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Abstract
The main purpose of the paper is to extend the results of Ellerman (Int. J. Semant.
Comput. 7:121–145, 2013) to the case of dynamical systems. We define the logical
entropy and conditional logical entropy of finite measurable partitions and derive the
basic properties of these measures. Subsequently, the suggested concept of logical
entropy of finite measurable partitions is used to define the logical entropy of a
dynamical system. It is proved that two metrically isomorphic dynamical systems
have the same logical entropy. Finally, we provide a logical version of the
Kolmogorov–Sinai theorem on generators. So it is shown that by replacing the
Shannon entropy function by the logical entropy function we obtain the results
analogous to the case of classical Kolmogorov–Sinai entropy theory of dynamical
systems.
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1 Introduction
The concept of entropy plays the central role in information theory [2]; the entropy quan-
tifies the amount of information involved in the value of the outcome of a random process.
The entropy has found also applications in other areas, including physics, computer sci-
ence, statistics, chemistry, biology, sociology, general systems theory and many others and,
in addition, the whole new technology and telecommunications industry is based on this
quantification of information. The study of the concept of entropy is therefore very impor-
tant in modern scientific disciplines. As is well known the standard approach in classical
information theory is based on the Shannon entropy [3]. We recall that the Shannon en-
tropy of a probability distribution P = {p1, p2, . . . , pn} is the number HS(P) =

∑n
i=1 S(pi),

where S : [0, 1] → [0,∞) is the Shannon entropy function defined by

S(x) =

{
–x log x, if x ∈ (0, 1];
0, if x = 0.

(1.1)

The Kolmogorov–Sinai entropy [4–7] provides an important generalization of Shannon
entropy; it has strongly influenced understanding of the complexity of dynamical systems.
The concept has shown its strength through the highly adequate answers to central prob-
lems in the classification of dynamical systems. Two metrically isomorphic dynamical sys-
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tems have the same Kolmogorov–Sinai entropy, so the Kolmogorov–Sinai entropy is a tool
for distinguishing non-isomorphic dynamical systems.

To address some specific problems, it is preferable to use instead of Shannon entropy
an approach based on the concept of logical entropy [1, 8, 9] (see also [10–16]). In [1], the
classical logical entropy was discussed by Elllerman as an alternative measure of infor-
mation. If P = {p1, p2, . . . , pn} is a probability distribution, then the logical entropy of P is
defined by the formula HL(P) =

∑n
i=1 L(pi), where L : [0, 1] → [0,∞) is the logical entropy

function defined, for every x ∈ [0, 1], by the formula:

L(x) = x(1 – x). (1.2)

The main aim of this paper is to extend the study of logical entropy presented in [1] to
the case of dynamical systems; by replacing the Shannon entropy function (1.1) by the log-
ical entropy function (1.2) we construct an isomorphism theory of the Kolmogorov–Sinai
type. The paper is organized as follows. Section 2 provides basic definitions and notations,
which will be used in the following sections. Our results are presented in Sects. 3 and 4.
In Sect. 3, we define and study the logical entropy and conditional logical entropy of fi-
nite measurable partitions. In Sect. 4, using the concept of logical entropy of measurable
partitions, the notion of logical entropy of a dynamical system is introduced. It is proved
that metrically isomorphic dynamical systems have the same logical entropy. Finally, a ver-
sion of the Kolmogorov–Sinai theorem for the case of the logical entropy is proved. Some
concluding remarks are presented in the last section.

2 Preliminaries
Modern probability theory is almost exclusively based on the axioms of Kolmogorov [17].
Let us start by recalling Kolmogorov’s concept of probability space. We consider a non-
empty set �, some subsets of � will be called events. Denote by S the family of all events. In
the classical probability theory [18] there is assumed that S is a σ -algebra, i.e., S is a family
of subsets of � such that (i) � ∈ S; (ii) if A ∈ S, then � – A ∈ S; (iii) if An ∈ S (n = 1, 2, . . .),
then

⋃∞
n=1 An ∈ S. The couple (�, S) is said to be a measurable space, the elements of S are

said to be measurable.
Let (�, S) be a measurable space. A mapping μ : S → [0, 1] is called a probability measure

if the following properties are satisfied: (i) μ(�) = 1; (ii) μ(A) ≥ 0, for every A ∈ S; (iii) if
{An}∞n=1 ⊂ S such that Ai ∩Aj = ∅ whenever i 	= j, then μ(

⋃∞
n=1 An) =

∑∞
n=1 μ(An). The above

described triplet (�, S,μ) is said to be a probability space.
Further we present definitions of basic terms that we will need in the following sections.

Definition 2.1 ([19]) Let (�, S) be a measurable space. Each finite sequence {A1, A2, . . . ,
An} of pairwise disjoint measurable subsets of � such that

⋃n
i=1 Ai = � is called a (mea-

surable) partition of �.

Definition 2.2 ([19]) Let α = {A1, A2, . . . , An} and β = {B1, B2, . . . , Bm} be two partitions
of �. The partition β is said to be a refinement of α if for each Ai ∈ α there exists a subset
Ii ⊂ {1, 2, . . . , m} such that Ai =

⋃
j∈Ii

Bj, Ii ∩ Ij = ∅ for i 	= j, and
⋃n

i=1 Ii = {1, 2, . . . , m}. In this
case we write α ≺ β .
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Definition 2.3 ([19]) Given two partitions α = {A1, A2, . . . , An} and β = {B1, B2, . . . , Bm} of
�, their join α ∨ β is defined as the system

α ∨ β = {Ai ∩ Bj; i = 1, 2, . . . , n, j = 1, 2, . . . , m}.

Remark 2.1 It is easy to see that if α = {A1, A2, . . . , An} and β = {B1, B2, . . . , Bm} are two
partitions of �, then α ∨ β is also a partition of �. Moreover, α ≺ α ∨ β , and β ≺
α ∨ β . Since the system α ∨ β is indexed by {(i, j); i = 1, 2, . . . , n, j = 1, 2, . . . , m}, we put
Ii = {(i, 1), . . . , (i, m)}, i = 1, 2, . . . , n. By the assumption we have

⋃m
j=1 Bj = �, therefore we

get

Ai = � ∩ Ai =

( m⋃

j=1

Bj

)

∩ Ai =
m⋃

j=1

(Bj ∩ Ai) =
⋃

(r,j)∈Ii

(Ar ∩ Bj)

for i = 1, 2, . . . , n. But this means that α ≺ α ∨ β .

Definition 2.4 ([19]) Let α and β be two partitions of �. Then α ⊂◦ β if for each A ∈ α

there exists B ∈ β such that μ(A�B) = 0, where A�B = (A – B) ∪ (B – A) denotes the
symmetric difference of sets A, B ∈ S. We write α ≈ β if α ⊂◦ β and β ⊂◦ α.

Remark 2.2 The relation ≈ is an equivalence relation in the family of all measurable par-
titions of �.

3 Logical entropy of measurable partitions
In this section, we introduce the concept of logical entropy of measurable partitions and
present basic properties of this measure of information. It is shown that it has properties
analogous to properties of Shannon’s entropy of measurable partitions.

Definition 3.1 Let α = {A1, A2, . . . , An} be a partition of �. The logical entropy of α is
defined as the number

HL(α) =
n∑

i=1

μ(Ai)
(
1 – μ(Ai)

)
. (3.1)

Remark 3.1 Since
∑n

i=1 μ(Ai) = μ(
⋃n

i=1 Ai) = μ(�) = 1, we can also write

HL(α) = 1 –
n∑

i=1

(
μ(Ai)

)2.

Remark 3.2 Evidently, HL(α) ≥ 0. For the uniform distribution pi = μ(Ai) = 1
n , i =

1, 2, . . . , n, over α = {A1, A2, . . . , An} the logical entropy HL(α) has its maximum value of
1 – 1

n . Thus 0 ≤ HL(α) ≤ 1 – 1
n .

Theorem 3.1 Let α and β be two partitions of �. Then
(i) α ≺ β implies HL(α) ≤ HL(β);

(ii) HL(α ∨ β) ≥ max(HL(α); HL(β)).



Markechová et al. Advances in Difference Equations  (2018) 2018:70 Page 4 of 17

Proof Assume that α = {A1, A2, . . . , An}, β = {B1, B2, . . . , Bm}, α ≺ β . Then for each Ai ∈ α

there exists a subset Ii ⊂ {1, 2, . . . , m} such that Ai =
⋃

j∈Ii
Bj, Ii ∩ Ij = ∅ for i 	= j, and

⋃n
i=1 Ii =

{1, 2, . . . , m}. Therefore we can write

HL(α) =
n∑

i=1

μ(Ai)
(
1 – μ(Ai)

)
=

n∑

i=1

(
μ(Ai) – μ(Ai)μ(Ai)

)

=
n∑

i=1

(

μ

(⋃

j∈Ii

Bj

)

– μ

(⋃

j∈Ii

Bj

)

μ

(⋃

j∈Ii

Bj

))

=
n∑

i=1

(∑

j∈Ii

μ(Bj) –
∑

j∈Ii

μ(Bj)
∑

j∈Ii

μ(Bj)
)

.

As a consequence of the inequality (x + y)2 ≥ x2 + y2 which holds for all nonnegative real
numbers x, y, we get

∑

j∈Ii

μ(Bj)
∑

j∈Ii

μ(Bj) ≥
∑

j∈Ii

(
μ(Bj)

)2

for i = 1, 2, . . . , n. Hence

HL(α) ≤
n∑

i=1

(∑

j∈Ii

μ(Bj) –
∑

j∈Ii

(
μ(Bj)

)2
)

=
n∑

i=1

∑

j∈Ii

(
μ(Bj) –

(
μ(Bj)

)2)

=
m∑

j=1

μ(Bj)
(
1 – μ(Bj)

)
= HL(β).

Since α ≺ α ∨ β and β ≺ α ∨ β , the inequality (ii) is a simple consequence of the prop-
erty (i). �

Definition 3.2 If α = {A1, A2, . . . , An} and β = {B1, B2, . . . , Bm} are two partitions of �, then
the logical conditional entropy of α assuming a realization of the experiment β is defined
as the number

HL(α/β) =
n∑

i=1

m∑

j=1

μ(Ai ∩ Bj)
(
μ(Bj) – μ(Ai ∩ Bj)

)
.

Remark 3.3 The monotonicity of probability measure μ implies the inequality μ(Ai ∩Bj) ≤
μ(Bj), so it is evident that the logical conditional entropy HL(α/β) is a nonnegative number.

Proposition 3.1 Let α = {A1, A2, . . . , An} be a partition of �. Then, for any B ∈ S, we have
∑n

i=1 μ(Ai ∩ B) = μ(B).
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Proof Since (Ai ∩ B) ∩ (Aj ∩ B) = ∅ whenever i 	= j, by the additivity of probability measure
μ we get

μ(B) = μ(� ∩ B) = μ

(( n⋃

i=1

Ai

)

∩ B

)

= μ

( n⋃

i=1

(Ai ∩ B)

)

=
n∑

i=1

μ(Ai ∩ B). �

Remark 3.4 Let α = {A1, A2, . . . , An} and β = {B1, B2, . . . , Bm} be two partitions of �. Since
by Proposition 3.1, for j = 1, 2, . . . , m,

∑n
i=1 μ(Ai ∩ Bj) = μ(Bj), we can also write:

HL(α/β) =
m∑

j=1

(
μ(Bj)

)2 –
n∑

i=1

m∑

j=1

(
μ(Ai ∩ Bj)

)2.

Theorem 3.2 Let α and β be two partitions of � Then

HL(α/β) = HL(α ∨ β) – HL(β).

Proof Assume that α = {A1, A2, . . . , An}, β = {B1, B2, . . . , Bm}. Let us calculate

HL(β) + HL(α/β) = 1 –
m∑

j=1

(
μ(Bj)

)2 +
m∑

j=1

(
μ(Bj)

)2 –
n∑

i=1

m∑

j=1

(
μ(Ai ∩ Bj)

)2

= 1 –
n∑

i=1

m∑

j=1

(
μ(Ai ∩ Bj)

)2 = HL(α ∨ β).
�

Remark 3.5 As a simple consequence of the previous theorem we get

HL(α ∨ β) = HL(α) + HL(β/α). (3.2)

Based on the principle of mathematical induction, we get the following generalization of
Eq. (3.2):

HL(α1 ∨ α2 ∨ · · · ∨ αn) = HL(α1) +
n∑

i=2

HL(αi/α1 ∨ · · · ∨ αi–1)

for every partitions α1,α2, . . . ,αn of �. If we put n = 3, then we have

HL(α1 ∨ α2 ∨ α3) = HL(α1) + HL(α2/α1) + HL(α3/α1 ∨ α2)

for every partitions α1, α2, α3 of �.

Theorem 3.3 Let α and β be two partitions of �. Then
(i) HL(α/β) ≤ HL(α);

(ii) HL(α ∨ β) ≤ HL(α) + HL(β).

Proof Assume that α = {A1, A2, . . . , An}, β = {B1, B2, . . . , Bm}.



Markechová et al. Advances in Difference Equations  (2018) 2018:70 Page 6 of 17

(i) For each i = 1, 2, . . . , n we have

m∑

j=1

μ(Ai ∩ Bj)
(
μ(Bj) – μ(Ai ∩ Bj)

)

≤
( m∑

j=1

μ(Ai ∩ Bj)

)( m∑

j=1

(
μ(Bj) – μ(Ai ∩ Bj)

)
)

= μ(Ai)

( m∑

j=1

(
μ(Bj) – μ(Ai ∩ Bj)

)
)

= μ(Ai)

(

1 –
m∑

j=1

μ(Ai ∩ Bj)

)

= μ(Ai)
(
1 – μ(Ai)

)
.

Therefore we get

HL(α/β) =
n∑

i=1

m∑

j=1

μ(Ai ∩ Bj)
(
μ(Bj) – μ(Ai ∩ Bj)

)

≤
n∑

i=1

μ(Ai)
(
1 – μ(Ai)

)
= HL(α).

(ii) By Eq. (3.2) and the previous part of this theorem, we get

HL(α ∨ β) = HL(α) + HL(β/α) ≤ HL(α) + HL(β). �

Theorem 3.4 Let α, β and γ be partitions of �. Then

HL(α ∨ β/γ ) = HL(α/γ ) + HL(β/α ∨ γ ).

Proof Assume that α = {A1, A2, . . . , An}, β = {B1, B2, . . . , Bm}, γ = {C1, C2, . . . , Cr}. Let us cal-
culate

HL(α/γ ) + HL(β/α ∨ γ ) =
r∑

k=1

(
μ(Ck)

)2 –
n∑

i=1

r∑

k=1

(
μ(Ai ∩ Ck)

)2

+
n∑

i=1

r∑

k=1

(
μ(Ai ∩ Ck)

)2 –
m∑

j=1

n∑

i=1

r∑

k=1

(
μ(Bj ∩ Ai ∩ Ck)

)2

=
r∑

k=1

(
μ(Ck)

)2 –
n∑

i=1

m∑

j=1

r∑

k=1

(
μ(Ai ∩ Bj ∩ Ck)

)2

= HL(α ∨ β/γ ). �

Using the principle of mathematical induction, we get the following generalization of
Theorem 3.4.
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Theorem 3.5 Let α1,α2, . . . ,αn, β be partitions of �. Then

HL(α1 ∨ α2 ∨ · · · ∨ αn/β) = HL(α1/β) +
n∑

i=2

HL(αi/α1 ∨ · · · ∨ αi–1 ∨ β).

Proposition 3.2 Let α, β , γ be partitions of �. Then
(i) α ≺ β implies α ∨ γ ≺ β ∨ γ ;

(ii) α ≈ β implies α ∨ γ ≈ β ∨ γ .

Proof Assume that α = {A1, A2, . . . , An}, β = {B1, B2, . . . , Bm}, γ = {C1, C2, . . . , Cr}.
(i) Let α ≺ β , i.e., there exists a partition I1, I2, . . . , In of the set {1, 2, . . . , m} such that

Ai =
⋃

j∈Ii
Bj. A partition α ∨ γ = {Ai ∩ Ck ; i = 1, 2, . . . , n, k = 1, 2, . . . , r} is indexed by {(i, k);

i = 1, 2, . . . , n, k = 1, 2, . . . , r}, hence we put Ii,k = {(j, k); j ∈ Ii}, for i = 1, 2, . . . , n, k = 1, 2, . . . , r.
We get

Ai ∩ Ck =
(⋃

j∈Ii

Bj

)

∩ Ck =
⋃

j∈Ii

(Bj ∩ Ck) =
⋃

(j,t)∈Ii,k

(Bj ∩ Ct),

for i = 1, 2, . . . , n, k = 1, 2, . . . , r. Therefore α ∨ γ ≺ β ∨ γ .
(ii) Let α ≈ β , i.e., α ⊂◦ β and β ⊂◦ α. From the relation α ⊂◦ β it follows that for each

Ai ∈ α there exists Bj ∈ β such that μ(Ai – Bj) = μ(Bj – Ai) = 0. Hence for each Ai ∩ Ck ∈
α ∨ γ there exists Bj ∩ Ck ∈ β ∨ γ such that

μ
(
(Ai ∩ Ck) – (Bj ∩ Ck)

)
= μ

(
Ai ∩ Ck ∩ (Bj ∩ Ck)C)

= μ
(
Ai ∩ Ck ∩ (

BC
j ∪ CC

k
))

= μ
((

Ai ∩ Ck ∩ BC
j
) ∪ (

Ai ∩ Ck ∩ CC
k
))

≤ μ
(
Ai ∩ Ck ∩ BC

j
)

+ μ
(
Ai ∩ Ck ∩ CC

k
)

≤ μ
(
Ai ∩ BC

j
)

= μ(Ai – Bj) = 0,

and

μ
(
(Bj ∩ Ck) – (Ai ∩ Ck)

)
= μ

(
Bj ∩ Ck ∩ (Ai ∩ Ck)C)

= μ
(
Bj ∩ Ck ∩ (

AC
i ∪ CC

k
))

= μ
((

Bj ∩ Ck ∩ AC
i
) ∪ (

Bj ∩ Ck ∩ CC
k
))

≤ μ
(
Bj ∩ Ck ∩ AC

i
)

+ μ
(
Bj ∩ Ck ∩ CC

k
)

≤ μ
(
Bj ∩ AC

i
)

= μ(Bj – Ai) = 0.

Hence for each Ai ∩ Ck ∈ α ∨ γ there exists Bj ∩ Ck ∈ β ∨ γ such that

μ
(
(Ai ∩ Ck) – (Bj ∩ Ck)

)
= μ

(
(Bj ∩ Ck) – (Ai ∩ Ck)

)
= 0,
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i.e.,

μ
(
(Ai ∩ Ck)�(Bj ∩ Ck)

)
= 0.

However, this indicates that α ∨ γ ⊂◦ β ∨ γ . Analogously we see that the relation β ⊂◦ α

implies β ∨ γ ⊂◦ α ∨ γ . Thus α ∨ γ ≈ β ∨ γ . �

Theorem 3.6 Let α, β and γ be partitions of �. Then

α ≺ β implies HL(α/γ ) ≤ HL(β/γ ).

Proof Let α ≺ β . Since by Proposition 3.2 we have α ∨ γ ≺ β ∨ γ , according to Theorems
3.2 and 3.1 we get

HL(α/γ ) = HL(α ∨ γ ) – HL(γ ) ≤ HL(β ∨ γ ) – HL(γ ) = HL(β/γ ). �

Theorem 3.7 Let α, β and γ be partitions of �. Then
(i) α ⊂◦ β if and only if HL(α/β) = 0;

(ii) α ≈ β implies HL(α) = HL(β);
(iii) α ≈ β implies HL(α/γ ) = HL(β/γ );
(iv) α ≈ β implies HL(γ /α) = HL(γ /β).

Proof Assume that α = {A1, A2, . . . , An}, β = {B1, B2, . . . , Bm}, γ = {C1, C2, . . . , Cr}.
(i) The property is a direct consequence of the equivalence α ⊂◦ β ⇔ μ(Ai ∩ Bj) = μ(Bj)

or μ(Ai ∩ Bj) = 0, for i = 1, 2, . . . , n and j = 1, 2, . . . , m, proved in [19] (Theorem 4.4).
(ii) By the part (i) the assumption α ≈ β implies the equalities HL(α/β) = HL(β/α) = 0.

Therefore, using Eq. (3.2), we get

HL(α ∨ β) – HL(β) = HL(β ∨ α) – HL(α),

and consequently

HL(α) = HL(β).

(iii) Let α ≈ β . Then, by Proposition 3.2 α ∨ γ ≈ β ∨ γ , hence by the part (ii) of this
theorem we have HL(α ∨ γ ) = HL(β ∨ γ ). Hence by Eq. (3.2) we get

HL(α/γ ) = HL(α ∨ γ ) – HL(γ ) = HL(β ∨ γ ) – HL(γ ) = HL(β/γ ).

(iv) Let α ≈ β . Then by the part (ii) of this theorem we have HL(α) = HL(β). Moreover,
by Proposition 3.2 α ∨γ ≈ β ∨γ , hence by the part (ii) of this theorem we get HL(α ∨γ ) =
HL(β ∨ γ ). Therefore according to Theorem 3.2 we can write

HL(γ /α) = HL(γ ∨ α) – HL(α) = HL(β ∨ γ ) – HL(β) = HL(γ /β). �

Note that in the previous theorem (the parts (ii), (iii), (iv)) it is proved that the logical
entropy and conditional logical entropy are invariant under the relation ≈.

In the following, some illustrative numerical examples are provided.
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Example 3.1 Consider the probability space (�, S,μ), where � is the unit interval [0, 1],
S is the σ -algebra of all Borel subsets of the unit interval [0, 1], and the mapping μ :
S → [0, 1] is the Lebesgue measure, i.e., μ([x, y]) = y – x for any x, y ∈ [0, 1], x < y. Ev-
idently, the collections α = {[0, 1

3 ), [ 1
3 , 2

3 ), [ 2
3 , 1]}, and β = {[0, 1

4 ), [ 1
4 , 1

2 ), [ 1
2 , 4

5 ), [ 4
5 , 1]} are

two measurable partitions of �. The join of partitions α, β is the collection α ∨ β =
{[0, 1

4 ), [ 1
4 , 1

3 ), [ 1
3 , 1

2 ), [ 1
2 , 2

3 ), [ 2
3 , 4

5 ), [ 4
5 , 1]}. By simple calculations we get the logical entropy

of these partitions:

HL(α) = 1 –
3∑

i=1

(
μ(Ai)

)2 = 1 –
((

1
3

)2

+
(

1
3

)2

+
(

1
3

)2)

=
2
3

;

HL(β) = 1 –
4∑

i=1

(
μ(Bi)

)2 = 1 –
((

1
4

)2

+
(

1
4

)2

+
(

3
10

)2

+
(

2
10

)2)

=
149
200

;

HL(α ∨ β) = 1 –
((

1
4

)2

+
(

1
12

)2

+
(

1
6

)2

+
(

1
6

)2

+
(

2
15

)2

+
(

1
5

)2)

=
1471
1800

.

The conditional logical entropy of α assuming β is the number:

HL(α/β) =
4∑

j=1

(
μ(Bj)

)2 –
3∑

i=1

4∑

j=1

(
μ(Ai ∩ Bj)

)2

=
(

1
4

)2

+
(

1
4

)2

+
(

3
10

)2

+
(

2
10

)2

–
((

1
4

)2

+
(

1
12

)2

+
(

1
6

)2

+
(

1
6

)2

+
(

2
15

)2

+
(

1
5

)2)

=
13

180
.

Now it is possible to verify that the equality HL(α ∨ β) = HL(β) + HL(α/β) holds.

Example 3.2 Consider the probability space (�, S,μ), and the measurable partition α of
� from the previous example. If we put β = {Ai ∩ Q, Ai ∩ QC , i = 1, 2, . . . , n}, where Q is the
set of all rational numbers in the real line R1, and QCdenotes the complement of Q, then
β is a measurable partition of �. For i = 1, 2, . . . , n, we have

μ
(
Ai ∩

(
Ai ∩ QC))

= μ
(
Ai ∩ QC)

,

and

μ
(
Ai ∩ (Ai ∩ Q)

)
= μ(Ai ∩ Q).

For every i 	= j, we get

μ
(
Ai ∩

(
Aj ∩ QC))

= μ
(
Ai ∩ Aj ∩ QC)

= μ(∅) = 0.
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Therefore we conclude that, for every A ∈ α, B ∈ β , μ(A ∩ B) = μ(B) or μ(A ∩ B) = 0. But
this means that α ⊂◦ β . Hence we get

HL(α/β) =
m∑

j=1

(
μ(Bj)

)2 –
n∑

i=1

m∑

j=1

(
μ(Ai ∩ Bj)

)2

=
m∑

j=1

(
μ(Bj)

)2 –
m∑

j=1

(
μ(Bj)

)2 = 0.

In the same way we see that β ⊂◦ α, and HL(β/α) = 0. Since α ⊂◦ β and β ⊂◦ α, α ≈ β .
Evidently, HL(α) = HL(β).

Theorem 3.8 If partitions α = {A1, A2, . . . , An} and β = {B1, B2, . . . , Bm} of � are statisti-
cally independent, i.e., μ(Ai ∩ Bj) = μ(Ai) · μ(Bj), for i = 1, 2, . . . , n and j = 1, 2, . . . , m, then

1 – HL(α ∨ β) =
(
1 – HL(α)

) · (1 – HL(β)
)
.

Proof Let us calculate

1 – HL(α ∨ β) =
n∑

i=1

m∑

j=1

(
μ(Ai ∩ Bj)

)2

=
n∑

i=1

m∑

j=1

(
μ(Ai) · μ(Bj)

)2

=
n∑

i=1

(
μ(Ai)

)2
m∑

j=1

(
μ(Bj)

)2

=
(
1 – HL(α)

) · (1 – HL(β)
)
. �

Remark 3.6 By contrast, in the case of Shannon’s entropy, the additivity applies: for sta-
tistically independent partitions α, β of �

HS(α ∨ β) = HS(α) + HS(β).

4 Logical entropy of dynamical systems
In this section using the concept of logical entropy of measurable partitions we define
the logical entropy of dynamical systems. Recall that a dynamical system in the sense of
classical probability theory [19] is a quadruple (�, S,μ, T), where (�, S,μ) is a probability
space and T : � → � is a measure preserving transformation (i.e., E ∈ S implies T–1(E) ∈ S
and μ(T–1(E)) = μ(E)). If α = {A1, A2, . . . , An} is a partition of �, then by T–1(α) the parti-
tion {T–1(A1), T–1(A2), . . . , T–1(An)} is denoted. By Eq. (3.1) the logical entropy of partition
∨n–1

i=0 T–i(α) = α ∨ T–1(α) ∨ · · · ∨ T–(n–1)(α) can also be found.
We note that fuzzy generalizations of the notion of a dynamical system have been intro-

duced and studied e.g., in [20–26]. Notice that while in the papers [20–22, 26] the authors
deal with the Shannon and Kolmogorov–Sinai entropy of fuzzy dynamical systems, in the
paper [23] the logical entropy of fuzzy dynamical systems has been studied. We remark
that some of the results of the article [23] are fuzzy generalizations of the results provided
in Sects. 3 and 4 of the present paper.
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Proposition 4.1 Let any dynamical system (�, S,μ, T) be given. If α, β are partitions of
�, then

(i) T–1(α ∨ β) = T–1(α) ∨ T–1(β);
(ii) α ≺ β implies T–1(α) ≺ T–1(β).

Proof Assume that α = {A1, A2, . . . , An}, β = {B1, B2, . . . , Bm}. The property (i) follows from
the equality T–1(Ai ∩ Bj) = T–1(Ai) ∩ T–1(Bj), i = 1, 2, . . . , n, j = 1, 2, . . . , m.

(ii) Assume that α ≺ β . Then for each Ai ∈ α there exists a subset Ii ⊂ {1, 2, . . . , m} such
that Ai =

⋃
j∈Ii

Bj, Ii ∩ Ij = ∅ for i 	= j, and
⋃n

i=1 Ii = {1, 2, . . . , m}. Therefore we can write

T–1(Ai) = T–1
(⋃

j∈Ii

Bj

)

=
⋃

j∈Ii

T–1(Bj), i = 1, 2, . . . , n.

However, this means that T–1(α) ≺ T–1(β). �

Theorem 4.1 Let any dynamical system (�, S,μ, T) be given. If α, β are partitions of �,
then the following properties are satisfied:

(i) HL(T–r(α)) = HL(α), r = 0, 1, 2, . . .;
(ii) HL(T–r(α)/T–r(β)) = HL(α/β), r = 0, 1, 2, . . .;

(iii) HL(
∨n–1

i=0 T–i(α)) = HL(α) +
∑n–1

j=1 HL(α/
∨j

i=1 T–i(α)).

Proof (i) Assume that α = {A1, A2, . . . , An}. Since μ(T–r(Ai)) = μ(Ai), for i = 1, 2, . . . , n, and
r = 0, 1, 2, . . . , we get

HL
(
T–r(α)

)
= 1 –

n∑

i=1

(
μ

(
T–r(Ai)

))2 = 1 –
n∑

i=1

(
μ(Ai)

)2 = HL(α).

(ii) Assume that α = {A1, A2, . . . , An}, β = {B1, B2, . . . , Bm}. Then

HL
(
T–r(α)/T–r(β)

)
=

m∑

j=1

(
μ

(
T–r(Bj)

))2 –
n∑

i=1

m∑

j=1

(
μ

(
T–r(Ai ∩ Bj)

))2

=
m∑

j=1

(
μ(Bj)

)2 –
n∑

i=1

m∑

j=1

(
μ(Ai ∩ Bj)

)2

= HL(α/β).

(iii) We will prove by mathematical induction. For the case of n = 2, the equality (iii) is
a simple consequence of Eq. (3.2). We assume that the statement holds for a given n ∈ N
and we prove it is true for n + 1. By the property (i) we have

HL

( n∨

i=1

T–i(α)

)

= HL

(

T–1

(n–1∨

i=0

T–i(α)

))

= HL

(n–1∨

i=0

T–i(α)

)

.
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Therefore using Eq. (3.2) and the induction assumption we get

HL

( n∨

i=0

T–i(α)

)

= HL

(( n∨

i=1

T–i(α)

)

∨ α

)

= HL

( n∨

i=1

T–i(α)

)

+ HL

(

α/
n∨

i=1

T–i(α)

)

= HL

(n–1∨

i=0

T–i(α)

)

+ HL

(

α/
n∨

i=1

T–i(α)

)

= HL(α) +
n–1∑

j=1

HL

(

α/
j∨

i=1

T–i(α)

)

+ HL

(

α/
n∨

i=1

T–i(α)

)

= HL(α) +
n∑

j=1

HL

(

α/
j∨

i=1

T–i(α)

)

.

The proof is complete. �

In the following, we define the logical entropy of a dynamical system (�, S,μ, T). We will
begin by defining the logical entropy of a measure preserving transformation T relative to
a partition α. Later we shall remove the dependence on α to obtain the logical entropy of
a dynamical system (�, S,μ, T). We first need the following standard analytic lemma.

Lemma 4.1 ([19], Theorem 4.9) Let {un}∞n=1 be a sequence of nonnegative real numbers
such that ur+s ≤ ur + us for every r, s ∈ N. Then limn→∞ 1

n un exists.

Theorem 4.2 Let (�, S,μ, T) be a dynamical system and α be a measurable partition of �.
Then limn→∞ 1

n HL(
∨n–1

i=0 T–i(α)) exists.

Proof Put un = HL(
∨n–1

i=0 T–i(α)). Evidently, the sequence {un}∞n=1 is a sequence of nonneg-
ative real numbers. We prove that ur+s ≤ ur + us for every r, s ∈ N. According to the subad-
ditivity of logical entropy (Theorem 3.3(ii)), and the property (i) of the previous theorem,
for every r, s ∈ N, we have

ur+s = HL

(r+s–1∨

i=0

T–i(α)

)

≤ HL

( r–1∨

i=0

T–i(α)

)

+ HL

(r+s–1∨

i=r

T–i(α)

)

= ur + HL

( s–1∨

i=0

T–(r+i)(α)

)

= ur + HL

(

T–r

( s–1∨

i=0

T–i(α)

))

= ur + HL

( s–1∨

i=0

T–i(α)

)

= ur + us.

Hence by Lemma 4.1, limn→∞ 1
n HL(

∨n–1
i=0 T–i(α)) exists. �

Definition 4.1 Let (�, S,μ, T) be a dynamical system and α be a measurable partition
of �. The logical entropy of T with respect to α is defined by

hL(T ,α) = lim
n→∞

1
n

HL

(n–1∨

i=0

T–i(α)

)

.
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Remark 4.1 Evidently, hL(T ,α) ≥ 0.

Theorem 4.3 Let (�, S,μ, T) be a dynamical system and α and β be measurable partitions
of � such that α ≺ β . Then hL(T ,α) ≤ hL(T ,β).

Proof The assumption α ≺ β implies the relation
∨n–1

i=0 T–i(α) ≺ ∨n–1
i=0 T–i(β), for every

n ∈ N. According to the property (i) of Theorem 3.1, we get

HL

(n–1∨

i=0

T–i(α)

)

≤ HL

(n–1∨

i=0

T–i(β)

)

.

Consequently, dividing by n and letting n → ∞, we conclude that

hL(T ,α) ≤ hL(T ,β). �

Definition 4.2 The logical entropy of a dynamical system (�, S,μ, T) is defined by

hL(T) = sup
{

hL(T ,α);α is a partition of �
}

.

Example 4.1 The system (�, S,μ, I), where I : � → � is the identity map, is a trivial case
of a dynamical system. The operation

∨
is idempotent, therefore, for every partition α of

�, we have

hL(I,α) = lim
n→∞

1
n

HL

(n–1∨

i=0

I–i(α)

)

= lim
n→∞

1
n

HL(α) = 0.

Thus the logical entropy of (�, S,μ, I) is the number

hL(I) = sup
{

hL(I,α);α is a partition of �
}

= 0.

Theorem 4.4 Let (�, S,μ, T) be a dynamical system. Then, for any integer k > 0, hL(Tk) =
k · hL(T).

Proof For each partition α of � we have

hL

(

Tk ,
k–1∨

i=0

T–i(α)

)

= lim
n→∞

1
n

HL

(n–1∨

j=0

(
Tk)–j

(k–1∨

i=0

T–i(α)

))

= lim
n→∞

1
n

HL

(n–1∨

j=0

k–1∨

i=0

T–(kj+i)(α)

)

= lim
n→∞

1
n

HL

(nk–1∨

i=0

T–i(α)

)

= lim
n→∞

nk
n

1
nk

HL

(nk–1∨

i=0

T–i(α)

)

= k · hL(T ,α).
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Therefore we get

k · hL(T) = k · sup
{

hL(T ,α);α is a partition of �
}

= sup

{

hL

(

Tk ,
k–1∨

i=0

T–i(α)

)

;α is a partition of �

}

≤ sup
{

hL
(
Tk ,β

)
;β is a partition of �

}
= hL

(
Tk).

On the other hand α ≺ ∨k–1
i=0 T–i(α), and therefore

hL
(
Tk ,α

) ≤ hL

(

Tk ,
k–1∨

i=0

T–i(α)

)

= k · hL(T ,α).

It follows that

hL
(
Tk) = sup

{
hL

(
Tk ,α

)
;α is a partition of �

}

≤ k · sup
{

hL(T ,α);α is a partition of �
}

= k · hL(T). �

Corollary 4.1 Let (�, S,μ, T) be a dynamical system and let there exist an integer k > 0
such that Tk is the identity map. Then hL(T) = 0.

Proof Let k > 0 be an integer such that Tk = I . Then we have

hL(T) =
1
k

hL
(
Tk) =

1
k

hL(I) = 0. �

Theorem 4.5 Let (�, S,μ, T) be a dynamical system and α be a measurable partition of �.
Then, for any integer k > 0,

hL(T ,α) = hL

(

T ,
k∨

i=0

T–i(α)

)

.

Proof Let α be a measurable partition of �. Then, for any integer k > 0, we have

hL

(

T ,
k∨

i=0

T–i(α)

)

= lim
n→∞

1
n

HL

(n–1∨

j=0

T–j

( k∨

i=0

T–i(α)

))

= lim
n→∞

k + n
n

· 1
k + n

HL

(k+n–1∨

t=0

T–t(α)

)

= lim
n→∞

1
k + n

HL

(k+n–1∨

t=0

T–t(α)

)

= hL(T ,α). �

In the following part, we prove that two metrically isomorphic dynamical systems have
the same logical entropy. First recall the definition of what it means that two dynamical
systems are metrically isomorphic.

Definition 4.3 We say that two dynamical systems (�1, S1,μ1, T1), (�2, S2,μ2, T2) are
metrically isomorphic if there exist X1 ∈ S1 and X2 ∈ S2 such that
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(i) T1X1 ⊂ X1, T2X2 ⊂ X2;
(ii) μ1(X1) = 1, μ2(X2) = 1,

and there exists a bijective map ψ : X1 → X2 such that
(iii) ψ , ψ–1 are measure preserving;
(iv) ψ ◦ T1 = T2 ◦ ψ .

Theorem 4.6 If dynamical systems (�1, S1,μ1, T1), (�2, S2,μ2, T2) are metrically isomor-
phic, then hL(T1) = hL(T2).

Proof Let X1 ⊂ �1, X2 ⊂ �2 and ψ : X1 → X2 be as in the previous definition. If α =
{A1, A2, . . . , An} is a measurable partition of �2, then (changing it on a set of measure zero
if necessary) it is also a measurable partition of X2. The inverse image ψ–1α = {ψ–1(Ai);
Ai ∈ α} is a measurable partition of X1 and hence of �1. Moreover,

HL
(
ψ–1α

)
=

n∑

i=1

μ1
(
ψ–1(Ai)

)(
1 – μ1

(
ψ–1(Ai)

))

=
n∑

i=1

μ2(Ai)
(
1 – μ2(Ai)

)
= HL(α).

Hence we can write

HL

(n–1∨

i=0

T–i
1

(
ψ–1α

)
)

= HL

(

ψ–1
n–1∨

i=0

T–i
2 (α)

)

= HL

(n–1∨

i=0

T–i
2 (α)

)

.

Therefore, dividing by n and letting n → ∞, we get

hL(T2,α) = hL
(
T1,ψ–1α

)
.

Thus

{
hL(T2,α);α is a partition of �2

} ⊂ {
hL(T1,β);β is a partition of �1

}
,

and consequently

hL(T2) = sup
{

hL(T2,α);α is a partition of �2
}

≤ sup
{

hL(T1,β);β is a partition of �1
}

= hL(T1).

By symmetry, we also have hL(T1) ≤ hL(T2). The proof is completed. �

Remark 4.2 From Theorem 4.6 it follows that if hL(T1) 	= hL(T2), then the correspond-
ing dynamical systems (�1, S1,μ1, T1), (�2, S2,μ2, T2) are metrically non-isomorphic. This
means that the logical entropy distinguishes metrically non-isomorphic dynamical sys-
tems; so we have acquired an alternative tool for distinguishing non-isomorphic dynami-
cal systems. This result is illustrated in the following example.

Example 4.2 Consider the probability space (�, S,μ), where � is the unit interval [0, 1],
S is the σ -algebra of all Borel subsets of the unit interval [0, 1], and μ : S → [0, 1] is the
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Lebesgue measure, i.e., μ([x, y]) = y – x for any x, y ∈ [0, 1], x < y. Let c ∈ (0, 1), and the
mapping Tc : [0, 1] → [0, 1] is defined by the formula Tc(x) = x + c (mod 1). The logical
entropy distinguishes metrically non-isomorphic dynamical systems (�, S,μ, Tc) for dif-
ferent c. Namely, hL(Tc) = 0, if c = 1/2, but hL(Tc) > 0 for c = 1 –

√
2.

The well-known Kolmogorov–Sinai theorem on generators [19] (see also [27, 28]) is the
main tool for calculating the entropy of dynamical system. We conclude our contribution
with the formulation of this theorem for the case of logical entropy.

Definition 4.4 A partition γ of � is said to be a generator of a dynamical system
(�, S,μ, T), if to any partition α of � there exists an integer k > 0 such that α ≺ ∨k

i=0 T–i(γ ).

Theorem 4.7 Let γ be a generator of a dynamical system (�, S,μ, T). Then

hL(T) = hL(T ,γ ).

Proof Let γ be a generator of a dynamical system (�, S,μ, T). Then to any partition α of
� there exists an integer k > 0 such that α ≺ ∨k

i=0 T–i(γ ).
Hence by Theorems 4.3 and 4.5 we get

hL(T ,α) ≤ hL

(

T ,
k∨

i=0

T–i(γ )

)

= hL(T ,γ ).

Therefore

hL(T) = sup
{

hL(T ,α);α is a partition of �
}

= hL(T ,γ ). �

5 Conclusions
In this contribution we have extended the results of Ellerman presented in [1] to the case
of dynamical systems. Our results are given in Sects. 3 and 4. In Sect. 3 we introduced
the notions of logical entropy and logical conditional entropy of finite measurable parti-
tions of a probability space and we examined basic properties of the proposed measures.
We have provided some numerical examples to illustrate the results as well. In Sect. 4,
the results of the previous part were used to introduce the concept of logical entropy
of the dynamical system. It has been shown that two metrically isomorphic dynamical
systems have the same logical entropy. Since the logical entropy distinguishes metrically
non-isomorphic dynamical systems, we have acquired an alternative tool for distinguish-
ing non-isomorphic dynamical systems. This result is illustrated by Example 4.2. Finally,
we have proved a logical version of the Kolmogorov–Sinai theorem on generators (Theo-
rem 4.7). In this study, it has been shown that by replacing the Shannon entropy function
by the logical entropy function we obtain the results analogous to the case of classical
Kolmogorov–Sinai entropy theory.
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