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Abstract
In this article, a kind of fuzzy cellular neural networks (FCNNs) with proportional
delays and leakage delays are involved. Utilizing the differential inequality strategies, a
sequence of sufficient criteria ensuring the global exponential convergence of
involved model are presented. Computer simulations are performed to verify the
analytic findings. The analytic findings of this article are innovative and complete
several existing works.
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1 Introduction
In recent several decades, cellular neural networks (CNNs) have attracted much atten-
tions from many scholars since they have been applied in numerous areas, for example,
they can be applied to image processing, pattern recognition, psychophysics, etc. [1–6].
A great deal of achievement on the dynamics of CNNs has been made. For instance, Abbas
and Xia [7] studied the attractivity of k-almost automorphic solution of CNNs with de-
lay, Balasubramaniam et al. [8] considered the global asymptotic stability of BAM FCNNs
with mixed delays, Qin et al. [9] considered the convergence and attractivity of memristor-
based delayed CNNs. For additional explanation, one can refer to [10–15].

We know that FCNNs possess fuzzy logic between template input and/or output. A lot
of authors think that the FCNNs play a key role in image processing aspects [16]. In addi-
tion, leakage delay has a great effect on the dynamical nature of neural networks [17–21].
For instance, leakage delay can destabilize a model [22]. In [23], the authors believed that
the appearance of the equilibrium has no contact with initial value and delay. Moreover,
the proportional delay of neural networks can be expressed by ξ (s) = s – rs, 0 < r < 1, s > 0.
In real life, proportional delay plays a huge role in many areas such as quality of web, cur-
rent collection [24] and so on. Since the applications of CNNs have an important relation
with the global exponential convergence behaviors [25–37]. Therefore we think that it is
meaningful to analyze the global exponential convergence of neural networks with pro-
portional delays and leakage delays. But now there is no existing work as regards the global
exponential convergence of FCNNs with proportional delays and leakage delays.

Inspired by the viewpoint, it is necessary for us to study the existence and global attrac-
tivity for neural networks with proportional delays and leakage delays. In this paper, we
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will discuss the following neural network model:

⎧
⎪⎪⎨

⎪⎪⎩

żi(t) = –αi(t)zi(t – δi(t)) +
∑n

j=1 Aij(t)hj(zj(t)) +
∑n

j=1 Bij(t)vj(t) + Gi(t)

+
∧n

j=1 Cij(t)hj(zj(θijt)) +
∨n

j=1 Dij(t)hj(zj(θijt))

+
∧n

j=1 Eij(t)vj(t) +
∨n

j=1 Fij(t)vj(t), t ≥ t̄ ≥ 0, i ∈ � = {1, 2, . . . , n},
(1.1)

where αi(t) is a rate coefficient, Aij(t) (Bij(t)) denotes the feedback (feedforward) tem-
plate; Cij(t) (Dij(t)) stands for fuzzy feedback MIN (MAX) template, Eij(t) (Fij(t)) means
fuzzy feedforward MIN (MAX) template.

∧
(
∨

) stand for the fuzzy AND (OR) opera-
tion, zi(t), vi(t) and Gi(t) denote the state, input and bias of the ith neuron, respectively;
h(·) is the activation function; δi(t) is the transmission delay. θij, i, j ∈ � stand for propor-
tional delays and satisfy 0 < θij ≤ 1, and θijt = t – (1 – θij)t, in which τij(t) = (1 – θij)t is the
transmission delay function, and (1 – θij)t → ∞ as θij �= 1, t → ∞, t – δi(t) > t̄ ∀t ≥ t̄.

The initial values of (1.1) take the form

zi(s) = ψi(s), s ∈ [ςit̄, t̄], i ∈ �, (1.2)

where ςi = mini,j∈�{θij}, and ψi(t) ∈ R represents a continuous function, where t ∈ [ςit̄, t̄].
Set

l+ = sup
t∈[t̄,+∞)

∣
∣l(t)

∣
∣, l– = inf

t∈[t̄,+∞)

∣
∣l(t)

∣
∣,

where l stands for a bounded and continuous function. Let z = (z1, z2, . . . , zn)T ∈ Rn, |z| =
(|z1|, |z2|, . . . , |zn|)T and ‖z‖ = maxi∈� |zi|. We assume that di, Aij, Bij, Cij, Dij, Eij, Fij, Gi, vi :
[t̄, +∞) → R and δi : [t̄, +∞) → [0, +∞) are bounded and continuous functions.

Lemma 1.1 ([38]) If zj and qj are two states of (1.1), then

∣
∣
∣
∧

Cij(t)hj(zj) –
∧

Cij(t)hj(qj)
∣
∣
∣ ≤

n∑

j=1

∣
∣Cij(t)

∣
∣
∣
∣hj(zj) – hj(qj)

∣
∣,

∣
∣
∣
∨

Dij(t)hj(zj) –
∨

Dij(t)hj(qj)
∣
∣
∣ ≤

n∑

j=1

∣
∣Dij(t)

∣
∣
∣
∣hj(zj) – hj(qj)

∣
∣.

Now we also give some assumptions as follows:
(Q1) ∃α∗

i : [t0, +∞) → (0, +∞) and a constant ηi > 0 which satisfy
e–

∫ t
s αi(θ ) dθ ≤ ηie–

∫ t
s α∗

i (θ ) dθ , ∀t, s ∈ R, i ∈ � and t – s ≥ 0, where α∗
i is a bounded and

continuous function.
(Q2) ∃ constants Lj ≥ 0 which satisfy |hj(t1) – hj(t2)| ≤ Lj|t1 – t2|, hj(0) = 0

∀t1, t2 ∈ R, i ∈ �.
(Q3) ∃ constants μ1 > 0,μ2 > 0, . . . ,μn > 0 and γ ∗ > 0 which satisfy

sup
t≥t̄

{

–α∗
i (t) + ηi

[
∣
∣αi(t)

∣
∣δ∗

i (t)eγ ∗δ+
i + μ–1

i

n∑

j=1

∣
∣Aij(t)

∣
∣Ljμj

+ μ–1
i

n∑

j=1

∣
∣Cij(t)

∣
∣Ljμjeγ ∗(1–θij)t + μ–1

i

n∑

j=1

∣
∣Dij(t)

∣
∣Ljμjeγ ∗(1–θij)t

]}

< 0,
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sup
t≥t̄

{
∣
∣αi(t)

∣
∣ + ηi

[
∣
∣αi(t)

∣
∣δi(t)eγ ∗δ+

i + μ–1
i

n∑

j=1

∣
∣Aij(t)

∣
∣Ljμj

+ μ–1
i

n∑

j=1

∣
∣Cij(t)

∣
∣Ljμjeγ ∗(1–θij)t + μ–1

i

n∑

j=1

∣
∣Dij(t)

∣
∣Ljμjeγ ∗(1–θij)t

]}

< 1,

and Gi(t) + (Bij(t) + Eij(t) + Fij(t))vj = O(e–γ ∗t) as t → +∞, where i, j ∈ �.
The pivotal achievements of this article consist of three points: (i) the global exponential

convergence of FCCNs with leakage delays and proportional delays is firstly considered;
(ii) a new sufficient criterion guaranteeing the global exponential convergence of model
(1.1) is presented; (iii) the analytic predictions of this article are more common and the
analysis method of this article can be applied to the investigation of some other related
network systems.

2 Main findings
Now we will give the important findings on the global exponential convergence for (1.1).

Theorem 2.1 For (1.1), if (Q1)–(Q3) hold, then ∃ a constant γ > 0 such that, for every
z = (z1, z2, . . . , zn)T , zi(t) = O(e–γ t) when t → +∞, i ∈ �.

Proof In order to prove zi(t) = O(e–γ t) when t → +∞, i ∈ �, we need prove that there
exists a constant M > 0 such that zi(t) = Me–γ t when t → +∞, i ∈ �. For convenience, we
firstly establish an equivalent form of the original system by applying a suitable variable
substitution. By way of contradiction and the differential inequality strategies, we obtain
the results of the theorem. In the following, we will given the detailed proofs.

Assume that z(t) = (z1(t), z2(t), . . . , zn(t))T is an arbitrary solution of (1.1) and the initial
value is ψ = (ψ1,ψ2, . . . ,ψn)T . Set

w(t) =
(
w1(t), w2(t), . . . , wn(t)

)T =
(
μ–1

1 z1(t),μ–1
2 z2(t), . . . ,μ–1

n zn(t)
)T . (2.1)

Then (1.1) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẇi(t) = –αi(t)wi(t – δi(t)) + μ–1
i

∑n
j=1 Aij(t)hj(μjwj(t))

+ μ–1
i

∑n
j=1 Bij(t)vj(t) + μ–1

i Ii(t)

+ μ–1
i

∧n
j=1 Cij(t)hj(μjwj(θijt)) + μ–1

i
∨n

j=1 Dij(t)hj(μjwj(θijt))

+ μ–1
i

∧n
j=1 Eij(t)vj(t) + μ–1

i
∨n

j=1 Fij(t)vj(t), i ∈ � = {1, 2, . . . , n}.

(2.2)

By (Q3), we can find a γ ∈ (0, min{γ ∗, mini∈� inft≥t0 α∗
i (t)}) which satisfies

sup
t≥t̄

{

γ – α∗
i (t) + ηi

[
∣
∣αi(t)

∣
∣δ∗

i (t)eγ ∗δ+
i

+ μ–1
i

n∑

j=1

∣
∣Aij(t)

∣
∣Ljμj + μ–1

i

n∑

j=1

∣
∣Cij(t)

∣
∣Ljμjeγ ∗(1–θij)t

+ μ–1
i

n∑

j=1

∣
∣Dij(t)

∣
∣Ljμjeγ ∗(1–θij)t + γ

]}

< 0, i ∈ �, (2.3)
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sup
t≥t̄

{
∣
∣αi(t)

∣
∣ + ηi

[
∣
∣αi(t)

∣
∣δi(t)eγ ∗δ+

i + μ–1
i

n∑

j=1

∣
∣Aij(t)

∣
∣Ljμj

+ μ–1
i

n∑

j=1

∣
∣Cij(t)

∣
∣Ljμjeγ ∗(1–θij)t

+ μ–1
i

n∑

j=1

∣
∣Dij(t)

∣
∣Ljμjeλ∗(1–θij)t + γ

]}

< 1, i ∈ �. (2.4)

Set

‖ψ‖μ = max
i∈�

{
μ–1

i max
t∈[ςi t̄,t̄]

∣
∣ψi(t)

∣
∣
}

. (2.5)

For ε > 0, one has

∣
∣wi(t)

∣
∣ <

(‖ψ‖μ + ε
)
e–γ (t–t̄) < χ

(‖ψ‖μ + ε
)
e–γ (t–t̄) (2.6)

∀t ∈ [ςit̄, t̄], where χ = maxi∈� ηi + 1 which satisfies

∣
∣μ–1

i
(
Bij(t)vj(t) + Gi(t) + Eij(t)vj(t) + Fij(t)vj(t)

)∣
∣ < γχ

(‖ψ‖μ + ε
)
e–γ (t–t̄) (2.7)

∀t ≥ t̄, i ∈ �. In the sequel, we will prove that

∣
∣wi(t)

∣
∣ < χ

(‖ψ‖μ + ε
)
e–γ (t–t̄) (2.8)

∀t ≥ t̄, i ∈ �. Assume that (2.8) does not hold, then we can find i ∈ � and t∗ > t̄ which
satisfies

∣
∣wi

(
t∗)∣∣ = χ

(‖ψ‖μ + ε
)
e–γ (t∗–t̄) (2.9)

and

∣
∣wj(t)

∣
∣ = χ

(‖ψ‖μ + ε
)
e–γ (t–t̄) (2.10)

∀t ∈ [ςj t̄, t∗], j ∈ �.
In addition

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẇi(s) + αi(s)wi(s)

= αi(s)
∫ s

s–δi(s) ẇi(θ ) dθ + μ–1
i

∑n
j=1 Aij(s)hj(μjwj(s)) + μ–1

i
∑n

j=1 Bij(s)vj(s)

+ μ–1
i

∧n
j=1 Cij(s)hj(μjwj(θijs)) + μ–1

i
∨n

j=1 Dij(s)hj(μjwj(θijs))

+ μ–1
i

∧n
j=1 Eij(s)vj(s) + μ–1

i
∨n

j=1 Fij(s)vj(s) + μ–1
i Gi(s),

(2.11)

where s ∈ [t̄, t], t ∈ [t̄, t∗], i ∈ �.



Xu et al. Advances in Difference Equations  (2018) 2018:72 Page 5 of 10

In view of (2.11), one has

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẇi(t) = αi(t̄)e–
∫ t

t̄ αi(v) dv +
∫ t

t̄ e–
∫ t

s αi(v) dv[di(s)
∫ s

s–δi(s) ẇi(v) dv

+ μ–1
i

∑n
j=1 Aij(s)hj(μjwj(s)) + μ–1

i
∑n

j=1 Bij(s)vj(s)

+ μ–1
i

∧n
j=1 Cij(s)hj(μjwj(θijs)) + μ–1

i
∨n

j=1 Dij(s)hj(μjwj(θijs))

+ μ–1
i

∧n
j=1 Eij(s)vj(s) + μ–1

i
∨n

j=1 Fij(s)vj(s) + μ–1
i Gi(s)] ds.

(2.12)

According to (2.3), (2.7) and (2.10), we get

∣
∣ẇi

(
t∗)∣∣ =

∣
∣
∣
∣
∣
αi(t̄)e–

∫ t∗
t̄ αi(v) dv +

∫ t∗

t̄
e–

∫ t∗
s αi(v) dv

[

αi(s)
∫ s

s–δi(s)
ẇi(v) dv

+ μ–1
i

n∑

j=1

Aij(s)hj
(
μjwj(s)

)
+ μ–1

i

n∑

j=1

Bij(s)vj(s)

+ μ–1
i

n∧

j=1

Cij(s)hj
(
�jwj(θijs)

)
+ μ–1

i

n∨

j=1

Dij(s)hj
(
μjwj(θijs)

)

+ μ–1
i

n∧

j=1

Eij(s)vj(s) + μ–1
i

n∨

j=1

Fij(s)vj(s) + μ–1
i Gi(s)

]

ds

∣
∣
∣
∣
∣

≤ (‖ψ‖μ + ε
)
ηie–

∫ t∗
t̄ α∗

i (v) dv +
∫ t∗

t̄
e–

∫ t∗
s α∗

i (v) dvηi

×
[
∣
∣αi(s)

∣
∣δi(s)χ

(‖ψ‖μ + ε
)
e–γ (s–δi(s)–t̄) + μi

n∑

j=1

∣
∣Aij(s)

∣
∣Ljμj

∣
∣wj(s)

∣
∣

+ μi

n∑

j=1

∣
∣Cij(s)

∣
∣Ljμj

∣
∣wj(θijs)

∣
∣ + μi

n∑

j=1

∣
∣Dij(s)

∣
∣Ljμj

∣
∣wj(θijs)

∣
∣

+

∣
∣
∣
∣
∣
μ–1

i

n∑

j=1

Bij(s)vj(s) + μ–1
i

n∧

j=1

Eij(s)vj(s) + μ–1
i

n∨

j=1

Fij(s)vj(s) + μ–1
i Gi(s)

∣
∣
∣
∣
∣

]

ds

≤ (‖ψ‖μ + ε
)
ηie–

∫ t∗
t̄ α∗

i (v) dv +
∫ t∗

t̄
e–

∫ t∗
s α∗

i (v) dvηi

×
[
∣
∣αi(s)

∣
∣δi(s)χ

(‖ψ‖μ + ε
)
e–γ (s–δ+

i –t̄)

+ μi

n∑

j=1

∣
∣Aij(s)

∣
∣Ljμjχ

(‖ψ‖μ + ε
)
e–γ (s–t̄)

+ μi

n∑

j=1

∣
∣Cij(s)

∣
∣Ljμjχ

(‖ψ‖μ + ε
)
e–γ (θijs–t̄)

+ μi

n∑

j=1

∣
∣Dij(s)

∣
∣Ljμjχ

(‖ψ‖μ + ε
)
e–γ (θijs–t̄)

+ γχ
(‖ψ‖μ + ε

)
e–γ (θijs–t̄)

]

ds
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≤ (‖ψ‖μ + ε
)
ηie–

∫ t∗
t̄ α∗

i (v) dv +
∫ t∗

t̄
e–

∫ t∗
s (α∗

i (v)–γ ) dvηi

[
∣
∣di(s)

∣
∣δi(s)eγ δ+

i

+ μi

n∑

j=1

∣
∣Aij(s)

∣
∣Ljμj + μi

n∑

j=1

∣
∣Cij(s)

∣
∣Ljμjeγ (1–θij)s

+ μi

n∑

j=1

∣
∣Dij(s)

∣
∣Ljμjeγ (1–θij)s + γ

]

dsχ
(‖ψ‖μ + ε

)
e–γ (t∗–t̄)

≤ (‖ψ‖μ + ε
)
ηie–

∫ t∗
t̄ α∗

i (v) dv

+
∫ t∗

t̄
e–

∫ t∗
s (α∗

i (v)–γ ) dv[α∗
i (s) – γ

]
dsχ

(‖ψ‖μ + ε
)
e–γ (t∗–t̄)

= χ
(‖ψ‖μ + ε

)
e–γ (t∗–t̄)

[(
ηi

χ
– 1

)

e–
∫ t∗

t̄ (α∗
i (v)–γ ) dv + 1

]

< χ
(‖ψ‖μ + ε

)
e–γ (t∗–t̄). (2.13)

By (2.9), we know that (2.8) holds. Therefore zi(t) = O(e–γ t) when t → +∞, i ∈ �. �

Remark 2.1 In [39], the authors studied the finite-time synchronization of delayed neural
networks. This paper does not involve proportional delay and leakage delay. In [40] the
authors analyzed the finite-time synchronization for neural networks with proportional
delays, this article does not consider the leakage delays. Huang [41] considered the ex-
ponential stability of delayed neural networks, but he also did not consider the effect of
proportional delays and leakage delays. moreover, all authors of [39–41] did not inves-
tigate the global exponential convergence of systems. In this article, we study the global
exponential convergence of FCNNs with leakage delays and proportional delays. All the
theoretical findings in [39–41] cannot be applied to (1.1) to ensure the global exponential
convergence of (1.1). Up to now, there are no results on the global exponential conver-
gence of FCNNs with leakage delays and proportional delays. From this viewpoint, our
results on global exponential convergence for FCNNs are essentially innovative and com-
plete several earlier publications.

3 Examples
Considering the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1(t) = –α1(t)z1(t – δ1(t)) +
∑2

j=1 A1j(t)hj(zj(t))

+
∑2

j=1 Bij(t)uj(t) +
∧2

j=1 C1j(t)hj(zj(θ1jt))

+
∨2

j=1 D1j(t)hj(zj(θ1jt)) +
∧2

j=1 E1j(t)vj(t) +
∨2

j=1 F1j(t)vj(t) + G1(t),

ż2(t) = –α2(t)z2(t – δ2(t))

+
∑2

j=1 A2j(t)hj(zj(t)) +
∑2

j=1 B2j(t)vj(t) +
∧2

j=1 C2j(t)hj(zj(θ2jt))

+
∨2

j=1 D2j(t)hj(zj(θ2jt)) +
∧2

j=1 E2j(t)vj(t) +
∨2

j=1 F2j(t)vj(t) + G2(t),

(3.1)

where h1(v) = h2(v) = 0.5(|v + 1| – |v – 1|) and

[
α1(t) δ1(t)
α2(t) δ2(t)

]

=

[
0.1(1 + 0.5 sin t) 0.01| sin t|
0.1(1 + 0.5 sin t) 0.01| cos t|

]

,
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[
A11(t) A12(t)
A21(t) A22(t)

]

=

[
0.01| sin(25π t)| 0.01| sin(25π t)|
0.01| cos(20π t)| 0.01| cos(20π t)|

]

,

[
B11(t) B12(t)
B21(t) B22(t)

]

=

[
0.01| sin(24π t)| 0.01| sin(24π t)|
0.01| cos(12π t)| 0.02| sin(15π t)|

]

,

[
C11(t) C12(t)
C21(t) C22(t)

]

=

[
0.01| sin(22π t)| 0.02| cos(18π t)|
0.03| sin(15π t)| 0.03| cos(18π t)|

]

,

[
D11(t) D12(t)
D21(t) D22(t)

]

=

[
0.01| cos(20π t)| 0.02| sin(15π t)|
0.02| sin(20π t)| 0.01| cos(15π t)|

]

,

[
E11(t) E12(t)
E21(t) E22(t)

]

=

[
0.04| sin(30π t)| 0.05| sin(28π t)|
0.07| sin(30π t)| 0.05| sin(28π t)|

]

,

[
F11(t) F12(t)
F21(t) F22(t)

]

=

[
0.03| sin(26π t)| 0.02| sin(24π t)|
0.01| cos(26π t)| 0.02| cos(24π t)|

]

,

[
V1(t) G1(t)
V2(t) G2(t)

]

=

[
0.21| sin(13π t)| 0.24| cos(20π t)|
0.34| sin(16π t)| 0.25| cos(20π t)|

]

,

[
θ11 θ12

θ21 θ22

]

=

[
0.01 0.01
0.02 0.02

]

.

Then L1 = L2 = 1. Let α∗
i (t) = 0.1,ηi = e 1

10 , then e–
∫ t

s αi(θ ) dθ ≤ e 1
10 e–(t–s), i = 1, 2, t ≥ s. Let

μ1 = μ2 = 1,γ ∗ = 1. So

sup
t≥t̄

{

–α∗
1 (t) + η1

[
∣
∣α1(t)

∣
∣δ∗

1 (t)eγ ∗δ+
1 + μ–1

1

2∑

j=1

∣
∣A1j(t)

∣
∣Ljμj

+ μ–1
1

2∑

j=1

∣
∣C1j(t)

∣
∣Ljμjeγ ∗(1–θ1j)t + μ–1

1

2∑

j=1

∣
∣D1j(t)

∣
∣Ljμjeγ ∗(1–θ1j)t

]}

= –0.0432 < 0,

sup
t≥t̄

{
∣
∣α1(t)

∣
∣ + η1

[
∣
∣α1(t)

∣
∣δ1(t)eγ ∗δ+

1 + μ–1
1

2∑

j=1

∣
∣A1j(t)

∣
∣Ljμj

+ μ–1
1

2∑

j=1

∣
∣C1j(t)

∣
∣Ljμjeγ ∗(1–θ1j)t + μ–1

1

2∑

j=1

∣
∣D1j(t)

∣
∣Ljμjeγ ∗(1–θ1j)t

]}

= 0.3511 < 1,

sup
t≥t̄

{

–α∗
2 (t) + η2

[
∣
∣α2(t)

∣
∣δ∗

2 (t)eγ ∗δ+
2 + μ–1

2

2∑

j=1

∣
∣A2j(t)

∣
∣Ljμj

+ μ–1
2

2∑

j=1

∣
∣C2j(t)

∣
∣Ljμjeγ ∗(1–θ2j)t + μ–1

2

2∑

j=1

∣
∣D2j(t)

∣
∣Ljμjeγ ∗(1–θ2j)t

]}

= –0.04628 < 0,

sup
t≥t̄

{
∣
∣α2(t)

∣
∣ + η2

[
∣
∣α2(t)

∣
∣δ2(t)eγ ∗δ+

2 + μ–1
2

2∑

j=1

∣
∣A2j(t)

∣
∣Ljμj

+ μ–1
2

2∑

j=1

∣
∣C2j(t)

∣
∣Ljμjeγ ∗(1–θ2j)t + μ–1

i

2∑

j=1

∣
∣D2j(t)

∣
∣Ljμjeγ ∗(1–θ2j)t

]}

= 0.4516 < 1.
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Figure 1 Diagram of relationship of t – z1 for (3.1)

Figure 2 Diagram of relationship of t – z2 for (3.1)

Therefore (Q1)–(Q3) of Theorem 2.1 hold true, then all solutions of (3.1) have global ex-
ponential convergence. This result can be shown in Fig. 1 and Fig. 2.

4 Conclusions
In this article, we have discussed neural networks with leakage delays and proportional de-
lays. With the aid of inequality strategies and fuzzy differential equation approach, a suffi-
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cient criterion ensuring the global exponential convergence of neural networks with leak-
age delays and proportional delays is derived. The sufficient condition can be tested by
algebraic manipulation without difficulty. The derived results complement parts of earlier
work (for instance, [39–41]). In addition, the method of this article can be used to discuss
some other similar network models.
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