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Abstract
In this research article, a new mathematical model for the transmission dynamics of
vector-borne diseases with vertical transmission and cure is developed. The
non-negative solutions of the model are shown. To understand the dynamical
behavior of the epidemic model, the theory of basic reproduction number is used. As
this number increases, the disease invades the population and vice versa. The effect
of vertical transmission and cure rate on the basic reproduction number is shown.
The disease-free and endemic equilibria of the model are found and both their local
and global stabilities are presented. Finally, numerical simulations are carried out
graphically to show the dynamical behaviors. These results show that vertical
transmission and cure have a valuable effect on the transmission dynamics of the
disease.
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1 Introduction
Vector-borne diseases are infectious diseases transmitted to humans and animals by
blood-feeding arthropods. Some common vector-borne diseases are West Nile virus,
dengue fever, Rift Valley fever, malaria, and viral encephalitis caused by pathogens such
as bacteria, viruses, and parasites. The arthropods are blood sucking insects and arach-
nids such as ticks, mosquitoes, biting flies, and lice called vectors [1]. The vectors re-
ceive pathogens from an infected host and transmit them to a human host, as humans
are the major host, or animals. However, direct transmissions, such as transplantation
related transmission, transfusion related transmission, and needle-stick-related transmis-
sion, are also possible [2]. In case of some diseases such as AIDS and Hepatitis B, it is
possible for the offspring of infected parents to be born infected. This type of transmis-
sion is called vertical transmission. Now it is found that vector-borne diseases can also
be transmitted vertically [3, 4]. Also new research shows that virus is transmitted from
female mosquitos to their eggs at a high rate [5], which causes vertical transmission of the
disease.

Vector-borne diseases are prevalent in hot areas, such as tropics and subtropics, and are
relatively rare in temperate zones. Vector-borne infectious diseases remain amongst the
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most important cause of global health illness and are major killers, particularly of children.
The World Health Organization reports the numbers of deaths in different regions of the
world annually. Nearly 700 million people get mosquito-borne illnesses that cause about
one million deaths each year. Worldwide, malaria is the leading cause of premature mor-
tality, particularly in children under the age of five. Nearly half of the world’s population is
at risk of malaria, and every year 198 million cases (uncertainty range: 124–283 million)
and 584,000 deaths (range: 367,000–755,000) occur according to the World Malaria Re-
port 2014 [6]. According to WHO, an estimated of 3.3 billion people in 97 countries are at
risk of malaria. Currently, dengue threatens up to 40% of the world’s population, and there
may be 50–100 million infections annually [7]. More than 2.5 billion people over 40% of
the world’s population are now at risk of dengue.

From the above discussion it is clear that it is necessary to control such epidemic
diseases. Control measures for vector-borne diseases are important because most are
zoonoses. For the control measure, it is necessary to understand the dynamical features of
diseases and treat the infected hosts. Therefore, deciphering the mechanisms and mod-
eling of such diseases are of great interest. Our paper involves such an epidemic model
for the transmission dynamics of vector-borne diseases that incorporates both horizontal
and vertical transmission in the vector–host population.

Up to date, many mathematical models have been investigated to understand the mech-
anism of real world phenomena. Researchers investigate different methods to solve these
models both analytically and numerically (e.g., see [8–21]). Several models of infectious
diseases have been developed in the literature [22–27]. The model first proposed by Ross
[28] and subsequently modified by Macdonald [29] has influenced both the modeling and
the application of control strategies to a vector-borne disease. The model presented in
[30] studied the analysis of a simple vector–host epidemic model with horizontal trans-
mission. We extend their model by including vertical transmission in both vector and
host populations, and treatment class in the host population with different interaction
rates.

The structure of this paper is as follows: Section 1 represents the introductory remarks
with a brief history. Section 2 is about the derivation of SITR epidemic model and shows
the non-negative solutions of the proposed model. In Section 3, we find the disease-free
and endemic equilibria and prove their local stability. In Section 4, we use mathemati-
cal analysis to establish global stability results for the proposed model. We use Lyapunov
function theory to show global stability of both disease-free and endemic equilibria. Pa-
rameter estimation and numerical results are discussed in Section 5. Finally, we give con-
clusion.

2 Model framework
The total population sizes at time t for human hosts and vectors are denoted by N1(t)
and N2(t), respectively. The population of size N1(t) is divided into four distinct classes:
the susceptible population of size S(t), the infectious population of size I(t), the population
under treatment of size T(t), and the recovered population of size R(t). Thus N1(t) = S(t) +
I(t) + T(t) + R(t). The vector population N2(t) has the subclasses denoted by V (t) and
W (t) for the susceptible and infected classes, respectively. Thus, N2(t) = V (t) + W (t). The
mathematical model can be represented by the following nonlinear system of ordinary
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Figure 1 The flow chart represents the interactions
and transfer of a vector-borne disease in both human
and vector populations

differential equations:

dS
dt

= (1 – ε1I)b1 – β1SI – β2SW – μ1S,

dI
dt

= ε1b1I + β1SI + β2SW – αI – ηI – δ1I – μ1I,

dT
dt

= αI – γ T – δ1T – μ1T ,

dR
dt

= ηI + γ T – μ1R,

dV
dt

= (1 – ε2W )b2 – β3VI – μ2V ,

dW
dt

= ε2b2W + β3VI – δ2W – μ2W ,

(1)

with the initial conditions

S(0) ≥ 0, I(0) ≥ 0, T(0) ≥ 0, R(0) ≥ 0, V (0) ≥ 0, W (0) ≥ 0. (2)

The human host population is recruited at a constant birth rate b1 in which a fraction ε1

were born infected from their infected parents. β1 is the rate of direct transmission of the
disease, β2 is the vector mediated transmission rate, μ1 is the natural mortality rate of a
human. Infectious humans are treated at a rate α, recover naturally at a rate η, and suf-
fer disease-induced death at a rate δ1. Treated humans recover at a rate γ . It is assumed
that recovered individuals acquire lifelong immunity against re-infection. Similarly, b3 is
the constant recruitment rate of vector population in which the ratio ε2 are infected by
birth from their infected parents. Susceptible mosquitoes become infected by biting in-
fected human at a rate β3, μ2 is the natural mortality rate of vector population. Infectious
vectors die due to disease at a rate δ2. The complete dynamics of the proposed model is
represented by the flow chart in Figure 1.

2.1 Properties of solutions
The proposed model (1) is a system of nonlinear ordinary differential equations with the
initial conditions (2). To be epidemiologically and mathematically meaningful, it is im-
portant to prove that all the solutions with the given initial conditions will remain non-
negative and bounded for all finite time. The model shall be analyzed in a biologically
meaningful feasible region governed by a positive invariant set.
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Theorem 2.1 There exists a unique and bounded solution of the system of equations (1),
in a positively invariant set, that remains for all finite time t ≥ 0.

Proof The right-hand side of each equation is continuous in the convex domain E =
(t, S(t), I(t), T(t), R(t), V (t), W (t)) of (6 + 1)-dimensional space R6+1

+ with continuous partial
derivatives. So problem (1) has a unique solution in R6

+ which exists for a given finite time
t ∈ [0,∞) and initial conditions (2).

As the total population sizes are N1 = S + I + T + R and N2 = V + W , so from (1) we get

dN1

dt
= b1 – μ1N1 – δ1(I + T) and

dN2

dt
= b2 – μ2Nv – δ2Iv. (3)

Then

dN1

dt
≤ b1 – μ1N1 and

dN2

dt
≤ b2 – μ2Nv.

⇒ N1 ≤ N1(0)e–μ1(t) +
b1

μ1

(
1 – e–μ1(t)) and

N2 ≤ N2(0)e–μ2(t) +
b2

μ2

(
1 – e–μ2(t)),

which shows that

lim
t→∞ sup N1 ≤ b1

μ1
and lim

t→∞ sup N2 ≤ b2

μ2
. (4)

The given initial conditions (2) make sure that N1(0) ≥ 0 and N2(0) ≥ 0. Thus the feasible
region for system (1) is

� =
{

(S, I, T , R, V , W ) ∈ R6
+, N1 ≤ b1

μ1
, N2 ≤ b2

μ2

}
.

Thus the total populations and each population class remain bounded for all finite time
t ≥ 0. �

The above theorem shows that model (1) is well posed epidemiologically and mathemat-
ically in a positively invariant set �. We shall study the dynamics of this basic model in �,
so, all the solutions of system (1) start and remain in � for all t ≥ 0. All the parameters and
state variables for the model should be non-negative for all time because they represent
the number of the population sizes of humans and vectors.

3 Equilibrium points
3.1 Disease-free equilibrium
The ability to invade a population is an important concern of an infectious disease. The
steady state solutions of an epidemiological model at which the population remains in the
absence of disease is called disease-free equilibrium point. In order to find the disease-free
equilibrium of the proposed model (1), we set the right-hand side of all equations equal to
zero and set I = T = 0 and W = 0. Also there is no infected recruitment in the populations,
so we put the parameters ε1 = ε2 = 0, which implies that (1 – ε1)b1 = b1 and (1 – ε2)b2 = b2
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mean that the total recruited population is only susceptible. By direct calculations, we get
the disease-free equilibrium point E1 in the feasible region �, which is given by

E1 = (S1, I1, T1, R1, V1, W1) =
(

b1

μ1
, 0, 0, 0,

b2

μ2
, 0

)
.

The dynamics of model (1) is analyzed by a dimensionless number called basic repro-
duction number denoted by R0, defined as “The expected number of secondary cases
produced by a typical infected individual during its entire period of infectiousness in a
completely susceptible population” [31]. Mathematically, R0 is defined as

R0 ∝
(

infection
contact

)
·
(

contact
time

)
·
(

time
infection

)
.

More precisely,

R0 ∝ T · C · D,

where T is the transmissibility (i.e., probability of infection given contact between a sus-
ceptible individual and an infected one), C is the average rate of contact between suscepti-
ble and infected individuals, and D is the duration of infectiousness. This quantity serves
as a threshold parameter that predicts whether a disease will spread in a community or
will simply die out. It can be calculated by the method of next generation matrix given in
[32]. In the vector–host model (1), infected states are I , T , and W and uninfected states
are S, R, and V . The matrices F and V are the rate of production of new infections and
the transition rates between states, respectively, which are given by

F =

⎛

⎜
⎝

ε1b1I + β1SI + β2SW
0
0

⎞

⎟
⎠ , V =

⎛

⎜
⎝

(α + η + δ1 + μ1)I
–αI + (γ + δ1 + μ1)T

–ε2b2W – β3VI + (δ2 + μ2)W

⎞

⎟
⎠ .

At the disease-free equilibrium S = N1 = b1
μ1

, I = T = 0, V = N2 = b2
μ2

, and W = 0. The Jaco-
bian matrices at the disease-free equilibrium of F and V are F and V , respectively, where

F =

⎛

⎜
⎝

ε1b1 + β1N1 0 β2N1

0 0 0
0 0 0

⎞

⎟
⎠ ,

V =

⎛

⎜
⎝

α + η + δ1 + μ1 0 0
–α γ + δ1 + μ1 0

–β3N2 0 –ε2b2 + δ2 + μ2

⎞

⎟
⎠ .

F and V are the rates for new infections and transitions near the equilibrium. We used
MATLAB(R2010A) to find V –1 and FV –1, which gives the times spent in each state and
the total production of new infections over the course of an infection, respectively. The
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largest eigenvalue of FV –1 is the basic reproduction number R0, given by

R0 =
ε1b1 + β1N1

k
+

β2β3N1N2

mk
,

where k = α + δ1 + μ1 + η and m = δ2 + μ2 – ε2b2. When there is no vertical transmission,
ε1 = ε2 = 0, then R0 is the basic reproductive number for the model with only horizontal
transmission. Geometrically it means that the number of new infections comes from both
direct and indirect transmission. In the presence of vertical transmission, ε1, ε2 > 0, R0 in-
creases as these vertical transmission parameters increase, because vertical transmission
directly increases the number of infectious populations. Also we can see the inverse rela-
tion of treatment strategies with R0 and the direct relation with new infections and total
population.

The basic reproduction number R0 has a significant effect on the dynamics of infection.
As we can see from the first and second equations of model (1),

dS
dt

= b1 – kR0I – μ1S,
dI
dt

= k(R0 – 1)I. (5)

When R0 < 1, it means that each infected individual infects less than one other individ-
ual averagely by ever kind of transmission, then the change in the number of infected
population is negative, so the disease simply dies out. On the other hand, when R0 > 1,
it means that each infected individual infects more than one other individual, then the
change is positive and invasion is always possible (see the survey paper by Hethcote [33]).
For R0 = 1, it means that each infectious individual infects one other individual as a whole,
then there is no change in the infected population, so the infection constantly remains in
the population. Also the effect of R0 on the susceptible population is shown in the first
equation of (5). All these facts are shown in Figures 2 and 3.

Theorem 3.1 The disease-free equilibrium point E1 is locally asymptotically stable if R0 <
1, otherwise unstable.

Figure 2 The first figure shows that R0 decreases with increasing cure rate. The second figure shows that R0
increases as vertical transmission increases
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Figure 3 The figures show the threshold behavior of R0 and its critical value R0 = 1

Proof This can be proved by linearizing system (1) around E1, which gives the following
Jacobian matrix:

J1 =

⎡

⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎣

–μ1 –ε1b1 – β1
b1
μ1

0 0 0 –β2
b1
μ1

0 ε1b1 + β1
b1
μ1

– k 0 0 0 β2
b1
μ1

0 α –l 0 0 0
0 η γ –μ1 0 0
0 –β3

b2
μ2

0 0 –μ2 –ε2b2

0 β3
b2
μ2

0 0 0 –m

⎤

⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎦

,

where l = γ + δ1 + μ1.
The characteristic equation of J1 is

(x + μ1)(x + μ1)(x + μ2)(x + l)
(
c0x2 + c1x + c2

)
= 0, (6)

where

c0 = μ1μ2,

c1 = kμ1μ2 + mμ1μ2 – β1b1μ2 – b1ε1μ1μ2,

c2 = kmμ1μ2(1 – R0).

Four eigenvalues –μ1, –μ1, –μ2, and –l out of six have a negative real part. The remaining
two eigenvalues are the roots of the equation c0x2 + c1x + c2 = 0. For R0 < 1 and k + m >
β1N1 + b1ε1, we have c1 > 0 and c1c2 > 0. So, according to the Routh–Hurwitz criteria [34],
these two eigenvalues have a negative real part.

Since each eigenvalue of the characteristic equation (6) has a negative real part when
R0 < 1, according to the Routh–Hurwitz method [34], system (1) is locally asymptotically
stable at the disease-free equilibrium point E2 and unstable when R0 > 1. The dynamical
behaviors of the model at disease-free equilibrium are shown in Figure 4. �
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Figure 4 The plots show the dynamical behavior of the model at disease-free equilibrium

3.2 Endemic equilibrium
The constant presence of a disease or an infectious agent within a given geographic area
is called endemic. The endemic equilibrium state is the state where the disease cannot
be totally eradicated but remains in the population. In order to find positive solutions
of system (1), let E2 = (S2, I2, T2, R2, V2, W2) represent any arbitrary endemic equilibrium.
Setting left-hand side equal to zero and solving the equations simultaneously at steady
state, we obtain

S2 =
b1 – kI2

μ1
, T2 =

αI2

l
, R2 =

(lη + γα)I2

μ1l
,

V2 =
mW2

β3I2
, W2 =

μ2β3N2I2

β3(δ2 + μ2)I2 + μ2m
.

Theorem 3.2 The endemic equilibrium point E2 is locally asymptotically stable if R0 > 1,
otherwise unstable.

Proof To show these results, we linearize system (1) around E2, which gives the following
Jacobian matrix:

J2 =

⎡

⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎣

–Q –T 0 0 0 –β2S2

Q – μ1 T – K 0 0 0 β2S2

0 α –l 0 0 0
0 η γ –μ1 0 0
0 –β3V2 0 0 –β3I2 – μ2 –ε2b2

0 β3V2 0 0 β3I2 –m

⎤

⎥⎥
⎥⎥
⎥⎥⎥
⎥
⎦

,

where

Q = β1I2 + β2W2 + μ1, T = ε1b1 + β1S2.
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Two of the eigenvalues are –μ1 and –l. The remaining eigenvalues are the eigenvalues of
the following matrix:

J∗
2 =

⎡

⎢⎢
⎢
⎣

–Q –T 0 –β2S2

Q – μ1 T – K 0 β2S2

0 –β3V2 –β3I2 – μ2 –ε2b2

0 β3V2 β3I2 –m

⎤

⎥⎥
⎥
⎦

.

We make an elementary row operation for the Jacobian matrix J∗
2 to obtain the following

matrix:

J∗
2 =

⎡

⎢⎢
⎢
⎣

–Q –T 0 –β2S2

0 μ1T
Q – K 0 μ1

Q β2S2

0 0 –μ2 –ε2b2 – m
0 0 0 –M

⎤

⎥⎥
⎥
⎦

,

where

M = m + L +
β3I2

μ2
(m + ε2b2) and L = m +

μ1β2β3S2V2

μ1T – KQ
.

J∗
2 is a lower triangular matrix and its eigenvalues are the elements of the main diagonal

which are given by –Q, μ1T
Q – K , –μ2, and –M. Three of the eigenvalues have a negative

real part. The second eigenvalue μ1T
Q – K has a negative real part if and only if μ1T

Q – K < 0.
Using the value of Q and T , we can rewrite this equation by rearranging it as follows:

–2β1β3K(δ2 + μ2)I2
2 +

[
β3(δ2 + μ2)μ1K(1 – R0)

]
I2 + μ2mμ1K(1 – R0). (7)

All the coefficients of this equation are negative if R0 > 1. Thus all the eigenvalues have
negative real parts, which shows that the endemic equilibrium point E2 is locally asymp-
totically stable iff R0 > 1. �

4 Global stability analysis
In this section, we study the global analysis of the disease-free and endemic equilibria using
the direct Lyapunov method which requires the construction of a function with specific
properties. In order to do this, we derive the following results.

Theorem 4.1 When R0 < 1, then the disease-free equilibrium E1 of system (1) is globally
asymptotically stable on �.

Proof To show the global stability of the disease-free equilibrium E1, we construct the
following Lyapunov function, following the method used in [35]:

U(t) = I +
β2b1

mμ1
W , with time derivative U ′(t) = İ +

β2b1

mμ1
Ẇ . (8)
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Then U is C1 on the interior of �, E1 is the global minimum of U on �, and U(t) = 0 at
E1. Putting the values from model (1), we obtain

U ′(t) = ε1b1I + β1SI + β2SW – αI – ηI – δ1I – μ1I

+
β2b1

mμ1
(ε2b2W + β3VI – δ2W – μ2W ),

≤ ε1b1I + β1N1I + β2N1W – kI

+
β2b1

mμ1
(β3N2I – mW ), since S ≤ N1, and V ≤ N2

= (R0 – 1)I. (9)

Equation (9) shows that U ′(t) is negative if R0 < 1. Also U ′(t) = 0 at E1. Substituting
I = T = R = W = 0 in the equations for S(t) and V (t) of model (1) shows that S(t) → b1

μ1
and V (t) → b2

μ2
as t → ∞. Similarly, substituting in the equations for T(t) and R(t)

shows that (T(t), R(t)) → (0, 0) as t → ∞. Therefore the largest compact invariant set
in {(Sh, Eh, Ih, Nh, Sv, Ev, Iv) ∈ � : U ′(t) = 0} is the singleton disease-free equilibrium point
{Ef }. Therefore, from LaSalle’s principle [36], the disease-free equilibrium Ef is globally
asymptotically stable in �. �

Theorem 4.2 For R0 > 1, the endemic equilibrium E2 is globally asymptotically stable.

Proof For the global stability of the endemic equilibria, we construct the following Lya-
punov function:

Y (t) =
1

β1S2
(S – S2 log S) +

1
β3V2

(V – V2 log V ) +
1

β1S2
I +

1
β3V2

W . (10)

Taking the time derivative of W, we get

Y ′(t) =
1

β1S2
(S – S2)

[
b1

S
–

ε1b1I
S

– β1I – β2W – μ1

]

+
1

β3V2
(V – V2)

[
b2

V
–

ε2b2W
V

– β3I – μ2

]

+
1

β1S2
[β1SI + β2SW – K1I],

(11)

where K1 = α + δ1 + μ1 + η – ε1b1. Let us consider

μ1 =
b1

S2
⇒ b1 = μ1S2, μ2 =

b2

V2
⇒ b2 = μ2V2,

K1 = 2β1S2, and m =
β2β3V2

β1
.

(12)

Rearranging equation (11), we get

Y ′(t) = –
μ1

β1

(
S
S2

+
S2

S
– 2

)
–

μ2

β3

(
V
V2

+
V2

V
– 2

)
. (13)
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Since

S
S2

+
S2

S
≥ 2 and

V
V2

+
V2

V
≥ 2, (14)

because the arithmetic mean is greater than or equal to the geometric mean. Thus Y ′(t) ≤
0 for all (S, I, T , R, V , W ) ∈ � and the equality (Y ′(t) = 0) holds for E2. The proof is com-
pleted as in the proof of Theorem (4.1). �

5 Numerical simulation and graphs
We collect data from different sources and use the Runge–Kutta fourth order scheme to
solve the model. Some of the parameter values are based on reality, for example, the death
rate of humans by nature, corresponding to life expectancy of a 70-year-old human, is
μ1 = 0.000039 per day, and the death rate of mosquitoes is μ2 = 0.1 per day corresponding

Figure 5 The plots show the dynamical behaviors of population sizes with increasing cure rate
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Figure 6 The plots show the dynamical behavior of population sizes with increasing vertical transmission rate

to mosquito’s average life span of 10 days. Some of the parameter values are chosen from
[25, 35]. The human’s and vector’s recruitment rates are b1 = 20 and b2 = 100 per day,
respectively. The disease-induced death rates of humans and mosquitoes are δ1 = 0.01 and
δ2 = 0.21, respectively. β1 = 0.00001 and β2 = 0.0012 are the transmission probabilities of
dengue from human to human and vector to human population, respectively, β3 = 0.001 is
the transmission probability of dengue from human to vector population. Given different
values to the treatment parameter 0 ≤ α ≤ 1 to check the treatment effects. The natural
recovery rate is η = 0.01, and the recovery rate due to treatment is γ = 0.4. We suppose the
values of ε1, ε2 and the initial population sizes. In rare cases the new offspring of infected
parents are infected so take ε1 = 0.001 and the vertical transmission rate for mosquitos
is ε2 = 0.002. For initial values, let S(0) = 100, I(0) = 30, T(0) = 25, R(0) = 10, V (0) = 600,
and W (0) = 100. After solving we draw the results graphically and show the effect of cure
rate and vertical transmission. Figure 5 shows the effect of cure rate on each population
class, and Figure 6 shows the effect of vertical transmission. Figures 7 and 8 show the
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Figure 7 The plots show the phase portrait of the susceptible human population versus the infected human
population

Figure 8 The plots show the phase portrait of the susceptible vector population versus the infected vector
population

phase portraits of susceptible population versus infected population of human and vector
populations, respectively.

6 Conclusion
The spread of different infectious diseases causes very high mortality rates in a popu-
lation. Vector-borne diseases are infectious diseases transmitted to humans and animals
through vectors. These diseases propagate from the infected to the susceptible population
in different ways. This paper formulated an epidemic model for the transmission dynamics
of vector-borne diseases with both vertical and horizontal transmissions with treatment
strategy. The equilibrium points and the basic reproduction of the model are found. The
basic reproduction number, which is a threshold quantity, has an important role in the
epidemiology of the disease. As this number increases the disease invades the population,
and as it decreases the disease simply dies out. Figure 2 shows that R0 decreases as treat-
ment strategies increase and increases as vertical transmission increases. Figure 3 shows
the threshold behavior of R0 and the critical value R0 = 1. As R0 increases, the infected
population increases with time. For R0 < 1, the number of infected population decreases;
for R0 = 1, the infected population remains constant; and for R0 > 1, the number of infected
population increases. It is also shown that when R0 < 1 the disease-free equilibrium is lo-
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cally and globally asymptotically stable; and for R0 > 1, the positive endemic equilibrium
is locally and globally asymptotically stable.

Numerical simulations are carried out graphically to show the dynamical behavior of
the diseases. Figure 5 shows the effect of cure rate on the transmission dynamics of the
disease. As treatment strategy increases, the susceptible population and the recovered
human population increase while the infected population decreases. Figure 6 shows the
effect of vertical transmission. As vertical transmission increases, the susceptible popu-
lation decreases and the infected population increases. Finally, Figures 7 and 8 show the
phase portraits of the susceptible populations versus the infected populations which move
towards the stable points.
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