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Abstract
This paper introduces the regular decoupling field to study the existence and
uniqueness of solutions of two-point boundary value problems for a class of ordinary
differential equations which can be derived from the maximum principle in optimal
control theory. The monotonicity conditions used to guarantee the existence and
uniqueness of such equations are initially a special case of the regular decoupling
field method. More generally, in case of the homogeneous equations, this paper
generalizes the application scope of the monotonicity conditions method by using
the linear transformation method. In addition, the linear transformation method can
be used to handle the situation where the monotonicity conditions and regular
decoupling field method cannot be directly applied. These two methods overall
develop the well-posedness theory of two-point boundary value problems which has
potential applications in optimal control and partial differential equation theory.
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1 Introduction
We consider the following binary first-order linear ordinary differential equations (ODEs):

⎧
⎪⎪⎨

⎪⎪⎩

X ′
t = atXt + btYt + ft ,

–Y ′
t = ctXt + dtYt + gt ,

X0 = x0, YT = HXT ,

0 ≤ t ≤ T , (1.1)

where at , bt , ct , dt , ft , gt are functions defined on [0, T]. Besides, x0 ∈ R, H ∈ R, T > 0 is the
time duration.

In this paper, only a one-dimensional case is considered for simplicity, and the multi-
dimensional cases are dealt similarly. The purpose is to find a pair of (Xt , Yt) ∈ C[0, T],
for arbitrary T > 0, to satisfy ODEs (1.1), which is called the well-posedness study. These
are two-point boundary value problems for a class of ODEs. The Hamilton system de-
rived from the Pontryagin maximum principle, which is a milestone of the optimal con-
trol theory, belongs to this class. This kind of ODEs can also be related to one kind of
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partial differential equations (PDEs) (see, for example, [1]). Solving such equations is of
great significance in the field of optimal control. Only the linear case is discussed in this
paper. Actually, the optimal state system, which comes from the classical linear quadratic
(LQ) optimal control problem combined with the adjoint equations, belongs to this kind
of ODEs. Therefore, the well-posedness of two-point boundary value problems for such
ODEs on arbitrary time duration has very meaningful application background and prac-
tical significance. As can be observed in ODEs (1.1), the equations of Xt and Yt both have
(Xt , Yt) as their components, which makes two equations fully coupled together. It is im-
possible to solve each equation individually, then many methods adapted to ODEs with
one unknown variable are no longer feasible (see, for example, [2, 3]).

Such kind of equations becomes a stochastic Hamilton system when taking random
noise into consideration, which also can be called the forward–backward stochastic dif-
ferential equations (FBSDEs). The well-posedness of FBSDEs is also hard to get, and it has
widely practical applications in the field of stochastic optimal control as well as financial
mathematics. On the well-posedness of FBSDEs on arbitrary time duration, Hu and Peng
[4] and Peng and Wu [5] introduce the method of continuation by proposing the mono-
tonicity conditions (see [6]). The existence and uniqueness of solutions are obtained by
this method. By using the method of continuation, Wu [7] weakens the monotonicity con-
ditions and obtains the existence and uniqueness of the solutions to two-point boundary
value problems for ODEs (1.1) and also the corresponding comparison theorem. However,
the monotonicity conditions have a strict restriction on coefficients. The method of con-
tinuation can only be used in some certain situations of ODEs (1.1). In case of FBSDEs,
Ma et al. [8] introduce the unified approach which leads to the well-posedness of FBS-
DEs by means of regular decoupling field. The unified approach generalizes the work of
solvability of FBSDEs, which makes monotonicity conditions a special case of the unified
approach.

In this paper, the regular decoupling field method and the linear transformation method
are introduced to study the existence and uniqueness of solutions of two-point boundary
value problems for ODEs (1.1). The linear transformation method generalizes the appli-
cation scope of monotonicity conditions. And these two methods develop the work of
solvability of ODEs (1.1), which makes contribution to the optimal control theory.

After giving the preliminaries and assumptions in Section 2, the rest of the paper is or-
ganized as follows. In Section 3, for the two-point boundary value problems of ODEs (1.1),
the regular decoupling field is introduced to guarantee the well-posedness of such ODEs.
Moreover, in Section 4, for some cases that cannot be applied with the regular decoupling
field directly, linear transformation method is introduced to weaken the coefficients re-
striction of the monotonicity conditions. These two methods develop the well-posedness
theory of two-point boundary value problems for ODEs, and it is feasible to be applied to
the research of the control theory and PDEs. At last, we conclude the main results of this
paper and give the future research direction in Section 5.

2 Preliminaries and assumptions
We first assume the following.

Assumption 2.1
(i) Homogeneous coefficients at , bt , ct , dt are uniformly boundary on [0, T].
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(ii) Inhomogeneous coefficients ft and gt hold:

∫ T

0
ft

2 dt < ∞,
∫ T

0
gt

2 dt < ∞.

From Zhang’s lemma [9], it is easy to get the well-posedness of ODEs (1.1) on small
duration.

Theorem 2.2 ∃δ > 0, whenever T ≤ δ, if the terminal function is uniformly Lipschitz con-
tinuous in its spatial variable, ODEs (1.1) have a unique solution on [0, T].

As can be seen, when T < δ, the terminal function of ODEs (1.1) is a linear function for
XT , and H ∈ R. Then the well-posedness is obvious according to Theorem 2.2. We intro-
duce the decoupling field to study the well-posedness of ODEs (1.1) when T is arbitrary
duration.

Definition 2.3 A binary function u(t, x): [0, T] × R �→ R with u(T , x) = g(x) is said to be
a “decoupling field” of ODEs (1.1) if there exists a constant δ > 0 such that, for any 0 =
t1 < t2 ≤ T , x̃ ∈ R, with t2 – t1 ≤ δ, the following equations have a unique solution (Xt , Yt)
matching the equation u(t, Xt) = Yt .

⎧
⎨

⎩

Xt = x̃ +
∫ t

t1
(asXs + bsYs + fs) ds,

Yt = u(t2, Xt2 ) +
∫ t2

t (csXs + dsYs + gs) ds.
t1 ≤ t ≤ t2, (2.1)

If the decoupling field u(t, x) of Definition 2.3 satisfies

|u(t, x1) – u(t, x2)|
x1 – x2

≤ C, t ∈ [0, T], x1, x2 ∈ R, (2.2)

where C is a constant independent of x1, x2, the u(t, x) is called a regular decoupling field.
According to Theorem 2.2, ODEs (1.1) have a unique solution (Xt , Yt) on any [t1, t2]. Be-
cause of the uniqueness, we always have u(t, Xt) = Yt on [t1, t2], which guarantees the ex-
istence of the decoupling field.

From the result of Ma et al. [8], we have the following.

Definition 2.4 Assume that Assumption 2.1 holds, if ODEs (1.1) have a decoupling field
on arbitrary duration [0, T], ODEs (1.1) have a unique solution (Xt , Yt) ∈ C[0, T] on [0, T].

3 Regularity of decoupling field
We first introduce some notations. Given ai (i = 1, 2), let (Xi

t , Y i
t ) (i = 1, 2) denote the solu-

tions with initial condition ai. Then we define

X̂t = X1
t – X2

t , Ŷt = Y 1
t – Y 2

t , û(t) =
u(t, X1

t ) – u(t, X2
t )

X1
t – X2

t
.

Since Y i
t = u(t, Xi

t) (i = 1, 2), we have

Ŷt = û(t) · X̂t .
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Also, (X̂t , Ŷt) satisfies the following “variational equations”:

⎧
⎨

⎩

X̂t = x̂ +
∫ t

0 (asX̂s + bsŶs) ds,

Ŷt = HX̂T +
∫ T

t (csX̂s + dsŶs) ds,
0 ≤ t ≤ T , (3.1)

where x̂ = x1
0 – x2

0.
Because of û(t) = Ŷt

X̂t
, û(t) satisfies the following differential equation:

dû(t) = –
Ŷt

(X̂t)2
dX̂t +

1
X̂t

dŶt . (3.2)

For the variational equations (3.1), we can get the following equation by integrating equa-
tion (3.2) from [t, T]:

û(t) = H +
∫ T

t
F
(
s, û(s)

)
ds, (3.3)

where

F
(
s, û(s)

)
= bs

(
û(s)

)2 + (as + ds)û(s) + cs. (3.4)

Equation (3.3) is called the “characteristic equation” of (1.1). According to the analysis in
the last section, studying the well-posedness of ODEs (1.1) is essentially finding conditions
that ensure the solution of equation (3.3) û bounded on [0, T].

As can be seen from (3.4), equation (3.3) is a Riccati equation. The Riccati equation
can be solved when knowing a specific solution of it. Otherwise, we should introduce the
following comparison theorem to get the boundedness of solution of equation (3.3).

Lemma 3.1 Consider a differential equation on [0, T]

yt = h +
∫ T

t
F
(
s, y0

s
)

ds (3.5)

and its upper/lower boundary equation

⎧
⎨

⎩

yt = h – C1 +
∫ T

t [F(s, ys) + g1
s ] ds,

y
t

= h + C2 +
∫ T

t [F(s, y
s
) – g2

s ] ds,
(3.6)

where h, h, F , F are the upper/lower boundary functions of h and F , which match

h ≤ h ≤ h, F ≤ F ≤ F .

If one of the following three situations holds true:
(i) Equations (3.6) always have bounded solution yt , y

t
, t ∈ [0, T].

(ii) For every t ∈ [0, T], the function y �→ F(t, y) (F(y) or F(y)) is uniformly Lipschitz
continuous on y ∈ [y

t
, yt], where the Lipschitz constant is L.
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(iii) For any t ∈ [0, T], Ci ≥ ∫ T
t e–

∫ T
s αr drgi

s ds always holds, where α matches |α| ≤ L.
Then equation (3.5) has a unique solution y matching y ≤ y ≤ y.

Remark 3.2 Equations (3.6) are called the upper/lower boundary equations of ODE (3.5).
The classical sufficient conditions for situation(iv) are: Ci ≥ ∫ T

0 eL(T–t)(gi
t)+dt. Particularly,

that is satisfied if Ci = 0 and gi ≤ 0.

To apply Lemma 3.1, we denote the upper/lower bound of F(t, û(t)):

F
(
û(t)

)
= sup

t∈[0,T]
F
(
t, û(t)

)
= b

(
û(t)

)2 + (a + d)û(t) + c,

F
(
û(t)

)
= inf

t∈[0,T]
F
(
t, û(t)

)
= b

(
û(t)

)2 + (a + d)û(t) + c,
(3.7)

where ϕ = inft∈[0,T] ϕt , ϕ = supt∈[0,T] ϕt , ϕ = a, b, c, d. We should remark that F(û(t)) and
F(û(t)) are deterministic functions. Thus we have

F
(
t, û(t)

) ≤ F
(
t, û(t)

) ≤ F
(
t, û(t)

)
.

Case 1: Constant-Coefficient
We consider the following constant-coefficient case:

⎧
⎨

⎩

Xt = x0 +
∫ t

0 (aXs + bYs + fs) ds,

Yt = HXT +
∫ T

t (cXs + dYs + gs) ds,
0 ≤ t ≤ T , (3.8)

where a, b, c, d ∈ R.
It is obvious that F(t, û(t)) = F(t, û(t)) = F(û(t)), now equation (3.3) takes the form

û(t) = H +
∫ T

t

[
b
(
û(s)

)2 + (a + d)û(s) + c
]

ds. (3.9)

We have the following result.

Theorem 3.3 Assume that Assumption 2.1 holds and all coefficients are constants. Equa-
tion (3.9) has a bounded solution for arbitrary T if there exists one of the following three
situations:

(i) F(H) ≥ 0, and F has a zero point in [H ,∞].
(ii) F(H) ≤ 0, and F has a zero point in [–∞, H].

(iii) b = 0.

Proof (i) There exists λ ≥ H such that F(λ) = 0. Note that F(y) is locally Lipschitz contin-
uous in y and

H = H +
∫ T

t

[
F(H) – F(H)

]
ds, λ = λ +

∫ T

t
F(λ) ds.
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Table 1 Situations matching Theorem 3.3

Case b F(H) Assumptions

1 b < 0 F(H) ≥ 0
2 b > 0 F(H) ≥ 0 (a + d)2 – 4bc ≥ 0, H ≤ – a+d

2b
3 b > 0 F(H) ≤ 0
4 b < 0 F(H) ≤ 0 (a + d)2 – 4bc ≥ 0, H ≥ – a+d

2b

According to Lemma 3.1 and Remark 3.2,

H = H +
∫ T

t

[
F(H) – F(H)

]
ds

≤ û(t) = H +
∫ T

t

[
b
(
û(s)

)2 + (a + d)û(s) + c
]

ds

≤ λ = λ +
∫ T

t
F(λ) ds,

thus û(t) ∈ [H ,λ].
(ii) can be proved similarly.
(iii) Equation (3.9) becomes a solvable and linear equation

û(t) = H +
∫ T

t

[
(a + d)û(t) + c

]
ds.

It is obvious that û(t) is bounded on [0, T]. �

Theorem 3.3(iii) is easy to check, but (i) and (ii) are not directly connected with the
coefficients. Next, we give some equivalence conditions.

According to Vieta’s theorem, Theorem 3.3(i) equals the following two situations:
• b < 0, F(H) ≥ 0,
• b > 0, F(H) ≥ 0, (a + d)2 – 4bc ≥ 0, H ≤ – a+d

2b .
Similarly, Theorem 3.3(ii) equals another two situations:
• b > 0, F(H) ≤ 0,
• b < 0, F(H) ≤ 0, (a + d)2 – 4bc ≥ 0, H ≥ – a+d

2b .
This can be a criterion to judge whether ODEs with constant-coefficient are solvable or

not (see Table 1). In Table 1,

F(H) = bH2 + (a + d)H + c.

Next, we focus on the connections between Theorem 3.3 and the monotonicity condi-
tions. According to Peng and Wu [5] and Wu [7], matching one of the following conditions,
we can also get the well-posedness of ODEs (1.1) on [0, T].

Lemma 3.4 (Monotonicity conditions) ODEs (3.8) have a unique solution if one of the
following cases holds:

(i)

(
x y

)
(

–c –d
a b

)(
x
y

)

≤ –β1|x|2 – β2|y|2, (3.10)
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where β1 and β2 are nonnegative constants. When β1 > 0, H > 0, then β2 ≥ 0; when
β2 > 0, then β1 ≥ 0, H ≥ 0.

(ii)

(
x y

)
(

–c –d
a b

)(
x
y

)

≥ β1|x|2 + β2|y|2, (3.11)

where β1 and β2 are nonnegative constants. When β1 > 0, H < 0, then β2 ≥ 0; when
β2 > 0, then β1 ≥ 0, H ≤ 0.

According to Vieta’s theorem, Lemma 3.4 is equivalent to the following lemma.

Lemma 3.5 (Equivalence conditions)
(i) A necessary and sufficient condition for Lemma 3.4(i) is

b < 0, H > 0, (a – d)2 + 4bc < 0. (3.12)

(ii) A necessary and sufficient condition for Lemma 3.4(ii) is

b > 0, H < 0, (a – d)2 + 4bc < 0. (3.13)

As can be seen in Lemma 3.5(i),

(a – d)2 + 4bc < 0.

Obviously, we have

(a + d)2 – 4bc > 0,

and also, b < 0, H > 0.
If F(H) ≥ 0, Lemma 3.5(i) matches case 1 of Table 1; if F(H) ≤ 0, H ≥ – a+d

–2b , Lemma 3.5(i)
matches case 4 of Table 1; if F(H) ≤ 0, H ≤ – a+d

–2b , we must have λ ≥ H such that F(λ) = 0.
Thanks to H > 0, the following relation holds true:

0 = 0 +
∫ T

t

[
F(0) – c

]
ds

≤ û(t) = H +
∫ T

t
F
(
û(t)

)
ds

≤ λ = λ +
∫ T

t
F(λ) ds.

According to Theorem 3.3, the analysis above means û(t) ∈ [0,λ]. Thus, Lemma 3.5(i)
totally falls into the framework of Theorem 3.3.

Similarly, Lemma 3.5(ii) can be derived from case 2, case 3 of Table 1 and the case û(t) ∈
[λ, 0]. It is concluded that the monotonicity conditions can be derived from Theorem 3.3,
which means the monotonicity conditions are a special case of the regular decoupling field
method.
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An example is given where the coefficients match the assumption of Theorem 3.3. It is
noted that this example does not match the monotonicity conditions.

Example 1 Consider the following ODEs:

⎧
⎨

⎩

Xt = 1 +
∫ t

0 (2Xs + 2Ys) ds,

Yt = 1
2 XT +

∫ T
t (–3Xs + Ys) ds,

0 ≤ t ≤ T , (3.14)

where a = 2, b = 2, c = –3, d = 1, H = 1
2 .

According to Lemma 3.4, the signs of H and b should be different to match the mono-
tonicity conditions. Thus, the well-posedness of equations (3.14) cannot be proved by us-
ing the framework of monotonicity conditions.

Nevertheless, we have b = 2 > 0, and

F(H) = bH2 + (a + d)H + c =
1
2

+
3
2

– 3 = –1 < 0.

Then ODEs (3.14) match Theorem 3.3(ii) (case 3 of Table 1). It is obvious that ODEs
(3.14) have a unique solution thanks to the analysis above.

Case 2: Functional coefficients
In this part, we consider the case where coefficients of ODEs (1.1) are functions defined

on [0, T]. In this case, F(s, û(s)) takes the form (3.4), and also Assumption 2.1 holds. It
is noted that F(t, û(t))/F(t, û(t)) defined in (3.7) is regarded as an upper/lower bound of
F(s, û(s)). In analogy to Theorem 3.3, we have the following result.

Theorem 3.6 Assume that Assumption 2.1 holds, equation (3.6) has a bounded solution
y, y for arbitrary T if there exists one of the following three situations:

(i) F(t, H) ≥ 0, and F(t, H) has a zero point in [H ,∞].
(ii) F(t, H) ≤ 0, and F(t, H) has a zero point in [–∞, H].

(iii) bs = 0.

Proof (i) The proof is the same as that of Theorem 3.3(i). As a result of

F(y) ≤ F(t, y) ≤ F(y),

we have û(t) ∈ [H ,λ].
(ii) can be proved similarly, and û(t) ∈ [λ, H].
(iii) If bs ≡ 0, we have a positive constant C0 such that

–C0[y + 1] ≤ F(y) ≤ F(y) ≤ C0[y + 1].

According to Theorem 3.3(iii), the analytic solution of the upper/lower bound equation
can be derived, which means equation (3.4) has a bounded solution on [0, T]. �

From two cases above, it is concluded that the regular decoupling field can be used to
prove the well-posedness of two-point boundary value problems for ODEs (1.1), espe-
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cially when ODEs (1.1) cannot match the monotonicity conditions. In the next section,
the linear transformation method is used to generalize the framework of the monotonic-
ity conditions.

4 The linear transformation method
Consider the following homogeneous ODEs:

⎧
⎪⎪⎨

⎪⎪⎩

dXt = (b1Xt + b2Yt) dt,

–dYt = (f1Xt + f2Yt) dt,

X0 = a, YT = HXT .

0 ≤ t ≤ T , (4.1)

If equation (4.1) cannot meet the requirement of Theorem 3.3 or Lemma 3.4, consider
the following transformation:

(
X̃t

Ỹt

)

= A

(
Xt

Yt

)

=

(
a11 a12

a21 a22

)(
Xt

Yt

)

,

where the transformation matrix A =
( a11 a12

a21 a22

)
.

Then we have

⎧
⎨

⎩

X̃t = a11Xt + a12Yt ,

Ỹt = a21Xt + a22Yt ,
t ∈ [0, T]. (4.2)

Substituting (4.1) into (4.2), we have

⎧
⎪⎪⎨

⎪⎪⎩

dX̃t = (b̃1X̃t + b̃2Ỹt) dt,

–dỸt = (f̃1X̃t + f̃2Ỹt) dt,

X̃0 = |A|
a22

a + a12
a22

Ỹ0, ỸT = a21+a22H
a11+a12H X̃T ,

0 ≤ t ≤ T , (4.3)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b̃1 = [a22(a11b1 – a12f1) – a21(a11b2 – a12f2)]/|A|,
b̃2 = [a11(a11b2 – a12f2) – a12(a11b1 – a12f1)]/|A|,
f̃1 = [a21(a21b2 – a22f2) – a22(a21b1 – a22f1)]/|A|,
f̃2 = [a12(a21b1 – a22f1) – a11(a21b2 – a22f2)]/|A|.

(4.4)

It is noted that in equations (4.3),

X̃0 = C1 + C2Ỹ0, C1, C2 ∈ R.

From Wu [10], Lemma 3.4 should be adjusted to match a new form of X̃0, where C2 is the
coefficient of Ỹ0 in X̃0.
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Lemma 4.1 ODEs (3.8) have a unique solution if one of the following cases holds:
(i)

(
x y

)
(

–c –d
a b

)(
x
y

)

≤ –β1|x|2 – β2|y|2,

C2 ≤ 0, H ≥ 0,

(4.5)

where β1 and β2 are nonnegative constants. Also, β1, β2, C2, and H cannot be 0 at
the same time.

(ii)

(
x y

)
(

–c –d
a b

)(
x
y

)

≥ β1|x|2 + β2|y|2,

C2 ≥ 0, H ≤ 0,

(4.6)

where β1 and β2 are nonnegative constants. Also, β1, β2, C2, and H cannot be 0 at
the same time.

Note that coefficients after transforming should match the following inequality to meet
the requirement of the monotonicity conditions. Denoting a11/a12 = m, a21/a22 = n, we
have

(m – n)2(b1 – f2)2 + 4
(
b2m2 + (b1 – f2)m – f1

)(
b2n2 + (b1 – f2)n – f1

)
< 0. (4.7)

Denote f (y) = b2y2 + (b1 – f2)y – f1, then we have

(m – n)2(b1 – f2)2 + 4f (m)f (n) < 0. (4.8)

In analogy to Lemma 3.5, Lemma 4.1 is equivalent to the following assumption.

Lemma 4.2 Lemma 4.1 holds if and only if one of the following two cases occurs:
(i) b̃2 ≤ 0, C2 ≤ 0, H̃ ≥ 0, (m – n)2(b1 – f2)2 + 4f (m)f (n) < 0,

(ii) b̃2 ≥ 0, C2 ≥ 0, H̃ ≤ 0, (m – n)2(b1 – f2)2 + 4f (m)f (n) < 0,
where m = a11

a12
, n = a21

a22
.

As Lemma 4.2 is not convenient to check, then derivation is as follows.
In Lemma 4.2(i),

b̃2 =
[
a11(a11b2 – a12f2) – a12(a11b1 – a12f1)

]
/|A|,

=
[b2m2 – (b1 + f2)m + f1]a12

(m – n)a22
≥ 0,

C2 =
a12

a22
≥ 0,

H̃ =
a21 + a22H
a11 + a12H

=
(n + H)a22

(m + H)a12
≤ 0.
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Similarly, in Lemma 4.2(ii),

b̃2 =
[b2m2 + (b1 + f2)m + f1]a12

(m – n)a22
≤ 0, C2 =

a12

a22
≤ 0, H̃ =

(n + H)a22

(m + H)a12
≥ 0.

In summary, we have the following result.

Theorem 4.3 On the curve of function f (x) = b2x2 + (b1 – f2)x – f1, if there are two pairs
(m, f (m)) and (n, f (n)) matching the following criterion:

⎧
⎪⎪⎨

⎪⎪⎩

(m – n)2(b1 – f2)2 + 4f (m)f (n) < 0,

[b2m2 – (b1 + f2)m + f1]/(m – n) ≥ 0,

(n + H)/(m + H) ≤ 0,

(4.9)

then by means of linear transformation
( mc1 c1

nc2 c2

)
, equations (4.1) match Lemma 4.2, where

c1, c2 are constants in R. When c1/c2 ≤ 0, ODEs (4.3) match Lemma 4.2(i); when c1/c2 ≥ 0,
ODEs (4.3) match Lemma 4.2(ii).

In the following example, where the monotonicity conditions and regular decoupling
field methods cannot be directly applied, the well-posedness of ODEs can be obtained by
using the linear transformation method discussed in this section.

Example 2 Consider the following linear ODEs:

⎧
⎨

⎩

Xt = 1 +
∫ t

0 (Xs + Ys) ds,

Yt = –XT +
∫ T

t (2Xs + Ys) ds,
0 ≤ t ≤ T . (4.10)

According to Lemma 4.2, ODEs (4.10) cannot match the monotonicity conditions. In addi-
tion, it is noted that Theorem 3.3 cannot be applied directly. Here we consider the linear
transformation method to get the well-posedness of ODEs (4.10): According to Theo-
rem 4.3, we need to find two points on the curve f (y) = y2 – 2 which matches equation
(4.9). (4.9) is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

4f (m)f (n) < 0,

m2 – 2m + 2/(m – n) ≥ 0,

(n – 1)/(m – 1) ≤ 0.

Take two points (2, 2) and (–1, –1) which match equation (4.9), then the transformation
matrix A is

( 2 1
–1 1

)
. Take A into (4.3), the linear ODEs after transforming is as follows:

⎧
⎨

⎩

X̃t = –3 + Ỹ0 +
∫ t

0 ( 1
3 X̃s + 2

3 Ỹs) ds,

Ỹt = –2X̃T +
∫ T

t (– 1
3 X̃s + 1

3 Ỹs) ds,
0 ≤ t ≤ T . (4.11)

It is easy to check that equations (4.11) match Lemma 4.1(ii) which means (4.11) has a
unique solution.
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5 Conclusion
In this paper, we introduce two methods to solve the two-point boundary value problems
of ODEs (1.1). The first method is the regular decoupling field which generates from the
unified approach for FBSDEs. But for ODEs, the regular decoupling field method has a di-
rect criterion which makes it easy to apply. Moreover, in this paper, it can be proved that
the monotonicity conditions are a special case of the regular decoupling field method.
The second method we introduce is the linear transformation method. It can be applied
to cases where the monotonicity conditions and the regular decoupling field method can
not. We also give examples in this paper to illustrate how these two methods develop
the theory of the two-point boundary value problems for ODEs which has meaningful
applications in optimal control and PDEs theory. In addition, the linear transformation
method can also be generalized into stochastic cases. This provides another way to study
the well-posedness of FBSDEs, which is our future research direction and has some po-
tential applications.
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