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Abstract
Our aim in the article is to study the existence of μ-pseudo almost automorph mild
solutions to the following fractional integro-differential equation:

Dαu(t) = Au(t) +
∫ t

–∞
a(t – s)Au(s)ds + f (t,u(t)), t ∈R,

where for α > 0, the fractional derivative Dα is understood in the sense of Weyl, and A
is a closed linear operator defined on Banach space X, a ∈ L1loc(R+) is a scalar-valued
kernel. The novelty of this work is a study of this equation with a μ-Sp-pseudo almost
automorph nonlinear term satisfying the condition of “uniform continuity” instead of
some “Lipschitz” type conditions supposed in the literature. We utilize Schauder’s
fixed point theorem. An example is provided to explain our abstract results.

Keywords: Mild solutions; μ-Sp-pseudo almost automorphy; Fixed point theorem;
Fractional integro-differential equation

1 Introduction
Fractional calculus is a mathematics field for dealing with derivatives and integrals of ar-
bitrary orders. As a result of the intensive development of fractional calculus, fractional
differential equations have been proved to be useful tools in modeling of phenomena in
various fields of science and economics and have been greatly developed (see [1–5] and
the references therein).

In recent decades, the asymptotic properties of mild solutions for various (fractional)
differential equations and (fractional) integro-differential equations have attracted much
attention. Bochner first presented the notion of almost automorphy in [6] as a natural
extension of almost periodicity. Since then, this notion has been promoted in a variety of
ways, for example, in terms of pseudo almost automorphy ([7, 8]), weighted pseudo almost
automorphy (abbr. wpaa) ([9]), Sp-weighted pseudo almost automorphy (abbr. Sp-wpaa)
([10]), μ-pseudo almost automorphy (abbr. μ-paa) ([11]), etc. The above-mentioned no-
tions have been extensively applied to the research about a variety of (fractional) differ-
ential equations and (fractional) integro-differential equations (see [12–19] and the refer-
ences therein).
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In particular, Ponce [18] studied the existence and uniqueness of bounded solutions,
such as almost periodic (automorphic) and asymptotically almost periodic solution, etc.,
to the following fractional integro-differential equation:

Dαv(t) = Av(t) +
∫ t

–∞
a(t – s)Av(s) ds + f

(
t, v(t)

)
, t ∈R, (1.1)

where Dα is comprehended as a fractional derivative of order α > 0 in the sense of Weyl
(see [4, 18]) and A is a linear and closed operator defined in a Banach space X, a ∈ L1

loc(R+)
is a scalar-valued kernel, and f : R × X → X belongs to a closed subspace of the space of
continuous and bounded functions satisfying some “Lipschitz” type conditions. Subse-
quently, Chang [19] investigated some existence results about wpaa solutions to Eq. (1.1)
where the nonlinear term f is a Sp-wpaa function satisfying a number of conditions of
“Lipschitz” type combined with the contraction map theorem or a “uniform continuity”
type condition combined with the Leray–Schauder alternative theorem. From the litera-
ture mentioned above and to the best of our knowledge, there is no work about asymptotic
properties of mild solutions to Eq. (1.1) where the nonlinear term f satisfies a “uniform
continuity” type condition combined with Schauder’s fixed point theorem. This is a mo-
tivation of writing this manuscript.

Recently, by using the measure theory, Chang [20] and Abdelkarim-Nidal Akdad [21]
presented the notion of μ-Sp-pseudo almost automorphy (abbr. μ-Sp-paa), which is a gen-
eralization of a μ-pseudo almost automorphic function, respectively. The natural question
is raised: what are asymptotic properties of mild solutions about Eq. (1.1) where the non-
linear term f is a μ-Sp-paa function? To the best of our knowledge, there is rarely literature
covering the existence of μ-paa solutions about Eq. (1.1) where the nonlinear term f is a μ-
Sp-paa function. To close this gap, by utilizing Schauder’s fixed point theorem, we obtain
μ-paa mild solutions for Eq. (1.1) with the μ-Sp-paa nonlinear term f satisfying the con-
dition of “uniform continuity” type instead of some “Lipschitz” type conditions supposed
in the literature.

The rest of this article is organized as follows. In Sect. 2, we recall some basic defi-
nitions and lemmas, which are based on the literature. In Sect. 3, we present our main
results, namely, the existence of μ-paa mild solutions to Eq. (1.1). These results are
based on the nonlinear term f that satisfies a “uniform continuity” type condition com-
bined with Schauder’s fixed point theorem. The last section is dedicated to the appli-
cation of our results. An example is provided to explain our abstract results, where the
condition of “uniform continuity” type is satisfied but the condition of “Lipschitz” type
failed.

2 Preliminaries
Let us review the notation. (X,‖ · ‖) and (Y,‖ · ‖) are Banach spaces. The space BC(R,X) =
{v : R →X : v is a bounded and continuous function} is a Banach space with the supre-
mum norm.

Throughout this article, the Lebesgue σ -field of R is denoted by C and the set consisting
of whole positive measures μ on C such that μ(R) = +∞ and μ([c, d]) < +∞ for any c, d ∈R

(c < d) is denoted by W. In the article, we always suppose that μ ∈W.
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Definition 2.1 ([11])
(i) A continuous and bounded function f : R →X is called μ-ergodic if

lim
S→+∞

1
μ([–S, S])

∫
[–S,S]

∥∥f (t)
∥∥dμ = 0.

The space formed by all these functions is denoted by ε(X,μ). The space PAA(X,μ)
formed by all μ-paa functions is given by

PAA(X,μ) =
{

f = f1 + f2 ∈ BC(R,X) : f1 ∈ AA(X), f2 ∈ ε(X,μ)
}

.

(ii) A continuous and bounded function f : R×Y →X is called μ-ergodic if f (·, v) is
bounded for any v ∈Y and

lim
S→+∞

1
μ([–S, S])

∫
[–S,S]

∥∥f (t, v)
∥∥dμ = 0,

uniformly in v ∈Y. The space formed by all these functions is denoted by
ε(R×Y,X,μ).

The space PAA(R×Y,X,μ) formed by all μ-paa functions is given by

PAA(R×Y,X,μ)

=
{

f = f1 + f2 ∈ BC(R×Y,X) : f1 ∈ AA(R×Y,X), f2 ∈ ε(R×Y,X,μ)
}

.

Definition 2.2 ([14]) The space BSp(X) formed by the whole Stepanov bounded func-
tions, where p ∈ [1,∞), includes of the whole measurable functions f : R →X satisfying
f b ∈ L∞(R, Lp(0, 1;X)). It is a Banach space where its norm is defined by

‖f ‖Sp =
∥∥f b∥∥

L∞(R,Lp) = sup
t∈R

(∫ t+1

t

∥∥f (τ )
∥∥p dτ

)1/p

= sup
t∈R

∥∥f (t + ·)∥∥p.

Definition 2.3 ([14])
(i) The space ASp(X) formed by whole Sp-aa functions, includes of all f ∈ BSp(X)

satisfying f b ∈ AA(Lp(0, 1;X)).
(ii) A function f ∈ BSp(R×Y,X) is called Sp-aa in t ∈ R for v ∈Y, if f (·, v) ∈ ASp(X) for

v ∈Y. The set consisting of the whole of these functions is denoted by
ASp(R×Y,X).

From [20, 21], the spaces PAAp(X,μ) and PAAp(R×Y,X,μ) consisting of the whole
μ-Sp-paa functions are defined by

PAAp(X,μ) =
{

f = f1 + f2 ∈ BSp(X) : f1 ∈ ASp(X), f b
2 ∈ ε

(
Lp(0, 1;X),μ

)}
,

where ε(Lp(0, 1;X),μ), which is f b
2 ∈ BC(Lp(0, 1;X)) and

lim
S→+∞

1
μ([–S, S])

∫
[–S,S]

(∫ t+1

t

∥∥f2(s)
∥∥p ds

) 1
p

dμ = 0.
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and

PAAp(R×Y,X,μ) =
{

f = f1 + f2 : f1 ∈ ASp(R×Y,X),

f b
2 ∈ ε

(
Y, Lp(0, 1;X),μ

)
, f (·, v) ∈ Lp

loc(R,X) for each v ∈Y
}

.

Let the positive measure on C, denoted by μς , be defined as

μς (A) = μ
({a + ς : a ∈ A}) for A ∈ C,ς ∈R.

The following assumption [11] will be needed later.
(A) For ∀ς ∈R, there are a bounded interval � and a constant γ > 0 satisfying

μς (A) ≤ γμ(A)

when A ∈ C satisfies A ∩ � = ∅.

Lemma 2.1 ([11, 20, 21]) If the assumption (A) holds, then ε(X,μ) and ε(Lp(0, 1;X),μ) are
translation invariant.

Consequently, PAA(X,μ) and PAAp(X,μ) are also translation invariant.

Lemma 2.2 ([20, 21]) If the assumption (A) holds, then PAA(X,μ) ⊂ PAAp(X,μ) for each
1 ≤ p < ∞.

3 Main results
Now, we address the existence of μ-paa mild solutions to Eq. (1.1). Our existence theorem
is based upon the nonlinear term f ∈ PAAp(R×X,X,μ) satisfying a “uniform continuity”
type condition in the place of some “Lipschitz” type conditions supposed in the literature
combined with Schauder’s fixed point theorem.

We recall that the space formed by whole linear and bounded operators from X to Y is
denoted by B(X,Y), B(X) := B(X,X) for short.

Definition 3.1 ([18]) If A is a closed and linear operator where domain D(A) is defined
in Banach space X, α > 0 and a ∈ L1

loc(R+), there are a strongly continuous functions Sα :
[0,∞) →B(X) and ω ≥ 0 satisfying { λα

1+â(λ) : Reλ > ω} ⊂ ρ̄(A) and, for any x ∈X,

(
λα –

(
1 + â(λ)

)
A

)–1x =
1

1 + â(λ)

(
λα

1 + â(λ)
– A

)–1

x =
∫ ∞

0
e–λtSα(t)x dt, Reλ > ω,

then the operator A is said to be the generator of an α-resolvent family, where the resolvent
set of A and the Laplace transform of a are denoted by ρ̄(A) and â, respectively. In such a
situation, {Sα(t)}t≥0 is said to be the α-resolvent family generated by A.

Lemma 3.1 ([22]) If for all t > 0, Sα(t) is a continuous and compact operator in the uniform
operator topology, then limh→0 ‖Sα(t + h) – Sα(h)Sα(t)‖ = 0 and limh→0 ‖Sα(t) – Sα(h)Sα(t –
h)‖ = 0 for all t > 0.
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Definition 3.2 ([18]) Let α > 0 and A be the generator of an α-resolvent family {Sα(t)}t≥0.
For a function v ∈ C(R,X), if the function s �→ Sα(t – s)f (s, v(s)) is integrable on (–∞, t) for
each t ∈R and

v(t) =
∫ t

–∞
Sα(t – s)f

(
s, v(s)

)
ds,

then the function v is called a mild solution of Eq. (1.1).

We will use the following assumptions:
(A1) A generates an α-resolvent family {Sα(t)}t≥0 satisfying ‖Sα(t)‖ ≤ ϕα(t), ∀t ≥ 0,

where ϕα(t) ∈ L1(R+) is nonincreasing in t satisfying ϕ0 :=
∑∞

n=0 ϕα(n) < ∞.
(A2) The function f = f1 + f2 ∈ PAAp(R×X,X,μ) where for each bounded subset

B ⊂ X, f1 ∈ ASp(R×X,X) is uniform continuity uniformly in t ∈ R and f b
2 ∈

ε(X, Lp(0, 1;X),μ).
(A3) f ∈ PAAp(R×X,X,μ) and, for each bounded subset B ⊂ X, f (t, v) is uniform con-

tinuity uniformly in t ∈ R and {f (·, v) : v ∈ B} is bounded in PAAp(R×X,X,μ) for
each bounded subset B ⊂X.

For v ∈ PAA(X,μ), record

Uv =
∫ t

–∞
Sα(t – s)f

(
s, v(s)

)
ds =

∫ ∞

0
Sα(s)f

(
t – s, v(t – s)

)
ds.

Lemma 3.2 If (A) and (A1)–(A3) hold, then U : PAA(X,μ) → PAA(X,μ) is continuous.

Proof For χ ∈ BSp(X) and t ∈R, by (A1), we have

∥∥∥∥
∫ ∞

0
Sα(ς )χ (t – ς ) dς

∥∥∥∥ ≤
∞∑

k=0

∫ k+1

k

∥∥Sα(ς )χ (t – ς )
∥∥dς

≤
∞∑

k=0

∫ k+1

k

∥∥Sα(ς )
∥∥∥∥χ (t – ς )

∥∥dς

≤
∞∑

k=0

∫ k+1

k
ϕα(ς )

∥∥χ (t – ς )
∥∥dς

≤
∞∑

k=0

ϕα(k)
∫ k+1

k

∥∥χ (t – ς )
∥∥dς

≤
∞∑

k=0

ϕα(k)
(∫ k+1

k

∥∥χ (t – ς )
∥∥p dς

) 1
p

=
∞∑

k=0

ϕα(k)
∥∥χ (t + k – 1 + ·)∥∥p

≤ ϕ0‖χ‖Sp . (3.1)

If v ∈ PAA(X,μ), then f (t, v(t)) ∈ PAAp(X,μ) by Theorem 3.3 of [20] and Lemma 2.2
and we record ψ(t) = f (t, v(t)), t ∈ R. Let ψ = ψ1 + ψ2 with ψ1 ∈ ASp(X) and ψb

2 ∈
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ε(Lp(0, 1;X),μ). For t ∈ R, i = 1, 2, we denote

�i(t) =
∫ ∞

0
Sα(ς )ψi(t – ς ) dς .

By (3.1), for t, s ∈R, we have

∥∥�i(t)
∥∥ ≤ ϕ0‖ψi‖Sp ,

∥∥�i(t) – �i(s)
∥∥ ≤

∞∑
k=0

ϕα(k)
∥∥ψi(t + k – 1 + ·) – ψi(s + k – 1 + ·)∥∥p.

Notice that, for t, s ∈ R,
∑∞

k=0 ϕα(k)‖ψi(t + k – 1 + ·) – ψi(s + k – 1 + ·)‖p is uniformly con-
vergent. So �i ∈ BC(R,X). At present, the proof is achieved in the following three steps.

Step 1. Since ψ1 ∈ ASp(X), for {s′
n} ⊂ R and t ∈ R, there is {sn} ⊂ {s′

n} and a function
ψ̂1 ∈ Lp

loc(R,X) satisfying

lim
n→∞

∥∥ψ1(t + sn + ·) – ψ̂1(t + ·)∥∥p = lim
n→∞

∥∥ψ̂1(t – sn + ·) – ψ1(t + ·)∥∥p = 0. (3.2)

Let

�̂1(t) =
∫ ∞

0
Sα(ς )ψ̂1(t – ς ) dς , t ∈R.

It is easy to see that
∑∞

k=0 ϕα(k)‖ψ1(t + sn + k – 1 + ·) – ψ̂1(t + k – 1 + ·)‖p is uniformly
convergent in t ∈ R. For t ∈R, by (3.1) and (3.2), we have

∥∥�1(t + sn) – �̂1(t)
∥∥

=
∥∥∥∥
∫ ∞

0
Sα(ς )

(
ψ1(t + sn – ς ) – ψ1(t – ς )

)
dς

∥∥∥∥

≤
∞∑

k=0

ϕα(k)
∥∥ψ1(t + sn + k – 1 + ·) – ψ̂1(t + k – 1 + ·)∥∥p

→ 0 as n → ∞.

Analogously, we are also able to testify that

lim
n→∞

∥∥�̂1(t – sn) – �1(t)
∥∥ = 0 for t ∈R.

This implies that �1 ∈ AA(X).
Step 2. Since (A) holds, we obtain

lim
S→∞

1
μ([–S, S])

∫
[–S,S]

(∫ k+1

k

∥∥ψ2(t – ς )
∥∥p dς

) 1
p

dμ

= lim
S→∞

1
μ([–S, S])

∫
[–S,S]

∥∥ψ2(t + k – 1 + ·)∥∥p dμ = 0, k = 1, 2, . . . .
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Obviously,
∑∞

k=0 ϕα(k)‖ψ2(t + k – 1 + ·)‖p is uniformly convergent in t ∈R and

∞∑
k=0

ϕα(k)
1

μ([–S, S])

∫
[–S,S]

(∫ k+1

k

∥∥ψ2(t – ς )
∥∥p dς

) 1
p

dμ

is uniformly convergent in S ∈ (0,∞). By (3.1),

1
μ([–S, S])

∫
[–S,S]

∥∥�2(t)
∥∥dμ

=
1

μ([–S, S])

∫
[–S,S]

∥∥∥∥
∫ ∞

0
Sα(ς )ψ2(t – ς ) dς

∥∥∥∥dμ

≤ 1
μ([–S, S])

∫
[–S,S]

[ ∞∑
k=0

ϕα(k)
∥∥ψ2(t + k – 1 + ·)∥∥p

]
dμ

=
∞∑

k=0

ϕα(k)
1

μ([–S, S])

∫
[–S,S]

(∫ k+1

k

∥∥ψ2(t – ς )
∥∥p dς

) 1
p

dμ

→ 0 as S → ∞.

This implies that �2 ∈ ε(X,μ).
Step 3. For ε > 0 and u, v ∈ PAA(X,μ), there is σ > 0 such that ‖u – v‖ < σ . By (A3), we

obtain ‖f (t, u(t)) – f (t, v(t))‖ < ε for t ∈R and record κ(t) = f (t, u(t)) – f (t, v(t)), t ∈R, thus
‖κ‖Sp ≤ ε. Thus from (3.1), we have

‖Uu – Uv‖ = sup
t∈R

∥∥∥∥
∫ ∞

0
Sα(ς )κ(t – ς ) dς

∥∥∥∥ ≤ ϕ0‖κ‖Sp ≤ ϕ0ε.

This implies that U : PAA(X,μ) → PAA(X,μ) is uniformly continuous. �

We provide some hypotheses which will be applied below:
(A4) There is r > 0 satisfying ‖f (t, v)‖Sp ≤ r

ϕ0
for v ∈ PAA(X,μ) with ‖v‖ ≤ r.

(A5) Let {vn} be a bounded sequence in PAA(X,μ) and uniform continuity in any com-
pact subset of R. Then {f (·, vn(·))} is relatively compact in PAAp(X,μ).

Theorem 3.1 If Sα(t) is a continuous and compact operator for all t > 0 in the uniform
operator topology, then under assumptions (A) and (A1)–(A5), Eq. (1.1) has a μ-paa mild
solution.

Proof Let Br := {v ∈ PAA(X,μ) : ‖v‖ ≤ r}. Then Br is a convex and closed subset of
PAA(X,μ). The proof can be carried out via a four-step process.

Step 1: For r > 0, we can obtain UBr ⊂ Br . For v ∈ Br , t ∈R, by (A1) and (A4), then

∥∥Uv(t)
∥∥ =

∥∥∥∥
∫ t

–∞
Sα(t – s)f

(
s, v(s)

)
ds

∥∥∥∥

≤
∞∑

n=1

∥∥∥∥
∫ t–n+1

t–n
Sα(t – s)f

(
s, v(s)

)
ds

∥∥∥∥

≤
∞∑

n=1

∫ t–n+1

t–n

∥∥Sα(t – s)
∥∥∥∥f

(
s, v(s)

)∥∥ds



Gu and Li Advances in Difference Equations  (2018) 2018:59 Page 8 of 13

≤
∞∑

n=1

∫ t–n+1

t–n
ϕα(t – s)

∥∥f
(
s, v(s)

)∥∥ds

≤
∞∑

n=1

ϕα(n – 1)
(∫ t–n+1

t–n

∥∥f
(
s, v(s)

)∥∥p ds
) 1

p

≤
∞∑

n=0

ϕα(n)
∥∥f

(·, v(·))∥∥Sp

= ϕ0
∥∥f

(·, v(·))∥∥Sp

≤ r.

Thus UBr ⊂ Br .
Step 2: For v ∈ Br , by (A4) and (3.1), we have

‖Uv‖ = sup
t∈R

∥∥∥∥
∫ ∞

0
Sα(ς )f

(
t – ς , v(t – ς )

)
dς

∥∥∥∥ ≤ ϕ0
∥∥f

(·, v(·))∥∥Sp ≤ r.

Then U : Br → Br is continuous by Lemma 3.2.
Step 3: {Uv : v ∈ Br} ⊂ PAA(X,μ) is equi-continuous. Let q > 1 satisfy 1

p + 1
q = 1 and take

t1, t2 ∈R with t1 > t2 and 0 < ε < 1 such that η = min{1 – ( ε
12r )q, ( ε

12r )q} ≤ 1. For v ∈ Br , with
r > 0 and t1 – t2 < η, we can decompose Uv(t1) – Uv(t2) = I1 + I2 + I3, where

I1 =
∫ t1

t2

Sα(t1 – s)f
(
s, v(s)

)
ds,

I2 =
∫ t2

t2–η

[
Sα(t1 – s) – Sα(t2 – s)

]
f
(
s, v(s)

)
ds,

I3 =
∫ t2–η

–∞

[
Sα(t1 – s) – Sα(t2 – s)

]
f
(
s, v(s)

)
ds.

By (A1) and (A4), we have

‖I1‖ ≤
∫ t1

t2

∥∥Sα(t1 – s)
∥∥∥∥f

(
s, v(s)

)∥∥ds

≤
∫ t1

t2

ϕα(t1 – s)
∥∥f

(
s, v(s)

)∥∥ds

≤
(∫ t1

t2

ϕq
α(t1 – s) ds

) 1
q

·
(∫ t1

t2

∥∥f
(
s, v(s)

)∥∥p ds
) 1

p

≤ ϕ0 · η 1
q
∥∥f

(·, v(·))∥∥Sp

≤ ϕ0 · η 1
q · r

ϕ0

≤ ε

6
, (3.3)
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‖I2‖ ≤
∫ t2

t2–η

∥∥Sα(t1 – s) – Sα(t2 – s)
∥∥∥∥f

(
s, v(s)

)∥∥ds

≤
∫ t2

t2–η

(
ϕα(t1 – s) + ϕα(t2 – s)

)∥∥f
(
s, v(s)

)∥∥ds

≤
(∫ t2

t2–η

(
ϕα(t1 – s) + ϕα(t2 – s)

)q ds
) 1

q
·
(∫ t2

t2–η

∥∥f
(
s, v(s)

)∥∥p ds
) 1

p

≤ 2ϕ0 · η 1
q
∥∥f

(·, v(·))∥∥Sp

≤ 2ϕ0 · η 1
q · r

ϕ0

≤ ε

3
, (3.4)

and

‖I3‖ ≤
∫ t2–η

–∞

∥∥[
Sα(t1 – s) – Sα(t2 – s)

]∥∥∥∥f
(
s, v(s)

)∥∥ds

≤
∞∑

n=1

∫ t2–η–n+1

t2–η–n

(
ϕα(t1 – s) + ϕα(t2 – s)

)∥∥f
(
s, v(s)

)∥∥ds

≤
∞∑

n=1

∫ t2–n

t2–η–n

(
ϕα(t1 – s) + ϕα(t2 – s)

)∥∥f
(
s, v(s)

)∥∥ds

+
∞∑

n=1

∫ t2–η–n+1

t2–n

(
ϕα(t1 – s) + ϕα(t2 – s)

)∥∥f
(
s, v(s)

)∥∥ds

≤
∞∑

n=1

(
ϕα(t1 – t2 + n – 1) + ϕα(n – 1)

) · η 1
q · ∥∥f

(·, v(·))∥∥Sp

+
∞∑

n=1

(
ϕα(t1 – t2 + n – 1) + ϕα(n – 1)

) · (1 – η)
1
q · ∥∥f

(·, v(·))∥∥Sp

≤ 2ϕ0 · η 1
q · r

ϕ0
+ 2ϕ0 · (1 – η)

1
q · r

ϕ0

≤ ε

3
. (3.5)

From (3.3), (3.4) and (3.5), we have

∥∥Uv(t1) – Uv(t2)
∥∥ < ε.

Step 4: {(Uv)(t) : v ∈ Br} is relatively compact sets in X for any t ∈ R. Let there is ε ∈ (0, 1),
then {Sα(ε)

∫ t–ε

–∞ Sα(t –s–ε)f (s, v(s)) ds : v ∈ Br} is relatively compact since Sα(ε) is compact.
Furthermore, for arbitrary ε < δ < 1, we have

∥∥∥∥Sα(ε)
∫ t–ε

–∞
Sα(t – s – ε)f

(
s, v(s)

)
ds –

∫ t–ε

–∞
Sα(t – s)f

(
s, v(s)

)
ds

∥∥∥∥

≤
∫ t–ε

–∞

∥∥Sα(ε)Sα(t – s – ε) – Sα(t – s)
∥∥∥∥f

(
s, v(s)

)∥∥ds

≤
∫ t–δ

–∞

∥∥Sα(ε)Sα(t – s – ε) – Sα(t – s)
∥∥∥∥f

(
s, v(s)

)∥∥ds
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+
∫ t–ε

t–δ

∥∥Sα(ε)Sα(t – s – ε) – Sα(t – s)
∥∥∥∥f

(
s, v(s)

)∥∥ds

≤
∞∑

n=1

∫ t–δ–n+1

t–δ–n

∥∥Sα(ε)Sα(t – s – ε) – Sα(t – s)
∥∥∥∥f

(
s, v(s)

)∥∥ds

+
∫ t–ε

t–δ

∥∥Sα(ε)Sα(t – s – ε) – Sα(t – s)
∥∥∥∥f

(
s, v(s)

)∥∥ds

≤
∞∑

n=1

∫ t–δ–n+1

t–δ–n

(
ϕα(ε)ϕα(t – s – ε) + ϕα(t – s)

)∥∥f
(
s, v(s)

)∥∥ds

+
∫ t–ε

t–δ

(
ϕα(ε)ϕα(t – s – ε) + ϕα(t – s)

)∥∥f
(
s, v(s)

)∥∥ds

≤
∞∑

n=1

(∫ t–δ–n+1

t–δ–n

(
ϕα(ε)ϕα(t – s – ε) + ϕα(t – s)

)q ds
) 1

q

·
(∫ t–δ–n+1

t–δ–n

∥∥f
(
s, v(s)

)∥∥p ds
) 1

p

+
(∫ t–ε

t–δ

(
ϕα(ε)ϕα(t – s – ε) + ϕα(t – s)

)q ds
) 1

q

·
(∫ t–ε

t–δ

∥∥f
(
s, v(s)

)∥∥p ds
) 1

p

≤
∞∑

n=1

(
ϕα(ε)ϕα(δ + n – 1 – ε) + ϕα(δ + n – 1)

)∥∥f
(·, v(·))∥∥Sp

+
(
ϕα(ε)ϕα(0) + ϕα(ε)

)
(δ – ε)

1
q
∥∥f

(·, v(·))∥∥Sp

≤ (
ϕα(ε)ϕ0 + ϕ0

)∥∥f
(·, v(·))∥∥Sp

+
(
ϕα(ε)ϕα(0) + ϕα(ε)

)
(δ – ε)

1
q
∥∥f

(·, v(·))∥∥Sp .

By using Lemma 3.1, we know

Sα(ε)Sα(t – s – ε) – Sα(t – s) → 0, as ε → 0 for s ∈ (–∞, t – δ],

and

∫ t–δ

–∞

∥∥Sα(ε)Sα(t – s – ε) – Sα(t – s)
∥∥∥∥f

(
s, v(s)

)∥∥ds ≤ (
ϕα(ε)ϕ0 + ϕ0

)∥∥f
(·, v(·))∥∥Sp .

Thus, by utilizing the arbitrariness of δ and the Lebesgue dominated convergence theo-
rem, we obtain

lim
ε→0

∥∥∥∥Sα(ε)
∫ t–ε

–∞
Sα(t – s – ε)f

(
s, v(s)

)
ds –

∫ t–ε

–∞
Sα(t – s)f

(
s, v(s)

)
ds

∥∥∥∥ = 0.
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Also,

∥∥∥∥Sα(ε)
∫ t–ε

–∞
Sα(t – s – ε)f

(
s, v(s)

)
ds –

∫ t

–∞
Sα(t – s)f

(
s, v(s)

)
ds

∥∥∥∥

≤
∥∥∥∥Sα(ε)

∫ t–ε

–∞
Sα(t – s – ε)f

(
s, v(s)

)
ds –

∫ t–ε

–∞
Sα(t – s)f

(
s, v(s)

)
ds

∥∥∥∥

+
∥∥∥∥
∫ t

t–ε

Sα(t – s)f
(
s, v(s)

)
ds

∥∥∥∥

≤
∥∥∥∥Sα(ε)

∫ t–ε

–∞
Sα(t – s – ε)f

(
s, v(s)

)
ds –

∫ t–ε

–∞
Sα(t – s)f

(
s, v(s)

)
ds

∥∥∥∥

+
∫ t

t–ε

ϕα(t – s)
∥∥f

(
s, v(s)

)∥∥ds

≤
∥∥∥∥Sα(ε)

∫ t–ε

–∞
Sα(t – s – ε)f

(
s, v(s)

)
ds –

∫ t–ε

–∞
Sα(t – s)f

(
s, v(s)

)
ds

∥∥∥∥

+
(∫ t

t–ε

ϕq
α(t – s) ds

) 1
q

·
(∫ t

t–ε

∥∥f
(
s, v(s)

)∥∥p ds
) 1

p

≤
∥∥∥∥Sα(ε)

∫ t–ε

–∞
Sα(t – s – ε)f

(
s, v(s)

)
ds –

∫ t–ε

–∞
Sα(t – s)f

(
s, v(s)

)
ds

∥∥∥∥
+ ϕα(0) · ε 1

q · ∥∥f
(·, v(·))∥∥Sp

Thus,

lim
ε→0

∥∥∥∥Sα(ε)
∫ t–ε

–∞
Sα(t – s – ε)f

(
s, v(s)

)
ds –

∫ t

–∞
Sα(t – s)f

(
s, v(s)

)
ds

∥∥∥∥ = 0,

which implies that {∫ t
–∞ Sα(t – s)f (s, v(s)) ds : v ∈ Br} is relatively compact in X by using

the total boundedness. Hence, the set {(Uv)(t) : v ∈ Br , r > 0} is relatively compact in X for
every t ∈R. Thus, U is completely continuous on Br .

Now, the convex and closed hull of U(Br) is denoted by co U(Br). Since U(Br) ⊂ Br and
Br is convex and closed, co U(Br) ⊂ Br . Therefore, U(co U(Br)) ⊂ U(Br) ⊂ co U(Br). This
means that U : co U(Br) → co U(Br) is a continuous mapping. It is easy to prove that, for
each t ∈ R, {x(t) : x ∈ co U(Br)} is relatively compact in X, and co U(Br) ⊂ BC(R,X) is
uniformly bound and equi-continuous since UBr is. According to Arzela–Ascoli theorem,
{x(t) : x ∈ co U(Br)}t∈I is relatively compact in C(I,R), where I is an arbitrary compact
subset of R. By (A5), {f (·, vn(·))} is relatively compact in PAAp(X,μ). Therefore there is
a subsequence of {f (·, vn(·))}, recorded once more by {f (·, vn(·))}, which is convergent in
PAAp(X,μ), that is, for ε > 0, There is N > 0 satisfying, for m, n > N ,

∥∥f
(·, vn(·)) – f

(·, vm(·))∥∥Sp <
ε

ϕ0
.

For m, n > N , from (3.1), we have

‖Uvn – Uvm‖ = sup
t∈R

∥∥Uvn(t) – Uvm(t)
∥∥ ≤ ϕ0

∥∥f
(·, vn(·)) – f

(·, vm(·))∥∥Sp < ε,
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which means that {Uvn} is convergent in PAA(X,μ). Thus, U : co U(Br) → co U(Br) is
a compact operator. By using Schauder’s fixed point theorem, U has a fixed point v ∈
co U(Br). This is just a μ-paa mild solution of Eq. (1.1) such that ‖v‖ < r. �

4 An example
In order to conclude our article, we provide a briefness application to explain our abstract
results.

Example 4.1 Let A = –�I , a(t) = �

4
tα–1

�(α) , � > 0, 0 < α < 1 and f (t, v) = f1(t, v) + f2(t, v) where
f1(t, v) = sin 1

2+cos t+cosπ t , f2(t, v) = 1
1+t2 h(v) and h(v) =

{ v sin 1
v , v �= 0,

0, v = 0.

From Eq. (1.1), we obtain

Dαv(t) = –�v(t) –
�2

4

∫ t

–∞
(t – s)α–1

�(α)
v(s) ds + f

(
t, v(t)

)
, t ∈R. (4.1)

From Example 4.17 of [18], we known that A generates an α-resolvent family {Sα(t)}t≥0

satisfying Sα(t) = (r ∗ r)(t) and Sα(t) ∈ L1(R+), where r = t α
2 –1Eα, α2 (– �

2 tα). Thus, it is easy to
see that the α-resolvent family {Sα(t)}t≥0 satisfy the assumption (A1).

Note that the function f ∈ PAAp(R×X,μ), with the measure μ whose Radon–Nikodym
derivative ρ is defined as

ρ(t) =

⎧⎨
⎩

e–t , t ∈ (0, +∞),

1, t ∈ (–∞, 0].

It is easy to prove that ε(R×X, Lp(0, 1;X),μ) is translation invariant, thus (A) holds. More-
over, we can inspect that f meets all requirements (A2)–(A5). Then Eq. (4.1) has a mild
solution in PAA(X,μ) by Theorem 3.1.

Obviously, f does not fulfill any kind of “Lipschitz” type condition. Thus, the results in
the literature [20, 21] with some “Lipschitz condition” are not inadequate.
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