that the concentration of the plasma glucose is
controlled between GU and GL at the moment T after p – 1 times impulsive injection of
insulin with dose σ .

3 Finite-time control of glucose
In this section, we consider the finite-time control of glucose by analyzing the system (2).
Firstly, we formulate two comparison systems for variable I , study the relationship between
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the comparison systems and system (2) and get some basic properties. Then we give the
upper and lower bounds of the two comparison systems. The conditions under which the
system (2) has a solution are finally obtained.

3.1 Preliminary
From the first and third equations of the system (2), we can get

G(T) = G0 exp

[

–
∫ T

0

(

σ2 + ac +
amI(s)
n + I(s)

)

ds
]

+ (Gin + b)
∫ T

0

[

exp

(

–
∫ T

u

(

σ2 + ac +
amI(s)
n + I(s)

)

ds
)]

du

= G0 exp
[
–(σ2 + ac)T

]
exp

[

–
∫ T

0

amI(s)
n + I(s)

ds
]

+ (Gin + b) exp
[
–(σ2 + ac)T

]

×
∫ T

0

{

exp
[
(σ2 + ac)u

]
exp

[

–
∫ T

u

amI(s)
n + I(s)

ds
]}

du. (3)

Besides, according to the second and the fourth equations of the system (2), we formulate
the following two comparison systems:

⎧
⎪⎨

⎪⎩

dI1(t)
dt = –diI1(t), t �= kτ ,

I1(t+) = I1(t) + σ , t = kτ ,
I1(0+) = I0 > 0

(4)

and

⎧
⎪⎨

⎪⎩

dI2(t)
dt = σ1 – diI2(t), t �= kτ ,

I2(t+) = I2(t) + σ , t = kτ ,
I2(0+) = I0 > 0,

(5)

where k = 1, 2, . . . , p – 1, pτ = T .
Obviously, we have I1(t) ≤ I(t) ≤ I2(t), t ∈ [0, T]. Then, by integration, we get

I1(t) = I0 exp(–dit) +
σ exp(–dit)(exp(kdiτ ) – 1)

1 – exp(–diτ )
(6)

and

I2(t) =
(

I0 –
σ1

di

)

exp(–dit) +
σ exp(–dit)(exp(kdiτ ) – 1)

1 – exp(–diτ )
+

σ1

di
, (7)

where t ∈ (kτ , (k + 1)τ ] ⊂ [0, T], k = 0, 1, . . . , p – 1.
By calculation in [4], we know that, for kτ+ ≤ b1 ≤ b2 ≤ (k + 1)τ ,

∫ b2

b1

amI1(t)
n + I1(t)

dt = ln

(
n + I1(b2)
n + I1(b1)

)– am
di

. (8)
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Similarly, we can get from the system (5), for kτ+ ≤ b1 ≤ b2 ≤ (k + 1)τ ,

∫ b2

b1

amI2(t)
n + I2(t)

dt =
am
di

∫ b2

b1

σ1

n + I2(t)
–

(
d ln(n + I2(t))

dt

)

dt

=
am
di

∫ b2

b1

σ1

n + I2(t)
dt –

am
di

∫ b2

b1

(
d ln(n + I2(t))

dt

)

dt

=
am
di

∫ b2

b1

σ1

n + I2(t)
dt + ln

(
n + I2(b2)
n + I2(b1)

)– am
di

. (9)

According to (3) and (8), substituting I1(t) for I(t), we have

G(T) ≤ G0 exp
(
–(σ2 + ac)T

)
exp

(

–
∫ T

0

amI1(s)
n + I1(s)

ds
)

+ (Gin + b) exp
(
–(σ2 + ac)T

)
∫ T

0
exp

(
(σ2 + ac)u

)
exp

(

–
∫ T

u

amI1(s)
n + I1(s)

ds
)

du

= G0 exp
(
–(σ2 + ac)T

)
(

n + I1(T)
n + I0

) am
di

+ (Gin + b) exp
(
–(σ2 + ac)T

)
∫ T

0
exp

(
(σ2 + ac)u

)
(

n + I1(T)
n + I1(u)

) am
di

du

= exp
(
–(σ2 + ac)T

)(
n + I1(T)

) am
di

×
{

G0

(n + I0)
am
di

+ (Gin + b)
∫ T

0
exp

(
(σ2 + ac)u

)(
n + I1(u)

)– am
di du

}

. (10)

Analogously, substituting I2(t) into (3) for I(t), we have

G(T) ≥ G0 exp
(
–(σ2 + ac)T

)
exp

(

–
∫ T

0

amI2(s)
n + I2(s)

ds
)

+ (Gin + b) exp
(
–(σ2 + ac)T

)
∫ T

0
exp

(
(σ2 + ac)u

)
exp

(

–
∫ T

u

amI2(s)
n + I2(s)

ds
)

du

= G0 exp
(
–(σ2 + ac)T

)
exp

(

–
am
di

∫ T

0

σ1

n + I2(s)
ds

)(
n + I2(T)

n + I0

) am
di

+ (Gin + b) exp
(
–(σ2 + ac)T

)

×
∫ T

0
exp

(
(σ2 + ac)u

)
exp

(

–
am
di

∫ T

u

σ1

n + I2(s)
ds

)(
n + I2(T)
n + I2(u)

) am
di

du. (11)

According to (6), we can get

I1(0) = I0, I1(τ ) = I0 exp(–diτ ),

I1(T) =
(

I0 +
σ [exp(di(p – 1)τ ) – 1]

1 – exp(–diτ )

)

exp(–diT),

I1(t) ≥ I0 exp(–dit) +
σ [exp(–diτ ) – exp(–dit)]

1 – exp(–diτ )

=
(

I0 –
σ

1 – exp(–diτ )

)

exp(–dit) +
σ exp(–diτ )

1 – exp(–diτ )
(12)
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and

I1(t) = I0 exp(–dit) +
σ exp(–dit) exp(diτ )(exp(kdiτ ) – 1)

exp(diτ ) – 1

≤ I0 exp(–dit) +
σ exp(diτ )(1 – exp(–dit))

exp(diτ ) – 1

=
(

I0 –
σ

1 – exp(–diτ )

)

exp(–dit) +
σ

1 – exp(–diτ )
, (13)

where k = 0, 1, 2, . . . , p – 1, kτ < t ≤ (k + 1)τ .
According to (7), we can get

I2(0) = I0, I2(τ ) = I0 exp(–diτ ) +
σ1

di

(
1 – exp(–diτ )

)
,

I2
(
(p – 1)τ+)

= I0 exp
(
–di(T – τ )

)
+

σ1

di

[
1 – exp

(
–di(T – τ )

)]

+
σ [1 – exp(–di(T – τ ))]

1 – exp(–diτ )
,

I2(T) =
(

I0 –
σ1

di
+

σ [exp(di(p – 1)τ ) – 1]
1 – exp(–diτ )

)

exp(–diT) +
σ1

di

= I1(T) +
σ1

di

(
1 – exp(–diT)

)
,

I2(t) ≥
(

I0 –
σ1

di

)

exp(–dit) +
σ1

di
+

σ (exp(–diτ ) – exp(–dit))
1 – exp(–diτ )

= I0 exp(–dit) +
σ1

di

(
1 – exp(–dit)

)

+
σ

1 – exp(–diτ )
[
exp(–diτ ) – exp(–dit)

]
, (14)

and

I2(t) ≤
(

I0 –
σ1

di

)

exp(–dit) +
σ1

di
+

σ (1 – exp(–dit))
1 – exp(–diτ )

=
(

I0 –
σ1

di
–

σ

1 – exp(–diτ )

)

exp(–dit) +
σ

1 – exp(–diτ )
+

σ1

di
. (15)

3.2 The upper and lower bounds of the comparison systems
In the following, we give the upper and lower bounds of the comparison systems (4) and
(5). These results will be applied to discuss the existence of the solution of system (2) with
initial and boundary value problem.

Proposition 1 If I0 ≥ σ
1–exp(–diτ ) , then the system (4) satisfies I1(t) ≥ I1(T) � I0 exp(–diT) +

σ [exp(–diτ )–exp(–diT)]
1–exp(–diτ ) . If I0 < σ

1–exp(–diτ ) , then the system (4) satisfies I1(t) ≥ I1(τ ) � I0 exp(–diτ ).

Proof For convenience, we denote q = exp(–diτ ), then we know 0 < q < 1. From (6), we
can easily get I1(t) is monotonic decreasing on (kτ , (k + 1)τ ], k = 0, 1, 2, . . . , p – 1. Besides,

I1
(
(k + 1)τ

)
= I0qk+1 +

σq(1 – qk)
1 – q
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and

I1
[
(k + 1)τ

]
– I1[kτ ] = I0qk+1 +

σq(1 – qk)
1 – q

– I0qk –
σq(1 – qk–1)

1 – q

= I0qk(q – 1) + σqk = qk[σ – (1 – q)I0
]
. (16)

If I0 ≥ σ
1–exp(–diτ ) , I1(t) is monotonic decreasing on (kτ , (k + 1)τ ] and {I1((k + 1)τ )},

k = 0, 1, 2, . . . , p – 1 is a monotonic decreasing sequence, then I1(t) ≥ I1(pτ ) = I1(T) =
I0 exp(–diT) + σ [exp(–diτ )–exp(–diT)]

1–exp(–diτ ) .
Conversely, if I0 < σ

1–exp(–diτ ) , I1(t) is monotonic decreasing on (kτ , (k + 1)τ ] and
{I1((k + 1)τ )}, k = 0, 1, 2, . . . , p – 1 is a monotonic increasing sequence, then I1(t) ≥ I1(τ ) =
I0 exp(–diτ ). That completes the proof. �

Proposition 2 If I0 – σ1
di

> σ
1–exp(–diτ ) , then the system (5) satisfies

I0 > I2(t) ≥ I2(T) � I1(T) +
σ1

di

(
1 – exp(–diT)

)
;

if I0 ≥ σ1
di

and I0 – σ1
di

≤ σ
1–exp(–diτ ) , then the system (5) satisfies

I2(t) ≥ I2(τ ) � I0 exp(–diτ ) +
σ1

di

[
1 – exp(–diτ )

]

and

I2(t) ≤ I2
[
(p – 1)τ+]

= I2
[
(T – τ )+]

� I0 exp
(
–di(T – τ )

)

+
σ1

di

[
1 – exp

(
–di(T – τ )

)]
+

σ [1 – exp(–di(T – τ ))]
1 – exp(–diτ )

.

Proof From (7), we know that if I0 ≥ σ1
di

, then I2(t) is monotonic decreasing on
(kτ , (k + 1)τ ], k = 0, 1, 2, . . . , p – 1. Besides,

I2
(
(k + 1)τ

)
= I0qk+1 +

σ1

di

(
1 – qk+1) +

σq(1 – qk)
1 – q

and

I2
(
(k + 1)τ+)

= I0qk+1 +
σ1

di

(
1 – qk+1) +

σ (1 – qk+1)
1 – q

.

By calculation, we can easily get

I2
[
(k + 1)τ

]
– I2[kτ ] = I0qk(q – 1) +

σ1

di
qk(1 – q) + σqk

= qk
[

I0(q – 1) +
σ1

di
(1 – q) + σ

]

= qk
[

(1 – q)
(

σ1

di
– I0

)

+ σ

]

(17)
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and

I2
[
(k + 1)τ+]

– I2
[
kτ+]

= qk
[

(1 – q)
(

σ1

di
– I0

)

+ σ

]

. (18)

So if I0 – σ1
di

> σ
1–exp(–diτ ) , then I2(t) is monotonic decreasing on (kτ , (k + 1)τ ], {I2((k + 1)τ )}

and {I2((k + 1)τ+)}, k = 0, 1, 2, . . . , p – 1, are monotonic decreasing sequences, thus we get
I2(t) ≥ I2(T) and I2(t) ≤ I2(0+) = I0 for t ∈ [0, T].

If I0 ≥ σ1
di

and I0 – σ1
di

≤ σ
1–exp(–diτ ) , then I2(t) is monotonic decreasing on (kτ , (k + 1)τ ],

{I2((k + 1)τ )} and {I2((k + 1)τ+)}, k = 0, 1, 2, . . . , p – 1, are monotonic increasing sequences,
thus we get I2(t) ≥ I2(τ ) and I2(t) ≤ I2((p–1)τ+) = I2[(T –τ )+] for t ∈ [0, T]. That completes
the proof. �

3.3 Existence of solution of system (2)
Now we discuss the existence of the solution of the system (2) for the finite-time glucose
control.

For convenience, we denote

fi(t1, t2) =
(

n + Ii(t2)
n + Ii(t1)

) am
di

, i = 1, 2, Gs =
Gin + b
σ2 + ac

,

D1 = σ2 + ac +
amσ1

di(n + I2(T))
, D2 = σ2 + ac +

amσ1

di(n + I2(τ ))
.

Theorem 3.1 Suppose that I0 – σ1
di

> σ
1–exp(–diτ ) and the following two conditions hold:

G0f1(0, T) – Gs ≤ (GU – Gs) exp
[
(σ2 + ac)T

]
(19)

and

G0 exp(–D1T) +
1

D1
(Gin + b)

(
1 – exp(–D1T)

) ≥ GLf2(T , 0), (20)

then the system (2) has a solution which satisfies the initial and boundary value problem.

Proof According to Proposition (1) and inequality (10), we can get

∫ T

0
exp

(
(σ2 + ac)u

)(
n + I1(u)

)– am
di du

≤
∫ T

0
exp

(
(σ2 + ac)u

)(
n + I1(T)

)– am
di du

=
(
n + I1(T)

)– am
di

1
σ2 + ac

[
exp

(
(σ2 + ac)T

)
– 1

]
, (21)

G(t) ≤ exp
(
–(σ2 + ac)T

)(
n + I1(T)

) am
di

×
{

G0

(n + I0)
am
di

+ (Gin + b)
(
n + I1(T)

)– am
di

1
σ2 + ac

[
exp

(
(σ2 + ac)T

)
– 1

]
}

= G0 exp
(
–(σ2 + ac)T

)
f1(0, T) + Gs

[
1 – exp

(
–(σ2 + ac)T

)] ≤ GU . (22)
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According to Proposition (2) and inequality (11), we have

exp

(

–
am
di

∫ T

0

σ1

n + I2(s)
ds

)

≥ exp

(

–
am
di

∫ T

0

σ1

n + I2(T)
ds

)

= exp

(

–
amσ1T

di(n + I2(T))

)

,

exp

(

–
am
di

∫ T

u

σ1

n + I2(s)
ds

)

≥ exp

(

–
amσ1T

di(n + I2(T))

)

exp

(
amσ1u

di(n + I2(T))

)

,

f2(u, T) ≥ f2(0, T),

we can get

∫ T

0
exp

(
(σ2 + ac)u

)
exp

(

–
am
di

∫ T

u

σ1

n + I2(s)
ds

)

f2(u, T) du

≥ f2(0, T) exp

(

–
amσ1T

di(n + I2(T))

)∫ T

0
exp(D1u) du

=
f2(0, T)

D1
exp

(

–
amσ1T

di(n + I2(T))

)
[
exp(D1T) – 1

]
(23)

and then according to (11)

G(T) ≥ G0 exp
(
–(σ2 + ac)T

)
f2(0, T) exp

(

–
amσ1T

di(n + I2(T))

)

+ (Gin + b) exp
(
–(σ2 + ac)T

) f2(0, T)
D1

× exp

(

–
amσ1T

di(n + I2(T))

)
[
exp(D1T) – 1

]

= f2(0, T) exp(–D1T)
{

G0 +
Gin + b

D1

[
exp(D1T) – 1

]
}

≥ GL. (24)

That completes the proof. �

Theorem 3.2 Suppose that I0 ≥ σ1
di

, I0 ≥ σ
1–exp(–diτ ) , I0 – σ1

di
≤ σ

1–exp(–diτ ) , inequality (19)
and the following condition holds:

G0f2(0, T) +
1

D2
(Gin + b) exp(–amτ )

[
exp(D2T) – 1

] ≥ GL exp(D2T), (25)

then the system (2) has a solution which satisfies the initial and boundary value problem.

Proof According to Proposition (2) and inequality (11), we have

exp

(

–
am
di

∫ T

0

σ1

n + I2(s)
ds

)

≥ exp

(

–
am
di

∫ T

0

σ1

n + I2(τ )
ds

)

= exp

(

–
amσ1T

di(n + I2(τ ))

)

,

exp

(

–
am
di

∫ T

u

σ1

n + I2(s)
ds

)

≥ exp

(

–
amσ1T

di(n + I2(τ ))

)

exp

(
amσ1u

di(n + I2(τ ))

)

,
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n + I2(T)
n + I2(T – τ )

=
σ1
di

+ exp(–diτ )[(I0 – σ1
di

) exp(–di(T – τ )) + σ (1–exp(–di(T–τ )))
1–exp(–diτ ) ]

σ1
di

+ [(I0 – σ1
di

) exp(–di(T – τ )) + σ (1–exp(–di(T–τ )))
1–exp(–diτ ) ]

,

f2(u, T) ≥ f2(T – τ , T) ≥ exp(–amτ ),

then we get

∫ T

0
exp

(
(σ2 + ac)u

)
exp

(

–
am
di

∫ T

u

σ1

n + I2(s)
ds

)

f2(u, T) du

≥ exp(–amτ ) exp

(

–
amσ1T

di(n + I2(τ ))

)∫ T

0
exp(D2u) du

=
exp(–amτ )

D2
exp

(

–
amσ1T

di(n + I2(τ ))

)
[
exp(D2T) – 1

]
. (26)

According to (11)

G(T) ≥ G0 exp
(
–(σ2 + ac)T

)
f2(0, T) exp

(

–
amσ1T

di(n + I2(τ ))

)

+ (Gin + b) exp
(
–(σ2 + ac)T

)exp(–amτ )
D2

× exp

(

–
amσ1T

di(n + I2(τ ))

)
[
exp(D2T) – 1

]

= exp(–D2T)
{

G0f2(0, T)

+
(Gin + b) exp(–amτ )

D2

[
exp(D2T) – 1

]
}

≥ GL. (27)

By a similar discussion to Theorem 3.1, we can also get G(T) ≤ GU . That completes the
proof. �

Theorem 3.3 Suppose that I0 ≥ σ1
di

, I0 ≤ σ
1–exp(–diτ ) , I0 – σ1

di
≤ σ

1–exp(–diτ ) , inequality (25)
and the following condition holds:

G0f1(0, T) – Gsf1(τ , T) ≤ (
GU – Gsf1(τ , T)

)
exp

(
(σ2 + ac)T

)
, (28)

then the system (2) has a solution which satisfies the initial and boundary value problem.

Proof Because I0 ≥ σ1
di

and I0 ≤ σ
1–exp(–diτ ) , we have I0 – σ1

di
≤ σ

1–exp(–diτ ) .
According to Proposition (1) and inequality (10), we can get

∫ T

0
exp

(
(σ2 + ac)u

)(
n + I1(u)

)– am
di du

≤
∫ T

0
exp

(
(σ2 + ac)u

)(
n + I1(τ )

)– am
di du

=
(
n + I1(τ )

)– am
di

1
σ2 + ac

[
exp

(
(σ2 + ac)T

)
– 1

]
, (29)
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G(t) ≤ exp
(
–(σ2 + ac)T

)(
n + I1(T)

) am
di

×
{

G0

(n + I0)
am
di

+ (Gin + b)
(
n + I1(τ )

)– am
di

1
σ2 + ac

[
exp

(
(σ2 + ac)T

)
– 1

]
}

= G0 exp
(
–(σ2 + ac)T

)
f1(0, T) + Gsf1(τ , T)

[
1 – exp

(
–(σ2 + ac)T

)]

≤ GU . (30)

By a similar discussion to Theorem 3.2, we can also get G(T) ≥ GL. That completes the
proof. �

4 Numerical simulation and discussion
In this paper, we build an impulsive differential equation model with initial and boundary
value conditions to study the finite-time control of glucose for the insulin therapy of dia-
betics. Compared with system (2.2) proposed in [4], our new model concentrates on the
finite-time control of glucose under periodic injection of insulin. This is meaningful for
some clinical situations, for example, seriously ill patients whose plasma glucose level is
extremely high and needs to be controlled under certain level in a relatively short time.
By applying comparison theorem, we obtain several results which guarantee that the glu-
cose concentration drops to a safe level in a finite time. This potentially contributes to the
insulin therapy for diabetics in the clinic.

According to the relationship of initial insulin level (I0), injection dose (σ ) and injection
period (τ ), we obtain sufficient conditions for the existence of solution of the system (2)
(see Theorem 3.1, Theorem 3.2, Theorem 3.3). For every case, we give the upper and lower
bounds of the glucose concentration. In clinic, we are more interested in the upper bound
of the glucose level. The upper bound in Theorem 3.2 is the same as in Theorem 3.1, so
there are two types of upper bound (see inequality (22) and (30)). Obviously, both f1(0, T) =
( n+I1(0)

n+I1(T) )
am
di and f1(τ , T) = ( n+I1(τ )

n+I1(T) )
am
di decrease monotonically with σ , so the upper bound of

glucose level is a monotonically decreasing function of σ . That is to say, the upper bound
of the glucose concentration we obtained in Sect. 3 will decrease with the increase of the
injection dose.

However, the upper bound of the glucose concentration in [0, T] is not necessarily the
glucose concentration at time T (i.e. G(T)). In order to evaluate the control effect when
the control objective (GL < G(T) ≤ GU ) is achieved, we perform a series of numerical sim-
ulations to explore factors that affect the control effect.

In our simulations, we set T = 120 min and the other parameter values are chosen and
adjusted from [16, 17, 20, 23, 24] and [18] (refer to Table 1). Just like in [16, 23] and [4], a
unit conversion is made.

Table 1 Model parameter values from [4]

Parameters Values Units Parameters Values Units

Gin 216 mg/min m 900 mg/min
b 100 mg/min n 80 mg
σ2 5× 10–6 min–1 σ1 6.27 mU/min
a 3× 10–5 mg–1 α1 105 mg
c 40 mg/min di 0.08 min–1

GU 190 mg/dl GL 60 mg/dl
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Figure 1 Comparison of the profiles produced by Model (2) with different initial insulin values with
G0 = 210 mg/dl, σ = 500 mU and τ = 30 min

We first investigate the impact of the initial level of insulin concentration I0 on the glu-
cose level. We set σ = 500 mU, τ = 30 min, G0 = 210 mg/dl, and then try three different
initial insulin concentration. Figure 1 shows that smaller I0 leads to longer time for the
glucose concentration to drop to a safe level. In the whole period of T , the control effect
is also better when I0 is smaller.

Then we study the injection strategy of insulin when the total injection is fixed. Since
there is very little literature that considered the finite-time control of the glucose con-
centration, it is difficult for us to cite values of T from the literature. However, we
believe that the value of T depends on physical conditions of specific patients and it
can be larger or smaller in the clinical situation according to different patients. We
here select a value of T = 120 to illustrate our results. For a predefined time T =
120 min, three different injection modes are practiced (see Fig. 2). Injection frequency
is fixed as τ = 10 min, 30 min, 60 min, respectively, and the corresponding dose is σ =
200 mU, 600 mU and 1200 mU. We compare the profiles and find similar result in [4] and
[9], that is, with fixed total injection of insulin, impulsive injection with a smaller dose and
shorter period is more effective for controlling plasma glucose level.

To understand the relationship between G(T) and the injection mode (σ and τ ), we
study Eqs. (2) and (3) together. In Eq. (3), we treat G(T) as a function of σ and τ (where
σ and τ are hidden in the expression of I(t)). Figure 3 shows that glucose concentration
at T is higher when the injection dose σ is smaller and the injection period τ is longer.
Obviously, the surface G(T)(σ , τ ) intersects with the plane G(T) = 190, so if and only if
the injection dose σ and the injection period τ fall in a certain region in the (σ , τ )-plane,
the goal of glucose control (G(T) < GU ) can be achieved.

We also investigate the relationship of G(T) and σ for fixed τ , and the relationship of
G(T) and τ for fixed σ (refer to Figs. 4 and 5). In Fig. 4, we set τ = 30 min, 20 min, 15 min,
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Figure 2 Comparison of the profiles produced by model (2) with the same total insulin injection vs. different
delivery periods

Figure 3 Surface of G(T ) as a function of σ and τ produced by Model (2) with G0 = 210 mg/dl, σ = 400 mU

respectively. The simulation implies that, for fixed τ , G(T) decreases with increasing σ .
For different τ , the control effect is better when the insulin injections are more frequent.
Figure 5 confirms that, for fixed injection dose, the glucose level at time T becomes higher
when the injection period τ becomes longer.

From the simulation, we find that, as a function of σ and τ , G(T) is a monotone function
of σ (or τ ). However, we cannot obtain analytical result of this due to the complicated
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Figure 4 Comparison of the profiles produced by Model (2) with different injection doses with
G0 = 210 mg/dl, σ = 400 mU

Figure 5 Comparison of the profiles produced by Model (2) with different injection periods with
G0 = 210 mg/dl, σ = 400 mU

expression of G(T). We will continue this work in the future. According to some clinical
situations, in addition to controlling the glucose level at time T (GL < G(T) ≤ GU ) in the
model (2), we can also try other types of constraints. For example, integral constraints can
be considered to control the glucose level in the whole time interval [0, T] and a cost–
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benefit analysis can also be taken into account. Then the problem can be stated as finding
the optimal control parameter σ and injection times ti to minimize the objective function

J1(σ , t1, t2, . . . , tp) =
pσ 2

2
+

∫ T

0

(

G(t) –
αGU + βGL

2

)2

dt

or

J2(σ , t1, t2, . . . , tp) =
pσ 2

2
+

∫ T

0

(

G(t) –
αGU + βGL

2

)2

dt +
∫ T

0

(
G(t) – GL

)2 dt,

where 0 ≤ α,β ≤ 1 and α + β = 1. Insulin injections are not necessarily periodic, and ti

represents the time point of impulsive injection in [0, T]. We will continue these studies
in our future work.
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