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Abstract
We investigate general HIV infection models with three types of infected cells: latently
infected cells, long-lived productively infected cells, and short-lived productively
infected cells. We incorporate three discrete or distributed time delays into the
models. Moreover, we consider the effect of humoral immunity on the dynamical
behavior of the HIV. The HIV-target incidence rate, production/proliferation, and
removal rates of the cells and HIV are represented by general nonlinear functions. We
show that the solutions of the proposed model are nonnegative and ultimately
bounded. We derive two threshold parameters which fully determine the existence
and stability of the three steady states of the model. Using Lyapunov functionals, we
establish the global stability of the steady states of the model. The theoretical results
are confirmed by numerical simulations.
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1 Introduction
Mathematical modeling and analysis of within-host human immunodeficiency virus
(HIV) dynamics have become one of the hot topics during the last decades [1–31]. These
works can help researchers better understand the HIV dynamical behavior and provide
new suggestions for clinical treatment. Most of the mathematical models presented in
the literature have focused on modeling the interaction between three main compart-
ments: uninfected CD4+ T cells (s), infected cells (y), and free HIV particles (p). Other
models have differentiated between latent and active infected cells by introducing a new
variable (w) for the latently infected cells [32–37]. In [38], an HIV mathematical model
has been presented by considering three types of infected cells: latently infected cells (w),
short-lived productively infected cells (y), and long-lived productively infected cells (u) as
follows:

ṡ(t) = ρ – β1s(t) + ωs(t)
(

1 –
s(t)
smax

)
– (1 – ε1)(λ1 + λ2 + λ3)s(t)p(t), (1)

ẇ(t) = (1 – ε1)λ1s(t)p(t) – (a1 + β2)w(t), (2)

ẏ(t) = (1 – ε1)λ2s(t)p(t) + a1w(t) – β3y(t), (3)
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u̇(t) = (1 – ε1)λ3s(t)p(t) – β4u(t), (4)

ṗ(t) = (1 – ε2)Nβ3y(t) + (1 – ε2)Mβ4u(t) – β5p(t), (5)

where ρ is the creation rate of the uninfected CD4+ T cells, βi, i = 1, . . . , 5, are the death
rate constants of the five compartments s, w, y, u, and p, respectively. The model incorpo-
rates reverse transcriptase inhibitor (RTI) with efficacy ε1 and protease inhibitor (PI) with
efficacy ε2, where ε1, ε2 ∈ [0, 1]. The parameters ω and smax are the maximum proliferation
rate and the maximum level of concentration of the uninfected CD4+ T cells, respectively.
The latently infected cells are activated at rate a1w. The parameters N and M are the av-
erage numbers of HIV particles generated in the lifetime of the short-lived and long-lived
infected cells, respectively. The uninfected CD4+ T cells become infected with infectivity
λ1 + λ2 + λ3. Elaiw et al. [27] have generalized the above model by incorporating the hu-
moral immune response and considering general nonlinear functions for the generation
and removal rates of all compartments:

ṡ(t) = π
(
s(t)

)
– (1 – ε1)(λ1 + λ2 + λ3)χ

(
s(t), p(t)

)
, (6)

ẇ(t) = (1 – ε1)λ1χ
(
s(t), p(t)

)
– (a1 + β2)g1

(
w(t)

)
, (7)

ẏ(t) = (1 – ε1)λ2χ
(
s(t), p(t)

)
+ a1g1

(
w(t)

)
– β3g2

(
y(t)

)
, (8)

u̇(t) = (1 – ε1)λ3χ
(
s(t), p(t)

)
– β4g3

(
u(t)

)
, (9)

ṗ(t) = (1 – ε2)Nβ3g2
(
y(t)

)
+ (1 – ε2)Mβ4g3

(
u(t)

)
– β5g4

(
p(t)

)
– qg4

(
p(t)

)
g5

(
x(t)

)
, (10)

ẋ(t) = rg4
(
p(t)

)
g5

(
x(t)

)
– β6g5

(
x(t)

)
, (11)

where x represents the concentration of the B cells. π , χ , gi, i = 1, . . . , 5, are general non-
linear functions. Model (6)–(11) assumes that, once the HIV contacts a CD4+ T cell, it
becomes infected in the same time. Neglecting the time delays is an unrealistic assump-
tion (see, e.g., [29, 30]).

The aim of this paper is to propose HIV infection models which improve model (6)–(11)
by taking into account three time delays, discrete or distributed. We derive two threshold
parameters and present some mild sufficient conditions for the existence and global sta-
bility of the steady states of the models.

2 HIV dynamics model with discrete delays
We formulate a nonlinear HIV dynamics model with latent reservoirs, humoral immunity,
and discrete time delays:

ṡ = π
(
s(t)

)
– (1 – ε1)(λ1 + λ2 + λ3)χ

(
s(t), p(t)

)
, (12)

ẇ = (1 – ε1)λ1e–μ1τ1χ
(
s(t – τ1), p(t – τ1)

)
– (a1 + β2)g1

(
w(t)

)
, (13)

ẏ = (1 – ε1)λ2e–μ2τ2χ
(
s(t – τ2), p(t – τ2)

)
+ a1g1

(
w(t)

)
– β3g2

(
y(t)

)
, (14)

u̇ = (1 – ε1)λ3e–μ3τ3χ
(
s(t – τ3), p(t – τ3)

)
– β4g3

(
u(t)

)
, (15)
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ṗ = (1 – ε2)Nβ3g2
(
y(t)

)
+ (1 – ε2)Mβ4g3

(
u(t)

)
– β5g4

(
p(t)

)
– qg4

(
p(t)

)
g5

(
x(t)

)
, (16)

ẋ = rg4
(
p(t)

)
g5

(
x(t)

)
– β6g5

(
x(t)

)
. (17)

All the parameters are positive. Here, τ1 is the time between viral entry and latent infection
(i.e., the integration of viral DNA into cell’s DNA has finished), while τ2 and τ3 are the
times between viral entry and viral production form short-lived productively infected and
long-lived productively infected cells, respectively. The factor e–μiτi accounts for the loss
of target cells during the delay period of length τi, where μi is a constant. Let us define
λi = (1 – ε1)λi, i = 1, 2, 3, N = (1 – ε2)N , M = (1 – ε2)M, and λ = λ1 + λ2 + λ3. Functions χ ,
π , gi, i = 1, . . . , 5, are continuously differentiable and satisfy the following hypotheses:

(H1). (i) There exists s0 such that π (s0) = 0, π (s) > 0 for s ∈ [0, s0);
(ii) π ′(s) < 0 for s ∈ (0,∞);

(iii) There are b > 0 and b > 0 such that π (s) ≤ b – bs for s ∈ [0,∞).
(H2). (i) χ (s, p) > 0 and χ (0, p) = χ (s, 0) = 0 for s, p ∈ (0,∞);

(ii) ∂χ (s,p)
∂s > 0, ∂χ (s,p)

∂p > 0, and ∂χ (s,0)
∂p > 0 for all s, p ∈ (0,∞);

(iii) ( ∂χ (s,0)
∂p )′ > 0 for s ∈ (0,∞).

(H3). (i) gj(η) > 0 for η ∈ (0,∞), gj(0) = 0, j = 1, . . . , 5;
(ii) g ′

j (η) > 0 for η ∈ (0,∞), j = 1, 2, 3, 5, g ′
4(η) > 0, for η ∈ [0,∞);

(iii) there are αj > 0, j = 1, . . . , 5, such that gj(η) ≥ αjη for η ∈ [0,∞).
(H4). (i) ∂

∂p ( χ (s,p)
g4(p) ) ≤ 0 for p ∈ (0,∞).

We consider system (12)–(17) with the initial conditions:

s(θ ) = ϕ1(θ ), w(θ ) = ϕ2(θ ), y(θ ) = ϕ3(θ ),

u(θ ) = ϕ4(θ ), p(θ ) = ϕ5(θ ), x(θ ) = ϕ6(θ ),

ϕj(θ ) ≥ 0, θ ∈ [–ς , 0],

ϕj(θ ) ∈ C
(
[–ς , 0],R6

≥0
)
, j = 1, . . . , 6,

(18)

where ς = max{τ1, τ2, τ3} and C is the Banach space of continuous functions mapping the
interval [–ς , 0] into R

6≥0. Then the uniqueness of the solution for t > 0 is guaranteed [39].

2.1 Preliminaries
Lemma 1 Let hypotheses (H1)–(H3) be valid, then the solutions of system (12)–(17) are
nonnegative and ultimately bounded.

Proof Let us write system (12)–(17) in the matrix form k̇(t) = L(k(t)), where k = (s, w, y,
u, p, x)T , L = (L1, L2, L3, L4, L5, L6)T , and

L
(
k(t)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

L1(k(t))
L2(k(t))
L3(k(t))
L4(k(t))
L5(k(t))
L6(k(t))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,



Elaiw et al. Advances in Difference Equations  (2018) 2018:85 Page 4 of 36

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

π (s(t)) – λχ (s(t), p(t))
λ1e–μ1τ1χ (s(t – τ1), p(t – τ1)) – (a1 + β2)g1(w(t))

λ2e–μ2τ2χ (s(t – τ2), p(t – τ2)) + a1g1(w(t)) – β3g2(y(t))
λ3e–μ3τ3χ (s(t – τ3), p(t – τ3)) – β4g3(u(t))

Nβ3g2(y(t)) + Mβ4g3(u(t)) – β5g4(p(t)) – qg4(p(t))g5(x(t))
rg4(p(t))g5(x(t)) – β6g5(x(t))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We have

Li
(
k(t)

)∣∣
ki(t)∈R6

>0
≥ 0, i = 1, . . . , 6.

Using Lemma 2 in [40], the solutions of system (12)–(17) with the initial states (18)
satisfy X(t) ∈ R

6≥0 for all t ≥ 0. The nonnegativity of the model’s solution implies that
lim supt→∞ s(t) ≤ M1, where M1 = b

b̄ . Let

T(t) = Ne–μ1τ1 s(t – τ1) + Ne–μ2τ2 s(t – τ2) + Me–μ3τ3 s(t – τ3)

+ Nw(t) + Ny(t) + Mu(t) +
1
2

p(t) +
q
2r

x(t),

then

Ṫ(t) = Ne–μ1τ1
[
π

(
s(t – τ1)

)
– λχ

(
s(t – τ1), p(t – τ1)

)]
+ Ne–μ2τ2

[
π

(
s(t – τ2)

)
– λχ

(
s(t – τ2), p(t – τ2)

)]
+ Me–μ3τ3

[
π

(
s(t – τ3)

)
– λχ

(
s(t – τ3), p(t – τ3)

)]
+ N

[
λ1e–μ1τ1χ

(
s(t – τ1), p(t – τ1)

)
– (a1 + β2)g1

(
w(t)

)]
+ N

[
λ2e–μ2τ2χ

(
s(t – τ2), p(t – τ2)

)
+ a1g1

(
w(t)

)
– β3g2

(
y(t)

)]
+ M

[
λ3e–μ3τ3χ

(
s(t – τ3), p(t – τ3)

)
– β4g3

(
u(t)

)]

+
1
2
(
Nβ3g2

(
y(t)

)
+ Mβ4g3

(
u(t)

)
– β5g4

(
p(t)

)
– qg4

(
p(t)

)
g5

(
x(t)

))

+
q
2r

(
rg4

(
p(t)

)
g5

(
x(t)

)
– β6g5

(
x(t)

))

≤ Ne–μ1τ1
[
b – bs(t – τ1)

]
+ Ne–μ2τ2

[
b – bs(t – τ2)

]
+ Me–μ3τ3

[
b – bs(t – τ3)

]

– Nβ2α1w(t) –
1
2

Nβ3α2y(t) –
1
2

Mβ4α3u(t) –
1
2
β5α4p(t) –

q
2r

β6α5p(t)

≤ b
(
Ne–μ1τ1 + Ne–μ2τ2 + Me–μ3τ3

)

– σ

[
Ne–μ1τ1 s(t – τ1) + Ne–μ2τ2 s(t – τ2) + Me–μ3τ3 s(t – τ3)

+ Nw(t) + Ny(t) + Mu(t) +
1
2

p(t) +
q
2r

x(t)
]

≤ b(2N + M) – σT(t),

where σ = min{b,β2α1, 1
2β3α2, 1

2β4α3,β5α4,β6α5}. Then lim supt→∞ T(t) ≤ b(2N+M)
σ

. The
nonnegativity of the system’s variables implies that

lim sup
t→∞

w(t) ≤ b(2N + M)
Nσ

= M2,
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lim sup
t→∞

y(t) ≤ b(2N + M)
Nσ

= M2,

lim sup
t→∞

u(t) ≤ b(2N + M)
Mσ

= M3,

lim sup
t→∞

p(t) ≤ 2b(2N + M)
σ

= M4,

lim sup
t→∞

x(t) ≤ 2rb(2N + M)
qσ

= M5.

Therefore, s(t), w(t), y(t), u(t), p(t), and x(t) are ultimately bounded. �

According to Lemma 1, we can show that the region

� =
{

(s, w, y, u, p, x) ∈ C6 : ‖s‖ ≤ M1,‖w‖ ≤ M2,‖y‖ ≤ M2,

‖u‖ ≤ M3,‖p‖ ≤ M4,‖x‖ ≤ M5
}

(19)

is positively invariant with respect to system (12)–(17), where ‖φ‖ = supt→∞ φ(t).

Lemma 2 Suppose that hypotheses (H1)–(H4) are valid (12)–(17), then there exist two
bifurcation parameters R0 and R1 with R0 > R1 > 0 such that

(i) if R0 ≤ 1, then there exists only one steady state �0;
(ii) if R1 ≤ 1 < R0, then there exist two steady states �0 and �1;

(iii) if R1 > 1, then there exist three steady states �0, �1, and �2.

Proof Let �(s, w, y, u, p, x) be any steady state of (12)–(17) satisfying the following equa-
tions:

0 = π (s) – λχ (s, p), (20)

0 = λ1e–μ1τ1χ (s, p) – (a1 + β2)g1(w), (21)

0 = λ2e–μ2τ2χ (s, p) + a1g1(w) – β3g2(y), (22)

0 = λ3e–μ3τ3χ (s, p) – β4g3(u), (23)

0 = Nβ3g2(y) + Mβ4g3(u) – β5g4(p) – qg4(p)g5(x), (24)

0 = rg4(p)g5(x) – β6g5(x). (25)

From Eq. (25) we have two possible solutions: g5(x) = 0 and g4(p) = β6/r. The first possibil-
ity g5(x) = 0 implies that x = 0. Hypothesis (H3) implies that g–1

i , i = 1, . . . , 5, exist, strictly
increasing and g–1

i (0) = 0. Let us define

ψ1(s) = g–1
1

(
λ1e–μ1τ1

λ(a1 + β2)
π (s)

)
,

ψ2(s) = g–1
2

(
a1λ1e–μ1τ1 + (a1 + β2)λ2e–μ2τ2

β3λ(a1 + β2)
π (s)

)
,

ψ3(s) = g–1
3

(
λ3e–μ3τ3

β4λ
π (s)

)
, ψ4(s) = g–1

4

(
γ

λ
π (s)

)
,

(26)
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where

γ =
N(a1λ1e–μ1τ1 + (a1 + β2)λ2e–μ2τ2 ) + Mλ3(a1 + β2)e–μ3τ3

β5(a1 + β2)
.

It follows from Eqs. (20)–(24) that

w = ψ1(s), y = ψ2(s), u = ψ3(s), p = ψ4(s). (27)

Obviously, ψi(s) > 0 for s ∈ [0, s0) and ψi(s0) = 0, i = 1, . . . , 4. From Eqs. (20), (26), and (27)
we obtain

γχ
(
s,ψ4(s)

)
– g4

(
ψ4(s)

)
= 0. (28)

Equation (28) admits a solution s = s0 which gives the infection-free steady state �0(s0, 0,
0, 0, 0, 0). Let

�1(s) = γχ
(
s,ψ4(s)

)
– g4

(
ψ4(s)

)
= 0.

It is clear from hypotheses (H1) and (H2) that �1(0) = –g4(ψ4(0)) < 0 and �1(s0) = 0. More-
over,

�′
1(s0) = γ

[
∂χ (s0, 0)

∂s
+ ψ ′

4(s0)
∂χ (s0, 0)

∂p

]
– g ′

4(0)ψ ′
4(s0).

We note from hypothesis (H2) that ∂χ (s0,0)
∂s = 0. Then

�′
1(s0) = ψ ′

4(s0)g ′
4(0)

(
γ

g ′
4(0)

∂χ (s0, 0)
∂p

– 1
)

.

From Eq. (26), we get

�′
1(s0) =

γ

λ
π ′(s0)

(
γ

g ′
4(0)

∂χ (s0, 0)
∂p

– 1
)

.

Hence, from hypothesis (H1), we have π ′(s0) < 0. Therefore, if γ

g′
4(0)

∂χ (s0,0)
∂p > 1, then �′

1(s0) <
0, and there exists s1 ∈ (0, s0) such that �1(s1) = 0. Hypotheses (H1)–(H3) imply that

w1 = ψ1(s1) > 0, y1 = ψ2(s1) > 0, u1 = ψ3(s1) > 0, p1 = ψ4(s1) > 0. (29)

It means that a humoral-inactivated infection steady state �1(s1, w1, y1, u1, p1, 0) exists
when γ

g′
4(0)

∂χ (s0,0)
∂p > 1. Let us define the basic infection reproduction number as follows:

R0 =
γ

g ′
4(0)

∂χ (s0, 0)
∂p

.

The other solution of Eq. (25) is g4(p2) = β6
r , which yields p2 = g–1

4 ( β6
r ) > 0. Substitute p = p2

in Eq. (20) and let �2(s) = π (s) – λχ (s, p2) = 0. According to hypotheses (H1) and (H2),



Elaiw et al. Advances in Difference Equations  (2018) 2018:85 Page 7 of 36

�2 is strictly decreasing, �2(0) = π (0) > 0 and �2(s0) = –λχ (s0, p2) < 0. Thus, there exists
unique s2 ∈ (0, s0) such that �2(s2) = 0. It follows from Eqs. (24) and (27) that

w2 = ψ1(s2) > 0, y2 = ψ2(s2) > 0, u2 = ψ3(s2) > 0, p2 = g–1
4

(
β6

r

)
> 0,

x2 = g–1
5

(
β5

q

(
γ

χ (s2, p2)
g4(p2)

– 1
))

.

Thus, x2 > 0 when γ
χ (s2,p2)
g4(p2) > 1. Now we define the humoral immune response activation

number as follows:

R1 = γ
χ (s2, p2)

g4(p2)
.

If R1 > 1, then x2 = g–1
5 ( β5

q (R1 –1)) > 0, and there exists a humoral-activated infection steady
state �2(s2, w2, y2, u2, p2, x2).

Clearly, from hypotheses (H2) and (H4), we have

R1 = γ
χ (s2, p2)

g4(p2)
≤ γ lim

p→0+

χ (s2, p)
g4(p)

=
γ

g ′
4(0)

∂χ (s2, 0)
∂p

<
γ

g ′
4(0)

∂χ (s0, 0)
∂p

= R0. �

We will use the following equalities throughout the paper:

ln

(
χ (s(t – τ1), p(t – τ1))

χ (s, p)

)

= ln

(
g1(ŵ)χ (s(t – τ1), p(t – τ1))

g1(w)χ (ŝ, p̂)

)
+ ln

(
χ (ŝ, p̂)
χ (s, p̂)

)

+ ln

(
g4(p)χ (s, p̂)
g4(p̂)χ (s, p)

)
+ ln

(
g4(p̂)g2(y)
g4(p)g2(ŷ)

)
+ ln

(
g2(ŷ)g1(w)
g2(y)g1(ŵ)

)
,

ln

(
χ (s(t – τ2), p(t – τ2))

χ (s, p)

)

= ln

(
g2(ŷ)χ (s(t – τ2), p(t – τ2))

g2(y)χ (ŝ, p̂)

)
+ ln

(
χ (ŝ, p̂)
χ (s, p̂)

)

+ ln

(
g4(p̂)g2(y)
g4(p)g2(ŷ)

)
+ ln

(
g4(p)χ (s, p̂)
g4(p̂)χ (s, p)

)
,

ln

(
χ (s(t – τ3), p(t – τ3))

χ (s, p)

)

= ln

(
g3(û)χ (s(t – τ3), p(t – τ3))

g3(u)χ (ŝ, p̂)

)
+ ln

(
χ (ŝ, p̂)
χ (s, p̂)

)

+ ln

(
g3(u)g4(p̂)
g3(û)g4(p)

)
+ ln

(
g4(p)χ (s, p̂)
g4(p̂)χ (s, p)

)
.

(30)

2.2 Global properties
The following theorems investigate the global stability of the steady states of system (12)–
(17).

Let us define the function F : (0,∞) → [0,∞) as F(z) = z – 1 – ln z. Denote (s, w, y, u,
p, x) = (s(t), w(t), y(t), u(t), p(t), x(t)).
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Theorem 1 If R0 ≤ 1 and hypotheses (H1)–(H4) are valid, then �0 is globally asymptoti-
cally stable (GAS).

Proof Define a Lyapunov functional V0 as follows:

V0 = s – s0 –
∫ s

s0

lim
p→0+

χ (s0, p)
χ (η, p)

dη + �1w + �2y + �3u

+ �1

∫ τ1

0
λ1e–μ1τ1χ

(
s(t – θ ), p(t – θ )

)
dθ

+ �2

∫ τ2

0
λ2e–μ2τ2χ

(
s(t – θ ), p(t – θ )

)
dθ

+ �3

∫ τ3

0
λ3e–μ3τ3χ

(
s(t – θ ), p(t – θ )

)
dθ + �4p + �5x,

where

λ = λ1�1e–μ1τ1 + λ2�2e–μ2τ2 + λ3�3e–μ3τ3 , (a1 + β2)�1 = a1�2,

�2 = N�4, �3 = M�4, q�4 = r�5.
(31)

The solution of Eqs. (31) is given by

�1 =
a1Nλ

γβ5(a1 + β2)
, �2 =

Nλ

γβ5
, �3 =

Mλ

γβ5
, �4 =

λ

γβ5
, �5 =

qλ

rγβ5
. (32)

We calculate dV0
dt along the trajectories of (12)–(17) as follows:

dV0

dt
=

(
1 – lim

p→0+

χ (s0, p)
χ (s, p)

)(
π (s) – λχ (s, p)

)

+ �1
(
λ1e–μ1τ1χ

(
s(t – τ1), p(t – τ1)

)
– (a1 + β2)g1(w)

)
+ �2

(
λ2e–μ2τ2χ

(
s(t – τ2), p(t – τ2)

)
+ a1g1(w) – β3g2(y)

)
+ �3

(
λ3e–μ3τ3χ

(
s(t – τ3), p(t – τ3)

)
– β4g3(u)

)
+ �1λ1e–μ1τ1

(
χ (s, p) – χ

(
s(t – τ1), p(t – τ1)

))
+ �2λ2e–μ2τ2

(
χ (s, p) – χ

(
s(t – τ2), p(t – τ2)

))
+ �3λ3e–μ3τ3

(
χ (s, p) – χ

(
s(t – τ3), p(t – τ3)

))
+ �4

(
Nβ3g2(y) + Mβ4g3(u) – β5g4(p) – qg4(p)g5(x)

)
+ �5

(
rg4(p)g5(x) – β6g5(x)

)
. (33)

Collecting terms of Eq. (33) and using π (s0) = 0, we obtain

dV0

dt
=

(
π (s) – π (s0)

)(
1 – lim

p→0+

χ (s0, p)
χ (s, p)

)

+
(

λχ (s, p)
g4(p)

lim
p→0+

χ (s0, p)
χ (s, p)

– �4β5

)
g4(p) – �5β6g5(x)

≤ (
π (s) – π (s0)

)(
1 – lim

p→0+

χ (s0, p)
χ (s, p)

)
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+
(

lim
p→0+

λχ (s, p)
g4(p)

lim
p→0+

χ (s0, p)
χ (s, p)

– �4β5

)
g4(p) – �5β6g5(x)

=
(
π (s) – π (s0)

)(
1 –

∂χ (s0, 0)/∂p
∂χ (s, 0)/∂p

)

+ �4β5

(
λ

�4β5g ′
4(0)

∂χ (s0, 0)
∂p

– 1
)

g4(p) – �5β6g5(x)

=
(
π (s) – π (s0)

)(
1 –

∂χ (s0, 0)/∂p
∂χ (s, 0)/∂p

)
+ �4β5(R0 – 1)g4(p) – �5β6g5(x).

By hypotheses (H1) and (H2), we obtain

(
π (s) – π (s0)

)(
1 –

∂χ (s0, 0)/∂p
∂χ (s, 0)/∂p

)
≤ 0.

Therefore, if R0 ≤ 1, then dV0
dt ≤ 0 for s, p, x > 0. Clearly, dV0

dt = 0 at �0. Applying LaSalle’s
invariance principle (LIP), we get that �0 is GAS. �

Lemma 3 If R0 > 1 and hypotheses (H1)–(H4) are valid, then

sgn(R1 – 1) = sgn(p1 – p2) = sgn(s2 – s1).

Proof Using hypotheses (H1) and (H2), for s1, s2, p1, p2 > 0, we get

(s1 – s2)
(
π (s2) – π (s1)

)
> 0, (34)

(s2 – s1)
(
χ (s2, p2) – χ (s1, p2)

)
> 0, (35)

(p2 – p1)
(
χ (s1, p2) – χ (s1, p1)

)
> 0, (36)

and from hypothesis (H4), we obtain

(p1 – p2)
(

χ (s1, p2)
g2(p2)

–
χ (s1, p1)

g2(p1)

)
> 0. (37)

First, we show that sgn(p1 –p2) = sgn(s2 – s1). Suppose that sgn(p2 –p1) = sgn(s2 – s1). Using
the steady state conditions of �1 and �2, we obtain

π (s2) – π (s1) = λ
[
χ (s2, p2) – χ (s1, p1)

]
= λ

[(
χ (s2, p2) – χ (s1, p2)

)
+

(
χ (s1, p2) – χ (s1, p1)

)]
.

Therefore, from inequalities (34)–(36) we obtain sgn(s2 – s1) = sgn(s1 – s2), which is a con-
tradiction; hence, sgn(p1 – p2) = sgn(s2 – s1). Using Eq. (29) and the definition of R1, we
get

R1 – 1 = γ

(
χ (s2, p2)

g4(p2)
–

χ (s1, p1)
g4(p1)

)

= γ

[
1

g4(p2)
(
χ (s2, p2) – χ (s1, p2)

)
+

χ (s1, p2)
g4(p2)

–
χ (s1, p1)

g4(p1)

]
.

Thus, from Eqs. (35) and (37) we obtain sgn(R1 – 1) = sgn(p1 – p2). �
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Theorem 2 If R1 ≤ 1 < R0 and hypotheses (H1)–(H4) are valid, then �1 is GAS.

Proof Let

V1 = s – s1 –
∫ s

s1

χ (s1, p1)
χ (η, p1)

dη + �1

(
w – w1 –

∫ w

w1

g1(w1)
g1(η)

dη

)

+ �2

(
y – y1 –

∫ y

y1

g2(y1)
g2(η)

dη

)
+ �3

(
u – u1 –

∫ u

u1

g3(u1)
g3(η)

dη

)

+ �1λ1χ (s1, p1)e–μ1τ1

∫ τ1

0
F
(

χ (s(t – θ ), p(t – θ ))
χ (s1, p1)

)
dθ

+ �2λ2χ (s1, p1)e–μ2τ2

∫ τ2

0
F
(

χ (s(t – θ ), p(t – θ ))
χ (s1, p1)

)
dθ

+ �3λ3χ (s1, p1)e–μ3τ3

∫ τ3

0
F
(

χ (s(t – θ ), p(t – θ ))
χ (s1, p1)

)
dθ

+ �4

(
p – p1 –

∫ p

p1

g4(p1)
g4(η)

dη

)
+ �5x.

Calculating dV1
dt along the solutions of (12)–(17), we obtain

dV1

dt
=

(
1 –

χ (s1, p1)
χ (s, p1)

)(
π (s) – λχ (s, p)

)

+ �1

(
1 –

g1(w1)
g1(w)

)(
λ1e–μ1τ1χ

(
s(t – τ1), p(t – τ1)

)
– (a1 + β2)g1(w)

)

+ �2

(
1 –

g2(y1)
g2(y)

)(
λ2e–μ2τ2χ

(
s(t – τ2), p(t – τ2)

)
+ a1g1(w) – β3g2(y)

)

+ �3

(
1 –

g3(u1)
g3(u)

)(
λ3e–μ3τ3χ

(
s(t – τ3), p(t – τ3)

)
– β4g3(u)

)

+ �1λ1e–μ1τ1
(
χ (s, p) – χ

(
s(t – τ1), p(t – τ1)

))

+ �1λ1χ (s1, p1)e–μ1τ1 ln

(
χ (s(t – τ1), p(t – τ1))

χ (s, p)

)

+ �2λ2e–μ2τ2
(
χ (s, p) – χ

(
s(t – τ2), p(t – τ2)

))

+ �2λ2χ (s1, p1)e–μ2τ2 ln

(
χ (s(t – τ2), p(t – τ2))

χ (s, p)

)

+ �3λ3e–μ3τ3
(
χ (s, p) – χ

(
s(t – τ3), p(t – τ3)

))

+ �3λ3χ (s1, p1)e–μ3τ3 ln

(
χ (s(t – τ3), p(t – τ3))

χ (s, p)

)

+ �4

(
1 –

g4(p1)
g4(p)

)(
Nβ3g2(y) + Mβ4g3(u) – β5g4(p) – qg4(p)g5(x)

)

+ �5
(
rg4(p)g5(x) – β6g5(x)

)
. (38)

Collecting terms of Eq. (38) and applying the conditions of the steady state �1

π (s1) = λχ (s1, p1),
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(a1 + β2)g1(w1) = λ1e–μ1τ1χ (s1, p1),

�2β3g2(y1) =
(
�1λ1e–μ1τ1 + �2λ2e–μ2τ2

)
χ (s1, p1),

β4g3(u1) = λ3e–μ3τ3χ (s1, p1), �4β5g4(p1) = λχ (s1, p1),

we get

dV1

dt
=

(
π (s) – π (s1)

)(
1 –

χ (s1, p1)
χ (s, p1)

)
+ λχ (s1, p1)

(
1 –

χ (s1, p1)
χ (s, p1)

)

+ λχ (s1, p1)
(

χ (s, p)
χ (s, p1)

–
g4(p)
g4(p1)

)

– �1λ1e–μ1τ1χ (s1, p1)
g1(w1)χ (s(t – τ1), p(t – τ1))

g1(w)χ (s1, p1)
+ �1λ1e–μ1τ1χ (s1, p1)

– �2λ2e–μ2τ2χ (s1, p1)
g2(y1)χ (s(t – τ2), p(t – τ2))

g2(y)χ (s1, p1)

– �1λ1e–μ1τ1χ (s1, p1)
g2(y1)g1(w)
g2(y)g1(w1)

+
(
�1λ1e–μ1τ1 + �2λ2e–μ2τ2

)
χ (s1, p1)

– �3λ3e–μ3τ3χ (s1, p1)
g3(u1)χ (s(t – τ3), p(t – τ3))

χ (s1, p1)g3(u)

+ �3λ3e–μ3τ3χ (s1, p1) + �1λ1e–μ1τ1χ (s1, p1) ln

(
χ (s(t – τ1), p(t – τ1))

χ (s, p)

)

+ �2λ2e–μ2τ2χ (s1, p1) ln

(
χ (s(t – τ2), p(t – τ2))

χ (s, p)

)

+ �3λ3e–μ3τ3χ (s1, p1) ln

(
χ (s(t – τ3), p(t – τ3))

χ (s, p)

)

–
(
�1λ1e–μ1τ1 + �2λ2e–μ2τ2

)
χ (s1, p1)

g2(y)g4(p1)
g2(y1)g4(p)

– �3λ3e–μ3τ3χ (s1, p1)
g3(u)g4(p1)
g3(u1)g4(p)

+ λχ (s1, p1) + r�5

(
g4(p1) –

β6

r

)
g5(x). (39)

Using inequalities (30) with ŝ = s1, ŵ = w1, ŷ = y1, and p̂ = p1, we can obtain

dV1

dt
=

(
π (s) – π (s1)

)(
1 –

χ (s1, p1)
χ (s, p1)

)
+ λχ (s1, p1)

(
χ (s, p)
χ (s, p1)

–
g4(p)
g4(p1)

)(
1 –

χ (s, p1)
χ (s, p)

)

– λχ (s1, p1)
[

F
(

χ (s1, p1)
χ (s, p1)

)
+ F

(
g4(p)χ (s, p1)
g4(p1)χ (s, p)

)]

– �1λ1e–μ1τ1χ (s1, p1)
[

F
(

g1(w1)χ (s(t – τ1), p(t – τ1))
g1(w)χ (s1, p1)

)
+ F

(
g2(y1)g1(w)
g2(y)g1(w1)

)]

– �2λ2e–μ2τ2χ (s1, p1)F
(

g2(y1)χ (s(t – τ2), p(t – τ2))
g2(y)χ (s1, p1)

)

– �3λ3e–μ3τ3χ (s1, p1)
[

F
(

g3(u1)χ (s(t – τ3), p(t – τ3))
g3(u)χ (s1, p1)

)
+ F

(
g3(u)g4(p1)
g3(u1)g4(p)

)]
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–
(
�1λ1e–μ1τ1 + �2λ2e–μ2τ2

)
χ (s1, p1)F

(
g2(y)g4(p1)
g2(y1)g4(p)

)

+ r�5
(
g4(p1) – g4(p2)

)
g5(x).

Hypotheses (H1), (H2), (H4), Lemma 3, and the condition R1 ≤ 1 imply that

(
π (s) – π (s1)

)(
1 –

χ (s1, p1)
χ (s, p1)

)
≤ 0,

(
χ (s, p)
χ (s, p1)

–
g4(p)
g4(p1)

)(
1 –

χ (s, p1)
χ (s, p)

)
≤ 0,

g4(p1) – g4(p2) ≤ 0.

It follows that, for all s, y, p, x > 0, we have dV1
dt ≤ 0 and dV1

dt = 0 at �1. By LIP �1 is GAS. �

Theorem 3 If R1 > 1 and hypotheses (H1)–(H4) are valid, then �2 is GAS.

Proof Define

V2 = s – s2 –
∫ s

s2

χ (s2, p2)
χ (η, p2)

dη + �1

(
w – w2 –

∫ w

w2

g1(w2)
g1(η)

dη

)

+ �2

(
y – y2 –

∫ y

y2

g2(y2)
g2(η)

dη

)
+ �3

(
u – u2 –

∫ u

u2

g3(u2)
g3(η)

dη

)

+ �1λ1χ (s2, p2)e–μ1τ1

∫ τ1

0
F
(

χ (s(t – θ ), p(t – θ ))
χ (s2, p2)

)
dθ

+ �2λ2χ (s2, p2)e–μ2τ2

∫ τ2

0
F
(

χ (s(t – θ ), p(t – θ ))
χ (s2, p2)

)
dθ

+ �3λ3χ (s2, p2)e–μ3τ3

∫ τ3

0
F
(

χ (s(t – θ ), p(t – θ ))
χ (s2, p2)

)
dθ

+ �4

(
p – p2 –

∫ p

p2

g4(p2)
g4(η)

dη

)
+ �5

(
x – x2 –

∫ x

x2

g5(x2)
g5(η)

dη

)
.

Calculating dV2
dt along the solutions of model (12)-(17), we get

dV2

dt
=

(
1 –

χ (s2, p2)
χ (s, p2)

)(
π (s) – λχ (s, p)

)

+ �1

(
1 –

g1(w2)
g1(w)

)(
λ1e–μ1τ1χ

(
s(t – τ1), p(t – τ1)

)
– (a1 + β2)g1(w)

)

+ �2

(
1 –

g2(y2)
g2(y)

)(
λ2e–μ2τ2χ

(
s(t – τ2), p(t – τ2)

)
+ a1g1(w) – β3g2(y)

)

+ �3

(
1 –

g3(u2)
g3(u)

)(
λ3e–μ3τ3χ

(
s(t – τ3), p(t – τ3)

)
– β4g3(u)

)

+ �1λ1e–μ1τ1
(
χ (s, p) – χ

(
s(t – τ1), p(t – τ1)

))

+ �1λ1e–μ1τ1χ (s2, p2) ln

(
χ (s(t – τ1), p(t – τ1))

χ (s, p)

)

+ �2λ2e–μ2τ2
(
χ (s, p) – χ

(
s(t – τ2), p(t – τ2)

))
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+ �2λ2e–μ2τ2χ (s2, p2) ln

(
χ (s(t – τ2), p(t – τ2))

χ (s, p)

)

+ �3λ3e–μ3τ3
(
χ (s, p) – χ

(
s(t – τ3), p(t – τ3)

))

+ �3λ3e–μ3τ3χ (s2, p2) ln

(
χ (s(t – τ3), p(t – τ3))

χ (s, p)

)

+ �4

(
1 –

g4(p2)
g4(p)

)(
Nβ3g2(y) + Mβ4g3(u) – β5g4(p) – qg4(p)g5(x)

)

+ �5

(
1 –

g5(x2)
g5(x)

)(
rg4(p)g5(x) – β6g5(x)

)
. (40)

Collecting terms of Eq. (40) and using the steady state conditions for �2:

π (s2) = λχ (s2, p2),

(a1 + β2)g1(w2) = λ1e–μ1τ1χ (s2, p2),

�2β3g2(y2) =
(
�1λ1e–μ1τ1 + �2λ2e–μ2τ2

)
χ (s2, p2),

β4g3(u2) = λ3e–μ3τ3χ (s2, p2), �4β5g4(p2) = λχ (s2, p2) – q�4g4(p2)g5(x2),

�4β5g4(p) = λχ (s2, p2)
g4(p)
g4(p2)

– q�4g4(p)g5(x2),

we obtain

dV2

dt
=

(
π (s) – π (s2)

)(
1 –

χ (s2, p2)
χ (s, p2)

)
+ λχ (s2, p2)

(
1 –

χ (s2, p2)
χ (s, p2)

)

+ λχ (s2, p2)
(

χ (s, p)
χ (s, p2)

–
g4(p)
g4(p2)

)

– �1λ1e–μ1τ1χ (s2, p2)
g1(w2)χ (s(t – τ1), p(t – τ1))

g1(w)χ (s2, p2)
+ �1λ1e–μ1τ1χ (s2, p2)

– �2λ2e–μ2τ2χ (s2, p2)
g2(y2)χ (s(t – τ2), p(t – τ2))

g2(y)χ (s2, p2)

– �1λ1e–μ1τ1χ (s2, p2)
g2(y2)g1(w)
g2(y)g1(w2)

+
(
�1λ1e–μ1τ1 + �2λ2e–μ2τ2

)
χ (s2, p2)

– �3λ3e–μ3τ3χ (s2, p2)
g3(u2)χ (s(t – τ3), p(t – τ3))

g3(u)χ (s2, p2)

+ �3λ3e–μ3τ3χ (s2, p2) + �1λ1e–μ1τ1χ (s2, p2) ln

(
χ (s(t – τ1), p(t – τ1))

χ (s, p)

)

+ �2λ2e–μ2τ2χ (s2, p2) ln

(
χ (s(t – τ2), p(t – τ2))

χ (s, p)

)

+ �3λ3e–μ3τ3χ (s2, p2) ln

(
χ (s(t – τ3), p(t – τ3))

χ (s, p)

)

–
(
�1λ1e–μ1τ1 + �2λ2e–μ2τ2

)
χ (s2, p2)

g2(y)g4(p2)
g2(y2)g4(p)

– �3λ3e–μ3τ3χ (s2, p2)
g3(u)g4(p2)
g3(u2)g4(p)

+ λχ (s2, p2). (41)
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By inequalities (30) with ŝ = s2, ŵ = w2, ŷ = y2, and p̂ = p2, we can get

dV2

dt
=

(
π (s) – π (s2)

)(
1 –

χ (s2, p2)
χ (s, p2)

)
+ λχ (s2, p2)

(
χ (s, p)
χ (s, p2)

–
g4(p)
g4(p2)

)(
1 –

χ (s, p2)
χ (s, p)

)

– λχ (s2, p2)
[

F
(

χ (s2, p2)
χ (s, p2)

)
+ F

(
g4(p)χ (s, p2)
g4(p2)χ (s, p)

)]

– �1λ1e–μ1τ1χ (s2, p2)
[

F
(

g1(w2)χ (s(t – τ1), p(t – τ1))
g1(w)χ (s2, p2)

)
+ F

(
g2(y2)g1(w)
g2(y)g1(w2)

)]

– �2λ2e–μ2τ2χ (s2, p2)F
(

g2(y2)χ (s(t – τ2), p(t – τ2))
g2(y)χ (s2, p2)

)

– �3λ3e–μ3τ3χ (s2, p2)
[

F
(

g3(u2)χ (s(t – τ3), p(t – τ3))
g3(u)χ (s2, p2)

)
+ F

(
g3(u)g4(p2)
g3(u2)g4(p)

)]

–
(
�1λ1e–μ1τ1 + �2λ2e–μ2τ2

)
χ (s2, p2)F

(
g2(y)g4(p2)
g2(y2)g4(p)

)
.

According to hypotheses (H1), (H2), and (H4), we get dV2
dt ≤ 0 and dV2

dt = 0 at �2. LIP
implies that �2 is GAS. �

3 Model with delay-distributed
In the next model, we consider a general delay-distributed HIV infection model with hu-
moral immunity as follows:

ṡ = π
(
s(t)

)
– λχ

(
s(t), p(t)

)
, (42)

ẇ = λ1

∫ h1

0
f1(τ )e–μ1τ χ

(
s(t – τ ), p(t – τ )

)
dτ – (a1 + β2)g1

(
w(t)

)
, (43)

ẏ = λ2

∫ h2

0
f2(τ )e–μ2τ χ

(
s(t – τ ), p(t – τ )

)
dτ + a1g1

(
w(t)

)
– β3g2

(
y(t)

)
, (44)

u̇ = λ3

∫ h3

0
f3(τ )e–μ3τ χ

(
s(t – τ ), p(t – τ )

)
dτ – β4g3

(
u(t)

)
, (45)

ṗ = Nβ3g2
(
y(t)

)
+ Mβ4g3

(
u(t)

)
– β5g4

(
p(t)

)
– qg4

(
p(t)

)
g5

(
x(t)

)
, (46)

ẋ = rg4
(
p(t)

)
g5

(
x(t)

)
– β6g5

(
x(t)

)
, (47)

where fi(τ )e–μiτ over the time interval [0, hi], i = 1, 2, 3, represent the probabilities that
uninfected cells contacted by HIV at time t – τ survived τ time units and became infected
at time t.

The probability distribution function fi(τ ) is assumed to satisfy fi(τ ) > 0 and

∫ hi

0
fi(τ ) dτ = 1,

∫ hi

0
fi(η)eυη dη < ∞, i = 1, 2, 3,

where υ is a positive constant. Let us denote �i(τ ) = fi(τ )e–μiτ and Fi =
∫ hi

0 �i(τ ) dτ ; thus
0 < Fi ≤ 1, i = 1, 2, 3.

Lemma 4 Let hypotheses (H1)–(H3) be valid, then the solutions of system (42)–(47) are
nonnegative and ultimately bounded.
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Proof The nonnegativity of solutions of system (42)–(47) can easily be shown as given in
Lemma 1.

From Eq. (42) we have that lim supt→∞ s(t) ≤ b
b̄ = M1. Let

G(t) = N
∫ h1

0
�1(τ )s(t – τ ) dτ + N

∫ h2

0
�2(τ )s(t – τ ) dτ + M

∫ h3

0
�3(τ )s(t – τ ) dτ

+ Nw(t) + Ny(t) + Mu(t) +
1
2

p(t) +
q
2r

x(t),

then

Ġ(t) = N
∫ h1

0
�1(τ )

[
π

(
s(t – τ )

)
– λχ

(
s(t – τ ), p(t – τ )

)]
dτ

+ N
∫ h2

0
�2(τ )

[
π

(
s(t – τ )

)
– λχ

(
s(t – τ ), p(t – τ )

)]
dτ

+ M
∫ h3

0
�3(τ )

[
π

(
s(t – τ )

)
– λχ

(
s(t – τ ), p(t – τ )

)]
dτ

+ N
[
λ1

∫ h1

0
�1(τ )χ

(
s(t – τ ), p(t – τ )

)
dτ – (a1 + β2)g1

(
w(t)

)]

+ N
[
λ2

∫ h2

0
�2(τ )χ

(
s(t – τ ), p(t – τ )

)
dτ + a1g1

(
w(t)

)
– β3g2

(
y(t)

)]

+ M
[
λ3

∫ h3

0
�3(τ )χ

(
s(t – τ ), p(t – τ )

)
dτ – β4g3

(
u(t)

)]

+
1
2
[
Nβ3g2

(
y(t)

)
+ Mβ4g3

(
u(t)

)
– β5g4

(
p(t)

)
– qg4

(
p(t)

)
g5

(
x(t)

)]

+
q
2r

[
rg4

(
p(t)

)
g5

(
x(t)

)
– β6g5

(
x(t)

)]

≤ N
∫ h1

0
�1(τ )

[
b – bs(t – τ )

]
dτ + N

∫ h2

0
�2(τ )

[
b – bs(t – τ )

]
dτ

+ M
∫ h3

0
�3(τ )

[
b – bs(t – τ )

]
dτ

– Nβ2α1w(t) –
1
2

Nβ3α2y(t) –
1
2

Mβ4α3u(t) –
1
2
β5α4p(t) –

q
2r

β6α5x(t)

≤ b(NF1 + NF2 + MF3) – σ

[
N

∫ h1

0
�1(τ )s(t – τ ) dτ + N

∫ h2

0
�2(τ )s(t – τ ) dτ

+ M
∫ h3

0
�3(τ )s(t – τ ) dτ + Nw(t) + Ny(t) + Mu(t) +

1
2

p(t) +
q
2r

x(t)
]

≤ b(2N + M) – σG(t).

Hence, lim supt→∞ G(t) ≤ b(2N+M)
σ

and

lim sup
t→∞

w(t) ≤ M2, lim sup
t→∞

y(t) ≤ M2, lim sup
t→∞

u(t) ≤ M3,

lim sup
t→∞

p(t) ≤ M4, lim sup
t→∞

x(t) ≤ M5,
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where σ , M1, . . . , M5 are given in the previous section. Therefore, s(t), w(t), y(t), u(t), p(t),
and x(t) are ultimately bounded. Moreover, the set � defined by (19) is also positively
invariant with respect to system (42)–(47). �

3.1 Steady states
Lemma 5 Suppose that hypotheses (H1)–(H4) are valid (42)–(47), then there exist two
bifurcation parameters R0 and R1 with R0 > R1 > 0 such that

(i) if R0 ≤ 1, then there exists only one steady state �0;
(ii) if R1 ≤ 1 < R0, then there exist two steady states �0 and �1;

(iii) if R1 > 1, then there exist three steady states �0, �1, and �2.

Proof Let �(s, w, y, u, p, x) be any steady state of (42)–(47) satisfying the following equa-
tions:

0 = π (s) – λχ (s, p), (48)

0 = λ1F1χ (s, p) – (a1 + β2)g1(w), (49)

0 = λ2F2χ (s, p) + a1g1(w) – β3g2(y), (50)

0 = λ3F3χ (s, p) – β4g3(u), (51)

0 = Nβ3g2(y) + Mβ4g3(u) – β5g4(p) – qg4(p)g5(x), (52)

0 = rg4(p)g5(x) – β6g5(x). (53)

From Eq. (53) we obtain two possible solutions: g5(x) = 0 and g4(p) = β6/r. First, we con-
sider the case g5(x) = 0, then from hypothesis (H3) we have x = 0. Hypothesis (H3) implies
that g–1

i , i = 1, . . . , 5, exist, strictly increasing and g–1
i (0) = 0. Let us define

α1(s) = g–1
1

(
λ1F1

λ(a1 + β2)
π (s)

)
, α2(s) = g–1

2

(
a1λ1F1 + (a1 + β2)λ2F2

β3λ(a1 + β2)
π (s)

)
,

α3(s) = g–1
3

(
λ3F3

β4λ
π (s)

)
, α4(s) = g–1

4

(
ζ

λ
π (s)

)
,

(54)

where

ζ =
N(a1λ1F1 + (a1 + β2)λ2F2) + Mλ3(a1 + β2)F3

β5(a1 + β2)
.

From Eqs. (48)–(53) we can get

w = α1(s), y = α2(s), u = α3(s), p = α4(s). (55)

Obviously, αi(s) > 0 for s ∈ [0, s0) and αi(s0) = 0, i = 1, . . . , 4. From Eqs. (48), (54), and (55)
we obtain

ζχ
(
s,α4(s)

)
– g4

(
α4(s)

)
= 0. (56)
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Equation (56) admits a solution s = s0 which gives the infection-free steady state �0(s0, 0,
0, 0, 0, 0). Let

�1(s) = ζχ
(
s,α4(s)

)
– g4

(
α4(s)

)
= 0.

By hypotheses (H1) and (H2) we have �1(0) = –g4(α4(0)) < 0 and �1(s0) = 0. Moreover,

� ′
1(s0) = ζ

[
∂χ (s0, 0)

∂s
+ α′

4(s0)
∂χ (s0, 0)

∂p

]
– g ′

4(0)α′
4(s0).

From hypothesis (H2) we note that ∂χ (s0,0)
∂s = 0. Then

� ′
1(s0) = α′

4(s0)g ′
4(0)

(
ζ

g ′
4(0)

∂χ (s0, 0)
∂p

– 1
)

.

From Eq. (54), we get

� ′
1(s0) =

ζ

λ
π ′(s0)

(
ζ

g ′
4(0)

∂χ (s0, 0)
∂p

– 1
)

.

Therefore, using hypothesis (H1), we get π ′(s0) < 0. So that, if ζ

g′
4(0)

∂χ (s0,0)
∂p > 1, then � ′

1(s0) <
0 and there exists s1 ∈ (0, s0) such that �1(s1) = 0. Hypotheses (H1)–(H3) imply that

w1 = α1(s1) > 0, y1 = α2(s1) > 0, u1 = α3(s1) > 0, p1 = α4(s1) > 0. (57)

It means that a humoral-inactivated infection steady state �1(s1, w1, y1, u1, p1, 0) exists
when ζ

g′
4(0)

∂χ (s0,0)
∂p > 1. Now we can define

R0 =
ζ

g ′
4(0)

∂χ (s0, 0)
∂p

.

The other solution of Eq. (53) is g4(p2) = β6
r , which yields p2 = g–1

4 ( β6
r ) > 0. Substitute p = p2

in Eq. (48) and let �2(s) = π (s) – λζ (s, p2) = 0. According to hypotheses (H1) and (H2), �2

is strictly decreasing, �2(0) = π (0) > 0, and �2(s0) = –λζ (s0, p2) < 0. Thus, there exists a
unique s2 ∈ (0, s0) such that �2(s2) = 0. It follows from Eqs. (52) and (55) that

w2 = α1(s2) > 0, y2 = α2(s2) > 0, u2 = α3(s2) > 0, p2 = g–1
4

(
β6

r

)
> 0,

x2 = g–1
5

(
β5

q

(
ζ

χ (s2, p2)
g4(p2)

– 1
))

.

Thus, x2 > 0 when ζ
χ (s2,p2)
g4(p2) > 1. Let us define the parameter R1 as follows:

R1 = ζ
χ (s2, p2)

g4(p2)
.

If R1 > 1, then x2 = g–1
5 ( β5

q (R1 –1)) > 0, and there exists a humoral-activated infection steady
state �2(s2, w2, y2, u2, p2, x2).
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Clearly, from hypotheses (H2) and (H4), we have

R1 = ζ
χ (s2, p2)

g4(p2)
≤ ζ lim

p→0+

χ (s2, p)
g4(p)

=
ζ

g ′
4(0)

∂χ (s2, 0)
∂p

<
ζ

g ′
4(0)

∂χ (s0, 0)
∂p

= R0. �

3.2 Global properties
Theorem 4 If R0 ≤ 1 and hypotheses (H1)–(H4) hold true for system (42)–(47), then �0

is GAS.

Proof Define

W0 = s – s0 –
∫ s

s0

lim
p→0+

χ (s0, p)
χ (η, p)

dη + κ1w + κ2y + κ3u

+ κ1λ1

∫ h1

0
�1(τ )

∫ τ

0
χ

(
s(t – θ ), p(t – θ )

)
dθ dτ

+ κ2λ2

∫ h2

0
�2(τ )

∫ τ

0
χ

(
s(t – θ ), p(t – θ )

)
dθ dτ

+ κ3λ3

∫ h3

0
�3(τ )

∫ τ

0
χ

(
s(t – θ ), p(t – θ )

)
dθ dτ

+ κ4p + κ5x, (58)

where

λ = λ1κ1F1 + λ2κ2F2 + λ3κ3F3, (a1 + β2)κ1 = a1κ2,

κ2 = Nκ4, κ3 = Mκ4, qκ4 = rκ5. (59)

The solution of Eqs. (59) is given by

κ1 =
a1Nλ

ζβ5(a1 + β2)
, κ2 =

Nλ

ζβ5
, κ3 =

Mλ

ζβ5
, κ4 =

λ

ζβ5
, κ5 =

qλ

rζβ5
. (60)

We evaluate dW0
dt along the solutions of (42)-(47) as follows:

dW0

dt
=

(
1 – lim

p→0+

χ (s0, p)
χ (s, p)

)(
π (s) – λχ (s, p)

)
+ κ1λ1

∫ h1

0
�1(τ )χ

(
s(t – τ ), p(t – τ )

)
dτ

– κ1(a1 + β2)g1(w) + κ2λ2

∫ h2

0
�2(τ )χ

(
s(t – τ ), p(t – τ )

)
dτ + a1κ2g1(w)

– κ2β3g2(y) + κ3λ3

∫ h3

0
�3(τ )χ

(
s(t – τ ), p(t – τ )

)
dτ – κ3β4g3(u)

+ κ1λ1

∫ h1

0
�1(τ )

(
χ (s, p) – χ

(
s(t – τ ), p(t – τ )

))
dτ

+ κ2λ2

∫ h2

0
�2(τ )

(
χ (s, p) – χ

(
s(t – τ ), p(t – τ )

))
dτ

+ κ3λ3

∫ h3

0
�3(τ )

(
χ (s, p) – χ

(
s(t – τ ), p(t – τ )

))
dτ
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+ κ4
(
Nβ3g2(y) + Mβ4g3(u) – β5g4(p) – qg4(p)g5(x)

)
+ κ5

(
rg4(p)g5(x) – β6g5(x)

)
. (61)

Collecting terms of Eq. (61) and using π (s0) = 0, we obtain

dW0

dt
=

(
π (s) – π (s0)

)(
1 – lim

p→0+

χ (s0, p)
χ (s, p)

)

+
(

λχ (s, p)
g4(p)

lim
p→0+

χ (s0, p)
χ (s, p)

– κ4β5

)
g4(p) – κ5β6g5(x)

≤ (
π (s) – π (s0)

)(
1 – lim

p→0+

χ (s0, p)
χ (s, p)

)

+
(

lim
p→0+

λχ (s, p)
g4(p)

lim
p→0+

χ (s0, p)
χ (s, p)

– κ4β5

)
g4(p) – κ5β6g5(x)

=
(
π (s) – π (s0)

)(
1 –

∂χ (s0, 0)/∂p
∂χ (s, 0)/∂p

)

+ κ4β5

(
λ

κ4β5g ′
4(0)

∂χ (s0, 0)
∂p

– 1
)

g4(p) – κ5β6g5(x)

=
(
π (s) – π (s0)

)(
1 –

∂χ (s0, 0)/∂p
∂χ (s, 0)/∂p

)
+ κ4β5(R0 – 1)g4(p) – κ5β6g5(x). (62)

From hypotheses (H1) and (H2), we have

(
π (s) – π (s0)

)(
1 –

∂χ (s0, 0)/∂p
∂χ (s, 0)/∂p

)
≤ 0.

Therefore, if R0 ≤ 1, then dW0
dt ≤ 0. Thus, �0 is GAS. �

Theorem 5 If R1 ≤ 1 < R0 and hypotheses (H1)–(H4) are valid for (42)–(47), then �1 is
GAS.

Proof We introduce

W1 = s – s1 –
∫ s

s1

χ (s1, p1)
χ (η, p1)

dη + κ1

(
w – w1 –

∫ w

w1

g1(w1)
g1(η)

dη

)

+ κ2

(
y – y1 –

∫ y

y1

g2(y1)
g2(η)

dη

)
+ κ3

(
u – u1 –

∫ u

u1

g3(u1)
g3(η)

dη

)

+ κ1λ1χ (s1, p1)
∫ h1

0
�1(τ )

∫ τ

0
F
(

χ (s(t – θ ), p(t – θ ))
χ (s1, p1)

)
dθ dτ

+ κ2λ2χ (s1, p1)
∫ h2

0
�2(τ )

∫ τ

0
F
(

χ (s(t – θ ), p(t – θ ))
χ (s1, p1)

)
dθ dτ

+ κ3λ3χ (s1, p1)
∫ h3

0
�3(τ )

∫ τ

0
F
(

χ (s(t – θ ), p(t – θ ))
χ (s1, p1)

)
dθ dτ

+ κ4

(
p – p1 –

∫ p

p1

g4(p1)
g4(η)

dη

)
+ κ5x.
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Evaluating dW1
dt along the trajectories of (42)–(47), we have

dW1

dt
=

(
1 –

χ (s1, p1)
χ (s, p1)

)(
π (s) – λχ (s, p)

)

+ κ1

(
1 –

g1(w1)
g1(w)

)(
λ1

∫ h1

0
�1(τ )χ

(
s(t – τ ), p(t – τ )

)
dτ – (a1 + β2)g1(w)

)

+ κ2

(
1 –

g2(y1)
g2(y)

)(
λ2

∫ h2

0
�2(τ )χ

(
s(t – τ ), p(t – τ )

)
dτ + a1g1(w) – β3g2(y)

)

+ κ3

(
1 –

g3(u1)
g3(u)

)(
λ3

∫ h3

0
�3(τ )χ

(
s(t – τ ), p(t – τ )

)
dτ – β4g3(u)

)

+ κ1λ1

∫ h1

0
�1(τ )

(
χ (s, p) – χ

(
s(t – τ ), p(t – τ )

)
+ χ (s1, p1)

× ln

(
χ (s(t – τ ), p(t – τ ))

χ (s, p)

))
dτ

+ κ2λ2

∫ h2

0
�2(τ )

(
χ (s, p) – χ

(
s(t – τ ), p(t – τ )

)
+ χ (s1, p1)

× ln

(
χ (s(t – τ ), p(t – τ ))

χ (s, p)

))
dτ

+ κ3λ3

∫ h3

0
�3(τ )

(
χ (s, p) – χ

(
s(t – τ ), p(t – τ )

)
+ χ (s1, p1)

× ln

(
χ (s(t – τ ), p(t – τ ))

χ (s, p)

))
dτ

+ κ4

(
1 –

g4(p1)
g4(p)

)(
Nβ3g2(y) + Mβ4g3(u) – β5g4(p) – qg4(p)g5(x)

)

+ κ5
(
rg4(p)g5(x) – β6g5(x)

)
. (63)

Collecting terms of Eq. (63) and applying the conditions of the steady state �1:

π (s1) = λχ (s1, p1),

(a1 + β2)g1(w1) = λ1F1χ (s1, p1), κ2β3g2(y1) = (κ1λ1F1 + κ2λ2F2)χ (s1, p1),

β4g3(u1) = λ3F3χ (s1, p1), κ4β5g4(p1) = λχ (s1, p1),

we get

dW1

dt
=

(
π (s) – π (s1)

)(
1 –

χ (s1, p1)
χ (s, p1)

)

+ λχ (s1, p1)
(

1 –
χ (s1, p1)
χ (s, p1)

)
+ λχ (s1, p1)

(
χ (s, p)
χ (s, p1)

–
g4(p)
g4(p1)

)

– κ1λ1χ (s1, p1)
∫ h1

0
�1(τ )

χ (s(t – τ ), p(t – τ ))g1(w1)
χ (s1, p1)g1(w)

dτ + κ1λ1F1χ (s1, p1)

– κ2λ2χ (s1, p1)
∫ h2

0
�2(τ )

χ (s(t – τ ), p(t – τ ))g2(y1)
χ (s1, p1)g2(y)

dτ
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– κ1λ1F1χ (s1, p1)
g2(y1)g1(w)
g2(y)g1(w1)

+ (κ1λ1F1 + κ2λ2F2)χ (s1, p1)

– κ3λ3χ (s1, p1)
∫ h3

0
�3(τ )

χ (s(t – τ ), p(t – τ )g3(u1))
χ (s1, p1)g3(u)

dτ + κ3λ3F3χ (s1, p1)

+ κ1λ1χ (s1, p1)
∫ h1

0
�1(τ ) ln

(
χ (s(t – τ ), p(t – τ ))

χ (s, p)

)
dτ

+ κ2λ2χ (s1, p1)
∫ h2

0
�2(τ ) ln

(
χ (s(t – τ ), p(t – τ ))

χ (s, p)

)
dτ

+ κ3λ3χ (s1, p1)
∫ h3

0
�3(τ ) ln

(
χ (s(t – τ ), p(t – τ ))

χ (s, p)

)
dτ

– (κ1λ1F1 + κ2λ2F2)χ (s1, p1)
g2(y)g4(p1)
g2(y1)g4(p)

– κ3λ3F3χ (s1, p1)
g3(u)g4(p1)
g3(u1)g4(p)

+ λχ (s1, p1) + rκ5

(
g4(p1) –

β6

r

)
g5(x).

Using inequalities (30) with ŝ = s1, ŵ = w1, ŷ = y1, p̂ = p1, and τ1 = τ2 = τ3 = τ , we can obtain

dW1

dt
=

(
π (s) – π (s1)

)(
1 –

χ (s1, p1)
χ (s, p1)

)

+ λχ (s1, p1)
(

χ (s, p)
χ (s, p1)

–
g4(p)
g4(p1)

)(
1 –

χ (s, p1)
χ (s, p)

)

– λχ (s1, p1)
[

F
(

χ (s1, p1)
χ (s, p1)

)
+ F

(
g4(p)χ (s, p1)
g4(p1)χ (s, p)

)]

– κ1λ1χ (s1, p1)
∫ h1

0
�1(τ )F

(
g1(w1)χ (s(t – τ ), p(t – τ ))

g1(w)χ (s1, p1)

)
dτ

– κ2λ2χ (s1, p1)
∫ h2

0
�2(τ )F

(
g2(y1)χ (s(t – τ ), p(t – τ ))

g2(y)χ (s1, p1)

)
dτ

– κ3λ3χ (s1, p1)
∫ h3

0
�3(τ )F

(
g3(u1)χ (s(t – τ ), p(t – τ ))

g3(u)χ (s1, p1)

)

– κ1λ1F1χ (s1, p1)F
(

g2(y1)g1(w)
g2(y)g1(w1)

)

– (κ1λ1F1 + κ2λ2F2)χ (s1, p1)F
(

g2(y)g4(p1)
g2(y1)g4(p)

)

– κ3λ3F3χ (s1, p1)F
(

g3(u)g4(p1)
g3(u1)g4(p)

)
+ rκ5

(
g4(p1) – g4(p2)

)
g5(x).

Using hypotheses (H1), (H2), (H4), and Lemma 3, we get dW1
dt ≤ 0, where the equality

occurs at �1. By LIP, �1 is GAS. �

Theorem 6 If R1 > 1 and hypotheses (H1)–(H4) are valid for (42)–(47), then �2 is GAS.

Proof Define

W2 = s – s2 –
∫ s

s2

χ (s2, p2)
χ (η, p2)

dη + κ1

(
w – w2 –

∫ w

w2

g1(w2)
g1(η)

dη

)
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+ κ2

(
y – y2 –

∫ y

y2

g2(y2)
g2(η)

dη

)
+ κ3

(
u – u2 –

∫ u

u2

g3(u2)
g3(η)

dη

)

+ κ1λ1χ (s2, p2)
∫ h1

0
�1(τ )

∫ τ

0
F
(

χ (s(t – θ ), p(t – θ ))
χ (s2, p2)

)
dθ dτ

+ κ2λ2χ (s2, p2)
∫ h2

0
�2(τ )

∫ τ

0
F
(

χ (s(t – θ ), p(t – θ ))
χ (s2, p2)

)
dθ dτ

+ κ3λ3χ (s2, p2)
∫ h3

0
�3(τ )

∫ τ

0
F
(

χ (s(t – θ ), p(t – θ ))
χ (s2, p2)

)
dθ dτ

+ κ4

(
p – p2 –

∫ p

p2

g4(p2)
g4(η)

dη

)
+ κ5

(
x – x2 –

∫ x

x2

g5(x2)
g5(η)

dη

)
.

Calculating dW2
dt along the solutions of model (42)–(47), we get

dW2

dt
=

(
1 –

χ (s2, p2)
χ (s, p2)

)(
π (s) – λχ (s, p)

)

+ κ1

(
1 –

g1(w2)
g1(w)

)(
λ1

∫ h1

0
�1(τ )χ

(
s(t – τ ), p(t – τ )

)
dτ – (a1 + β2)g1(w)

)

+ κ2

(
1 –

g2(y2)
g2(y)

)(
λ2

∫ h2

0
�2(τ )χ

(
s(t – τ ), p(t – τ )

)
dτ + a1g1(w) – β3g2(y)

)

+ κ3

(
1 –

g3(u2)
g3(u)

)(
λ3

∫ h3

0
�3(τ )χ

(
s(t – τ ), p(t – τ )

)
dτ – β4g3(u)

)

+ κ1λ1

∫ h1

0
�1(τ )

(
χ (s, p) – χ

(
s(t – τ ), p(t – τ )

)
+ χ (s2, p2)

× ln

(
χ (s(t – τ ), p(t – τ ))

χ (s, p)

))
dτ

+ κ2λ2

∫ h2

0
�2(τ )

(
χ (s, p) – χ

(
s(t – τ ), p(t – τ )

)
+ χ (s2, p2)

× ln

(
χ (s(t – τ ), p(t – τ ))

χ (s, p)

))
dτ

+ κ3λ3

∫ h3

0
�3(τ )

(
χ (s, p) – χ

(
s(t – τ ), p(t – τ )

)
+ χ (s2, p2)

× ln

(
χ (s(t – τ ), p(t – τ ))

χ (s, p)

))
dτ

+ κ4

(
1 –

g4(p2)
g4(p)

)(
Nβ3g2(y) + Mβ4g3(u) – β5g4(p) – qg4(p)g5(x)

)

+ κ5

(
1 –

g5(x2)
g5(x)

)(
rg4(p)g5(x) – β6g5(x)

)
. (64)

Collecting terms of Eq. (64) and applying the steady state conditions for �2:

π (s2) = λχ (s2, p2),

(a1 + β2)g1(w2) = λ1F1χ (s2, p2), κ2β3g2(y2) = (κ1λ1F1 + κ2λ2F2)χ (s2, p2),

β4g3(u2) = λ3F3χ (s2, p2), κ4β5g4(p2) = λχ (s2, p2) – qκ4g4(p2)g5(x2),
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κ4β5g4(p) = λχ (s2, p2)
g4(p)
g4(p2)

– qκ4g4(p)g5(x2)

we obtain

dW2

dt
=

(
π (s) – π (s2)

)(
1 –

χ (s2, p2)
χ (s, p2)

)
+ λχ (s2, p2)

(
1 –

χ (s2, p2)
χ (s, p2)

)

+ λχ (s2, p2)
(

χ (s, p)
χ (s, p2)

–
g4(p)
g4(p2)

)

– κ1λ1χ (s2, p2)
∫ h1

0
�1(τ )

g1(w2)χ (s(t – τ ), p(t – τ ))
g1(w)χ (s2, p2)

dτ

+ κ1λ1F1χ (s2, p2) – κ2λ2χ (s2, p2)
∫ h2

0
�2(τ )

g2(y2)χ (s(t – τ ), p(t – τ ))
g2(y)χ (s2, p2)

dτ

– κ1λ1F1χ (s2, p2)
g2(y2)g1(w)
g2(y)g1(w2)

+ (κ1λ1F1 + κ2λ2F2)χ (s2, p2)

– κ3λ3χ (s2, p2)
∫ h3

0
�3(τ )

g3(u2)χ (s(t – τ ), p(t – τ ))
g3(u)χ (s2, p2)

dτ + κ3λ3F3χ (s2, p2)

+ κ1λ1χ (s2, p2)
∫ h1

0
�1(τ ) ln

(
χ (s(t – τ ), p(t – τ ))

χ (s, p)

)
dτ

+ κ2λ2χ (s2, p2)
∫ h2

0
�2(τ ) ln

(
χ (s(t – τ ), p(t – τ ))

χ (s, p)

)
dτ

+ κ3λ3χ (s2, p2)
∫ h3

0
�3(τ ) ln

(
χ (s(t – τ ), p(t – τ ))

χ (s, p)

)
dτ

– (κ1λ1F1 + κ2λ2F2)χ (s2, p2)
g2(y)g4(p2)
g2(y2)g4(p)

– κ3λ3F3χ (s2, p2)
g3(u)g4(p2)
g3(u2)g4(p)

+ λχ (s2, p2). (65)

Using inequalities (30) with ŝ = s2, ŵ = w2, ŷ = y2, p̂ = p2, and τ1 = τ2 = τ3 = τ , we can obtain

dW2

dt
=

(
π (s) – π (s2)

)(
1 –

χ (s2, p2)
χ (s, p2)

)

+ λχ (s2, p2)
(

χ (s, p)
χ (s, p2)

–
g4(p)
g4(p2)

)(
1 –

χ (s, p2)
χ (s, p)

)

– λχ (s2, p2)
[

F
(

χ (s2, p2)
χ (s, p2)

)
+ F

(
g4(p)χ (s, p2)
g4(p2)χ (s, p)

)]

– κ1λ1χ (s2, p2)
∫ h1

0
�1(τ )F

(
g1(w2)χ (s(t – τ ), p(t – τ ))

g1(w)χ (s2, p2)

)
dτ

– κ2λ2χ (s2, p2)
∫ h2

0
�2(τ )F

(
g2(y2)χ (s(t – τ ), p(t – τ ))

g2(y)χ (s2, p2)

)
dτ

– κ3λ3χ (s2, p2)
∫ h3

0
�3(τ )F

(
g3(u2)χ (s(t – τ ), p(t – τ ))

g3(u)χ (s2, p2)

)
dτ

– κ1λ1F1χ (s2, p2)F
(

g2(y2)g1(w)
g2(y)g1(w2)

)
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– (κ1λ1F1 + κ2λ2F2)χ (s2, p2)F
(

g2(y)g4(p2)
g2(y2)g4(p)

)

– κ3λ3F3χ (s2, p2)F
(

g3(u)g4(p2)
g3(u2)g4(p)

)
.

According to hypotheses (H1), (H2), and (H4), we get dW2
dt ≤ 0. Applying LIP, one can show

that �2 is GAS. �

4 Numerical simulations
We now perform some computer simulations on the following application:

ṡ(t) = ρ – β1s(t) + ωs(t)
(

1 –
s(t)
smax

)
–

(1 – ε1)λs(t)p(t)
1 + ηp(t)

, (66)

ẇ(t) =
(1 – ε1)λ1e–μ1τ1 s(t – τ1)p(t – τ1)

1 + ηp(t – τ1)
– (a1 + β2)w(t), (67)

ẏ(t) =
(1 – ε1)λ2e–μ2τ2 s(t – τ2)p(t – τ2)

1 + ηp(t – τ2)
+ a1w(t) – β3y(t), (68)

u̇(t) =
(1 – ε1)λ3e–μ3τ3 s(t – τ3)p(t – τ3)

1 + ηp(t – τ3)
– β4u(t), (69)

ṗ(t) = (1 – ε2)Nβ3y(t) + (1 – ε2)Mβ4u(t) – β5p(t) – qp(t)x(t), (70)

ẋ(t) = rp(t)x(t) – β6x(t). (71)

We assume that ω < β1. In this application, we consider the following specific forms of the
general functions:

π
(
s(t)

)
= ρ – β1s(t) + ωs(t)

(
1 –

s(t)
smax

)
, χ

(
s(t), p(t)

)
=

s(t)p(t)
1 + ηp(t)

,

gi(θ ) = θ , i = 1, . . . , 5.

First we verify hypotheses (H1)–(H4) for the chosen forms, then we solve the system using
MATLAB. Clearly, π (0) = ρ > 0 and π (s0) = 0, where

s0 =
smax

2ω

(
ω – β1 +

√
(ω – β1)2 +

4ρω

smax

)
.

We have

π ′(s) = –β1 + ω –
2ωs
smax

< 0. (72)

Clearly, π (s) > 0 for s ∈ [0, s0) and

π (s) = ρ – (β1 – ω)s – ω
s2

smax
≤ ρ – (β1 – ω)s.
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Then hypothesis (H1) is satisfied. We also have χ (s, p) > 0, χ (0, p) = χ (s, 0) = 0 for s, p ∈
(0,∞), and

∂χ (s, p)
∂s

=
p

1 + ηp
,

∂χ (s, p)
∂p

=
s

(1 + ηp)2 ,
∂χ (s, 0)

∂p
= s.

Then ∂χ (s,p)
∂s > 0, ∂χ (s,p)

∂p > 0, and ∂χ (s,0)
∂p > 0 for s, p ∈ (0,∞). Therefore, hypothesis (H1) is

satisfied. In addition,

χ (s, p) =
sp

1 + ηp
≤ sp = p

∂χ (s, 0)
∂p

,

(
∂χ (s, 0)

∂p

)′
= 1 > 0 for all s > 0.

It follows that (H2) is satisfied. Clearly, hypothesis (H3) holds true. Moreover,

∂

∂p

(
χ (s, p)
g4(p)

)
=

–ηs
(1 + ηp)2 < 0.

Therefore, hypothesis (H4) holds true and Theorems 1–3 are applicable. The parameters
R0 and R1 for this application are given by

R0 =
(1 – ε1)(1 – ε2){N(a1λ1e–μ1τ1 + (a1 + β2)λ2e–μ2τ2 ) + Mλ3e–μ3τ3 (a1 + β2)}

β5(a1 + β2)
s0,

R1 =
(1 – ε1)(1 – ε2){N(a1λ1e–μ1τ1 + (a1 + β2)λ2e–μ2τ2 ) + Mλ3e–μ3τ3 (a1 + β2)}

β5(a1 + β2)
s2

1 + ηp2
.

Remark There are several forms of the general function χ (s, p) where (H1)–(H4) can be
satisfied such as:

(i) Holling-type incidence χ (s, p) = sp
1+η1s ,

(ii) Beddington–DeAngelis incidence χ (s, p) = sp
1+η1s+η2p ,

(iii) Crowley–Martin incidence χ (s, p) = sp
(1+η1s)(1+η2p) ,

(iv) Hill-type incidence χ (s, p) = smp
ηm+sm .

Now we are ready to perform some numerical simulations for system (66)–(71). The
data of system (66)–(71) are provided in Table 1. We let τ1 = τ2 = τ3 = τ .

•Effect of the parameters λi and r on the stability of the steady states
To discuss our global results, we choose three different initial conditions:
IC1: (s(0), w(0), y(0), u(0), p(0), x(0)) = (900, 5, 5, 15, 3, 3).

Table 1 The data of example (66)–(71)

Parameter Value

ρ 10
β1 0.01
ω 0.0001
smax 1200
q 0.5

Parameter Value

β2 0.02
β3 0.36
β4 0.031
β5 3.0
β6 0.1

Parameter Value

μ1 1
μ2 1
μ3 1
η 0.01
a1 0.2

Parameter Value

N 6
M 3
ε1, ε2, τ Varied
λi , i = 1, 2, 3 Varied
r Varied
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Figure 1 The concentration of uninfected CD4+ T cells for system (66)–(71)

Figure 2 The concentration of latently infected cells for system (66)–(71)

IC2: (s(0), w(0), y(0), u(0), p(0), x(0)) = (700, 7, 8, 30, 5, 5).
IC3: (s(0), w(0), y(0), u(0), p(0), x(0)) = (500, 15, 18, 60, 12, 7).
Let us address three cases for the parameters λi, i = 1, 2, 3, and r. We assume that ε1 =

ε2 = 0 (there is no treatment) and τi = 0 (there is no time delay).
Case (I): Choose λi = 0.0000625 and r = 0.005, which gives R0 = 0.3016 < 1 and R1 =

0.1917 < 1. Therefore, based on Lemma 2 and Theorem 1, the system has unique steady
state, that is, �0, and it is GAS. As we can see from Figs. 1–6, the concentration of the
uninfected CD4+ T cells is increased and approaches its normal value before infection,
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Figure 3 The concentration of short-lived productively infected cells for system (66)–(71)

Figure 4 The concentration of long-lived productively infected cells for system (66)–(71)

that is, s0 = 1001.98; while concentrations of the other compartments converge to zero for
all the three initial conditions. As a result, the HIV-1 is removed from the plasma.

Case (II): By taking λi = 0.000625 and r = 0.005. For these values, R1 = 0.6095 < 1 < R0 =
3.0163. Consequently, based on Lemma 2 and Theorem 2, the humoral-inactivated in-
fection steady state �1 is positive and is GAS. Figures 1–6 confirm that the numerical
results support the theoretical results presented in Theorem 2. It can be observed that
the variables of the model eventually converge to �1 = (366.317, 9.72758, 11.3488, 69.0344,
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Figure 5 The concentration of free virus particles for system (66)–(71)

Figure 6 The concentration of B cells for system (66)–(71)

10.3112, 0.0) for all the three initial conditions. This case corresponds to a chronic HIV-1
infection in the absence of immune response.

Case (III): λi = 0.000625 and r = 0.05. Then we calculate R0 = 3.0163 > 1 and R1 =
2.1648 > 1. According to Lemma 2 and Theorem 3, the humoral-activated infection steady
state �2 is positive and is GAS. We can see from Figs. 1–6 that there is a consistency be-
tween the numerical results and theoretical results of Theorem 3. The states of the system
converge to �2 = (734.586, 4.09194, 4.77393, 29.0396, 2.0, 7.01238) for all the three initial



Elaiw et al. Advances in Difference Equations  (2018) 2018:85 Page 29 of 36

Figure 7 The concentration of uninfected CD4+ T cells for system (66)–(71)

Figure 8 The concentration of latently infected cells for system (66)–(71)

conditions. In this case the humoral immune response is activated and can control the
disease.

•Effect of the HAART on the HIV dynamics
We take τi = 0, λi = 0.000625, and r = 0.05. We choose the initial conditions (s(0), w(0),

y(0), u(0), p(0), x(0)) = (850, 5, 6, 17, 1.5, 5). In Figs. 7–12 we show the effect of the drug ef-
ficacy parameters ε1 and ε2 on the HIV dynamics. Also, we can observe that, as the drug
efficacy parameters ε1 and ε2 are increased, the concentration of uninfected cells is in-
creased, while the concentrations of free virus particles and the three types of infected
cells are decreased. Table 2 shows that the values of R0 and R1 are decreased as ε1 and ε2

are increased.
Let us define the overall HAART effect as εe = ε1 + ε2 – ε1ε2 [13]. If εe = 0, then the

HAART has no effect, if εe = 1, the HIV growth is completely halted. Consequently, the
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Figure 9 The concentration of short-lived productively infected cells for system (66)–(71)

Figure 10 The concentration of long-lived productively infected cells for system (66)–(71)

parameter R0 is given by

R0(εe) =
(1 – εe){N(a1λ1e–μ1τ1 + (a1 + β2)λ2e–μ2τ2 ) + Mλ3e–μ3τ3 (a1 + β2)}

β5(a1 + β2)
s0.

Since the goal is to clear the viruses from the body, we have to determine the drug ef-
ficacy that makes R0(εe) ≤ 1 for system (66)–(71). In this case, we get the critical drug
efficacy (i.e., the efficacy needed in order to stabilize the system around the uninfected
steady state). For the model (66)–(71), �0 is GAS when R0(εe) ≤ 1, i.e.,

εcrit
e ≤ εe < 1, εcrit

e = max

{
0,

R0(0) – 1
R0(0)

}
.
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Figure 11 The concentration of free virus particles for system (66)–(71)

Figure 12 The concentration of B cells for system (66)–(71)

Table 2 The values of steady states R0 and R1 for model (66)–(71) with different values of ε1 and ε2

Drug Steady states R0 R1

ε1 = 0, ε2 = 0 �2 = (734.586, 4.09194, 4.77393, 29.0396, 2.0, 7.01238) 3.01635 2.16484
ε1 = 0.1, ε2 = 0.2 �2 = (734.586, 3.68275, 4.29654, 26.1356, 2.0, 3.36892) 2.17177 1.55868
ε1 = 0.3, ε2 = 0.4 �1 = (801.457, 2.14802, 2.50603, 15.244, 1.36614, 0) 1.26687 0.909233
ε1 = 0.5, ε2 = 0.6 �0 = (1001.98, 0, 0, 0, 0, 0) 0.60327 0.432968

Using the data in Table 1, we have εcrit
e = 0.668473.

•Effect of the time delay on the stability of the system
Choosing ε1 = ε2 = 0, λi = 0.000625, and r = 0.05. The initial conditions are considered

to be (s(0), w(0), y(0), u(0), p(0), x(0)) = (850, 2, 3, 17, 1, 5). Figures 13–18 and Table 3 show
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Figure 13 The concentration of uninfected CD4+ T cells for system (66)–(71)

Figure 14 The concentration of latently infected cells for system (66)–(71)

the effect of the time delay parameter τ on the stability of �0, �1, and �2. Clearly, the
parameter τ has similar effect as the drug efficacy parameters ε1 and ε2.

5 Conclusion
In this paper, we have proposed and analyzed two general nonlinear HIV infection models
with humoral immune response. We have considered three types of infected cells: latently
infected cells, long-lived productively infected cells, and short-lived productively infected
cells. We have incorporated three discrete or distributed time delays into the models. We
have considered more general nonlinear functions for the HIV-target incidence rate, pro-
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Figure 15 The concentration of short-lived productively infected cells for system (66)–(71)

Figure 16 The concentration of long-lived productively infected cells for system (66)–(71)

duction/proliferation, and removal rates of the cells and HIV. We have derived a set of
conditions on these general functions and have determined two threshold parameters:
the basic reproduction number R0 and the humoral immune response activation number
R1. We have proved the nonnegativity and ultimate boundedness of the model’s solutions
and the existence and stability of the model’s steady states. Using Lyapunov functionals, we
have established the global stability of the three steady states of the models. We have pre-
sented an example and performed some numerical simulations to support our theoretical
results.
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Figure 17 The concentration of free virus particles for system (66)–(71)

Figure 18 The concentration of B cells for system (66)–(71)

Table 3 The values of steady states R0 and R1 for model (66)–(71) with different values of τ

Drug Steady states R0 R1

τ = 0 �2 = (734.586, 4.09194, 4.77393, 29.0396, 2.0, 7.01238) 3.01635 2.16484
τ = 0.5 �2 = (734.586, 2.48189, 2.89554, 17.6134, 2.0, 1.89241) 1.82951 1.31304
τ = 0.9 �1 = (826.24, 1.09341, 1.27564, 7.75968, 1.15901, 0) 1.22636 0.880158
τ = 1.5 �0 = (1001.98, 0, 0, 0, 0, 0) 0.673038 0.483041
τ = 2.5 �0 = (1001.98, 0, 0, 0, 0, 0) 0.247597 0.177701
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