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Abstract
In this work, a prey-predator model with square root response function under a
state-dependent impulse is proposed. Firstly, according to the differential equation
geometry theory and the method of successor function, the existence, uniqueness
and attractiveness of the order-1 periodic solution are analyzed. Then the stability of
the order-1 periodic solution is discussed by the Poincaré criterion for impulsive
differential equations. Finally, we show a specific example and carry out numerical
simulations to verify the theoretical results.
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1 Introduction
The herd behavior, such as of drifting herbivores observed in the savanna, is a scenario
in which the predator can only interact with the prey along the outer corridor of the prey
herd when the prey are attached by the predator. To see the effect of the herd behavior,
Braza et al. [1–5] proposed a square root functional response and in [2], Bachchu et al.
considered the following prey–predator system:

⎧
⎨

⎩

x′(t) = rx(t)(1 – x(t)
K ) – α

√
x(t)y(t),

y′(t) = y(t)(αβ
√

x(t) – d),
(1)

where the prey population density and the predator population density at time t are de-
noted by x(t) and y(t), respectively, r > 0 denotes the intrinsic birth rate when y ≡ 0, K > 0
refers to the carrying capacity for the prey, α > 0 is the predation coefficient, the conversion
coefficient is represented by 0 < β < 1 and d > 0 is the death rate of the predator. Unlike the
discussion of the literature [1] as regards the existence of Hopf bifurcations, Bachchu et al.
investigated the nonexistence of periodic orbits, and the existence and uniqueness of limit
cycles. Then they found the impact of herd behavior mechanism of prey population to the
model system analytically. And they also analyzed how herd behavior of prey controls the
dynamics of the model system near origin in an ecologically meaningful way.
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Herd behavior of the prey makes it difficult for their predators to get food. For a long
term in this way, the predator will be endangered, the ecological balance will also be de-
stroyed. To avoid such a disaster, intervention has to be made, such as pest management
and harvesting of fish [6–15]. Such interventions can be mathematically modeled by im-
pulsive systems. Based on (1), Sun et al. [16] introduced the state-dependent impulse strat-
egy: when the density of the herbivores reaches the given threshold h > 0, we will release
predators and harvest some herbivores, resulting in

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x′(t) = rx(t)(1 – x(t)
K ) – α

√
x(t)y(t),

y′(t) = y(t)(αβ
√

x(t) – d),

⎫
⎬

⎭
x �= h,

�x(t) = –ax(t),

�y(t) = by(t) + c,

⎫
⎬

⎭
x = h,

(2)

where a ∈ (0, 1), b ∈ (–1,∞), and c ≥ 0. When x = h, the control strategy is taken, and x, y
abruptly turn to (1 – a)h and (1 + b)y + c, respectively. However, authors of [16] only inves-
tigated the existence of order-1 periodic solution due to the limitations of the method they
used. In this study, we will apply the method of geometric analysis for impulsive systems
to investigate the existence and uniqueness of order-1 periodic solutions, which has not
been done in [16].

The rest of the paper is organized as follows. Section 2 provides some basic definitions
and lemmas as preparation. In Section 3, according to the differential equation geometry
theory and the method of successor function, we analyze the existence and attractiveness
of the order-1 periodic solution of system (2). In addition, sufficient conditions of the sta-
bility of the order-1 periodic solution is obtained by analogy of the Poincaré criterion. In
Section 4, we show a specific example and carry out numerical simulations. Finally, we
conclude our work.

2 Preliminaries
Some basic definitions and lemmas are provided in this section which are necessary for
the following discussion.

Definition 2.1 ([17]) Consider the general differential equations with state-dependent
impulse

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x′(t) = P(x, y),

y′(t) = Q(x, y),

⎫
⎬

⎭
(x, y) /∈ M,

	x(t) = U(x, y),

	y(t) = V (x, y),

⎫
⎬

⎭
(x, y) ∈ M,

(3)

where M is called impulsive set, and let N be the corresponding phase set. M and N rep-
resent the curve line or straight line in the plane R2

+. Let the initial point A ∈ � = R2
+ \ M,

and the function I is a continuous impulse mapping that satisfies I : M → N . The dynamic
system constituted by the definition of solution of impulsive system (3) is defined as a
semi-continuous dynamic system, which is denoted (�, g, I, M).
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Figure 1 The diagram of the successor function

For any Q ∈ �, the map �Q : R+ → � defined as �Q(t) = �(Q, t) is continuous and we
call �Q(t) the orbit passing through point Q. The set C+(Q) = {�(Q, t) | 0 ≤ t < +∞} and
the set C–(Q) = {�(Q, t) | –∞ < t ≤ 0} is called positive semi-orbit and the negative semi-
orbit of point Q, respectively. For convenience, if Q ∈ � – M, g(Q) is called the first point
of intersection of C+(Q) and M. For any point B ∈ � – N , we define �(B) as the first point
of C–(Q) and N .

Remark 2.1 Based on system (2), we get M = {(x, y) | x = h, y ≥ 0}, N = {(x, y) | x = (1 –
a)h, y ≥ 0}, for any point (x, y) ∈ M, when x = h, we get I : (h, y) ∈ M → ((1 – a)h, (1 + b)y +
c) ∈ N .

Definition 2.2 ([18]) Assuming that the impulse set M and the phase set N are both
straight lines, as shown in Figure 1. For any point B ∈ N , then �(B, t) = C ∈ M, I(C) =
C+ ∈ N , we denote the ordinates of point B and C+ are yB and yB+ , respectively. Then
C+ is defined as the successor point of B, and f (B) = yC+ – yB is the successor function of
point B.

Definition 2.3 ([19]) An orbit �̃(Q0, T) is called order-1 periodic solution with pe-
riod T if there exist a point Q0 ∈ N and T > 0 such that Q = �(Q0, T) ∈ M and Q+ =
I(Q) = Q0.

Lemma 2.1 ([20]) In system (3), if there exist A ∈ N , B ∈ N satisfying the successor function
f (A)f (B) < 0, then there must exist a point S (S ∈ N ) satisfying S between point A and point
B such that f (S) = 0, then system (3) has an order-1 periodic solution.

Lemma 2.2 ([21, 22], Analogue of the Poincaré criterion) The T-periodic solution
(φ(t),ϕ(t)) of the system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x′(t) = P(x, y),

y′(t) = Q(x, y),

⎫
⎬

⎭
if η(x, y) �= 0,

	x(t) = �(x, y),

	y(t) = �(x, y),

⎫
⎬

⎭
if η(x, y) = 0,
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has orbital asymptotic stability, if the multiplier μ2 satisfies the condition |μ2| < 1, where

μ2 =
q∏

i=1

�i exp
∫ T

0

[
∂P
∂x

(
φ(t),ϕ(t)

)
+

∂Q
∂y

(
φ(t),ϕ(t)

)
]

dt,

�i =
P+( ∂�

∂y
∂η

∂x – ∂�
∂x

∂η

∂y + ∂η

∂x ) + Q+( ∂�
∂x

∂η

∂y – ∂�
∂y

∂η

∂x + ∂η

∂y )

P ∂η

∂x + Q ∂η

∂y

,

and P, Q, ∂�
∂x , ∂�

∂y , ∂�
∂x , ∂�

∂y , ∂η

∂x , ∂η

∂y are calculated at the point (φ(Ti),ϕ(Ti)) and P+ =
P(φ(T+

i ),ϕ(T+
i )), Q+ = Q(φ(T+

i ),ϕ(T+
i )).

3 Dynamical analysis of system (2)
In this section, the dynamical properties of the order-1 periodic solution of system (2)
are analyzed. Firstly, the qualitative characteristics of system (2) without impulse are dis-
cussed. System (2) without impulse is as follows:

⎧
⎨

⎩

x′(t) = rx(t)(1 – x(t)
K ) – α

√
x(t)y(t) = P(x, y),

y′(t) = y(t)(αβ
√

x(t) – d) = Q(x, y).
(4)

Solving the equations

⎧
⎨

⎩

rx(t)(1 – x(t)
K ) – α

√
x(t)y(t) = 0,

y(t)(αβ
√

x(t) – d) = 0,
(5)

yields three equilibria: O(0, 0), A(K , 0), E(xE, yE) of system (4), where xE = d2

α2β2 , yE =
rd
αβ

(1 – d2

Kα2β2 ). Let (H1) : K > d2

α2β2 and (H2) : 2rβ(1 – d2

Kα2β2 ) > ( r
2 – 3rd2

2Kα2β2 )2, then we get
the following theorem.

Theorem 3.1 The positive equilibrium E of system (4) is a stable focus if and only if the
conditions (H1) and (H2) hold.

Proof The Jacobian matrix at equilibrium E is shown as follows:

J(E) =

⎛

⎝
r
2 – 3rd2

2Kα2β2 – d
β

rβ
2 (1 – d2

Kα2β2 ) 0

⎞

⎠ .

The characteristic equation of J(E) satisfies f (λ) = λ2 + pλ + q = 0, where p = r
2 – 3rd2

2Kα2β2 ,

q = rd
2 (1 – d2

Kα2β2 ). It is easy to see � = p2 – 4q = ( 3rd2

2Kα2β2 – r
2 )2 – 2rd(1 – d2

Kα2β2 ) < 0. Then
the positive equilibrium E is a stable focus. That completes the proof (see Figure 2). �

3.1 Existence of order-1 periodic solution of system (2)
On the basis of the ecological significance, system (2) should meet 0 < (1 – a)h < h < K . In
this paper, the coordinate of arbitrary point B ∈ R+

2 is denoted (xB, yB). By Theorem 3.1, we
know the x-isoline L1 intersects y-isoline L2 at point E(xE, yE). For different h, we discuss
two cases as follows.
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Figure 2 Phase diagram of system (4) with r = 1.2,
K = 1.8, α = 0.85, β = 0.7, d = 0.5

Figure 3 The schematic of the existence of the order-1 periodic solution in Case I. (a) Discussion in subcase
yA+1

< yA0 . (b) Discussion in subcase yA+1
> yA0

Case I. 0 < (1 – a)h < h ≤ xE < K .
For notation simplicity, let the intersection of the phase set N and the x-isoline L1 be

A0((1 – a)h, yA0 ). For system (2), there must exist an orbit � tangent to set N and intersect
with set M at a point A1(h, yA1 ), namely, g(A0) = A1, then the point A1 jumps to a point
A+

1 ((1 – a)h, yA+
1
) ∈ N under the action of impulse, where yA+

1
= (1 + b)yA1 + c. Then the

successor function of point A0 is f (A0) = yA+
1

– yA0 . Consider the following three subcases
based on the different position of point A+

1 .
If yA+

1
= yA0 , then f (A0) = 0, thus the orbit ̂A0A1 and segment A1A0 constitute an order-1

periodic solution.
If yA+

1
< yA0 , then f (A0) < 0. Let g(A+

1 ) = A2 ∈ M, under the action of impulse, A2 jumps
to A+

2 ∈ N . Because any two orbits are disjoint, then we get yA2 < yA1 and yA+
2

< yA+
1
, thus

f (A+
1 ) = yA+

2
– yA+

1
< 0. We can choose another point B+

0 ((1 – a)h, yB+
0
) ∈ N , where yB+

0
= δ ∈

(0, c) (δ > 0 is small enough). Let g(B+
0 ) = B1 ∈ M and B1 jumps to B+

1 ∈ N under the action
of impulse, then yB+

1
= (1 – a)yB1 + c > δ. Thus we have f (B+

0 ) = yB+
1

– yB+
0

> 0. Then there
exists a point B ∈ N satisfying 0 < yB < yA+

1
such that f (B) = 0 (see Figure 3(a)).

If yA+
1

> yA0 , then f (A0) > 0. Let g(A+
1 ) = A2 ∈ M, under the action of impulse, A2 jumps

to a point A+
2 ∈ N . Because any two orbits are disjoint, then we get yA2 < yA1 and yA+

2
< yA+

1
,

thus f (A+
1 ) = yA+

2
– yA+

1
< 0. We can choose another point C0((1 – a)h, yA0 + δ) ∈ N . Then
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Figure 4 The schematic of the existence of the order-1 periodic solution in Case II. (a) Discussion in subcase
xP2 ≥ (1 – a)h. (b) Discussion in subcase yP+1

> yF1 or yP+1
< yF2 . (c) Discussion in subcase yF1 < yP+1

< yF2

g(C0) = C1 ∈ M and under the action of impulse, C1 jumps to a point C+
1 ∈ N , then yC+

1
=

(1 + b)yC1 + c > δ. Due to any two orbits are disjoint, then yC1 < yA1 and point C1 is very
close to point A1, thus yC+

1
< yA+

1
and point C+

1 is very close to point A+
1 . Since yA+

1
< yA0 , we

have f (C0) = yC+
1

– yC0 > 0. Therefore, there must be a point B ∈ A0A+
1 such that f (B) = 0

(see Figure 3(b)).
Case II. 0 < (1 – a)h < xE < h < K .
Let the impulsive set M intersect isocline L1 at point P1(h, yP1 ). The orbit staring from

point P1 tangents to M at point P1, and intersects L1 and M at point P2(xP2 , yP2 ) and
P0(h, yP0 ), respectively.

If xP2 ≥ (1 – a)h, the orbit � passing through A0 tangents to the phase set N at point A0,
let g(A0) = D ∈ M, under the action of impulse, point D jumps to point D+ ∈ N . According
to the discussion of Case I, the order-1 periodic solution of system (2) in this subcase is
existent (see Figure 4(a)).

If xP2 < (1 – a)h, the orbit passing through P1 intersects set N at points F1((1 – a)h, yF1 )
and F2((1– a)h, yF2 ). Assume P1 jumps to P+

1 ((1– a)h, yP+
1

) ∈ N under the action of impulse,
there are three subcases to be discussed.

If yP+
1

= yF1 or yP+
1

= yF2 , then the segment P1F1 and the orbit ̂F1F2P1 or the segment P1F2

and the orbit F̂2P1 constitute an order-1 periodic solution of system (2).
If yP+

1
> yF1 or yP+

1
< yF2 , according to the analysis of Case I, system (2) exists an order-1

periodic solution (see Figure 4(b)).
If yF1 < yP+

1
< yF2 , due to any two orbits are disjoint, then the orbit passing through point

P+
1 tangents to the phase set N at point P+

1 , and does not intersect with the impulsive set
M, thus the order-1 periodic solution is nonexistent (see Figure 4(c)). The reader can find
the detailed proof in reference [23].

We obtain the following theorem by the above discussions.

Theorem 3.2 Suppose the conditions (H1) and (H2) hold.
(I) If 0 < (1 – a)h < h ≤ xE < K , then the order-1 periodic solution is existent in system

(2).
(II) If 0 < (1 – a)h < xE < h < K , there are the following three subcases:

(i) If xP2 ≥ (1 – a)h, the order-1 periodic solution is existent in system (2).
(ii) If xP2 < (1 – a)h, yP+

1
≥ yF1 or yP+

1
≤ yF2 , the order-1 periodic solution is existent

in system (2).
(iii) If xP2 < (1 – a)h and yF1 < yP+

1
< yF2 , the order-1 periodic solution is nonexistent.



Liu and Cheng Advances in Difference Equations  (2018) 2018:63 Page 7 of 13

Figure 5 The schematic of the attractiveness of the order-1
periodic solution with conditions 0 < (1 – a)h < h ≤ xE < K and
yA+1

≤ yA0

3.2 Attractiveness of order-1 periodic solution of system (2)
Based on the conditions of Theorem 3.2, let the initial value x0 < h, the attractiveness of
order-1 periodic solution of system (2) is discussed in this subsection. We mainly discuss
Case I, similarly, we can get similar conclusions about Cases II.

Theorem 3.3 If the conditions of 0 < (1 – a)h < h ≤ xE < K and yA+
1

≤ yA0 hold, and
system (2) exists a unique order-1 periodic solution, then the periodic solution in region
�1 = {(x, y) | (x, y) ∈ R2

+, x0 < h} is attractive.

Proof Suppose segment BB+ and orbit B̂+B constitute the unique order-1 periodic solution
(see Figure 5).

Firstly, we choose a point B+
0 ((1 – a)h, δ) ∈ N which satisfies δ < c and yB+

0
< yB+ . Let

g(B+
0 ) = B1 ∈ M, under the action of impulse, B1 jumps to B+

1 ∈ N , then yB1 < yB, thus we
have yB+

1
< yB+ . Since yB+

1
= (1 + b)yB1 + c > δ, f (B+

0 ) = yB+
1

– yB+
0

> 0. Let g(B+
1 ) = B2 ∈ M, then

B2 jumps to B+
2 ∈ N . Since yB+

0
< yB+

1
< yB+ , we have yB1 < yB2 < yB, then yB+

1
< yB+

2
< yB+ and

f (B+
1 ) = yB+

2
– yB+

1
> 0. Repeating the process, then we obtain a sequence {B+

i }i=0,1,2,... ∈ N
such that yB+

0
< yB+

1
< · · · < yB+

i
< · · · < yB+ and f (B+

i ) = yB+
i+1

– yB+
i

> 0. Thus, {yB+
i
}i=0,1,2,... is

monotonically increasing. Hence, limi→+∞ yB+
i

exists. Next we prove limi→+∞ yB+
i

= yB+ .
Assume B+∗ = limi→+∞ B+

i , then we prove B+∗ = B+. Otherwise, B+∗ �= B+. Let g(B+∗ ) = B̄ ∈ M,
then B̄ jumps to B̄+ ∈ N by impulsive effect. Then yB̄ < yB, yB̄+ < yB+ . Because f (B+∗ ) ≥ 0,
B+∗ �= B+, and the periodic solution ̂B+BB+ is unique, f (B+∗ ) = yB̄+ – yB+∗ > 0, thus yB+∗ < yB̄+ <
yB+ . Let g(B̄+) = ¯̄B ∈ M, then ¯̄B jumps to ¯̄B+

by impulsive effect. It is easy to know, yB̄ <
y ¯̄B < yB and yB̄+ < y ¯̄B+ < yB+ , then f (B̄+) = y ¯̄B+ – yB̄+ > 0, this is contradictory to the fact that
B+∗ = limi→+∞ B+

i , therefore, B+∗ = B+ and limi→+∞ yB+
i

= yB+ .
On the other hand, according to the analysis of Case I, we know yB+ < yA+

2
< yA+

1
< yA0 ,

yB < yA2 < yA1 and f (A+
1 ) = yA+

2
– yA+

1
< 0. Let g(A+

2 ) = A3 ∈ M, under the action of im-
pulse, A3 jumps to A+

3 ∈ N , then yB+ < yA+
3

< yA+
2
, f (A+

2 ) = yA+
3

– yA+
2

< 0. Repeat the pro-
cess, we obtain a sequence {A+

k }k=1,2,... ∈ N satisfying yA+
1

> yA+
2

> · · · > yA+
k

> · · · > yS+ and
f (A+

k ) = yA+
k+1

– yA+
k

< 0. Thus, {yA+
k
}k=1,2,... is monotonically decreasing. Hence, limk→+∞ yA+

k
is existent. Similarly, we can prove limk→+∞ yA+

k
= yB+ .

Due to the orbit with arbitrary point of �1 will intersect with N , next we just prove ar-
bitrary orbit that passes through N eventually is attracted to the periodic solution ̂B+BB+.

Choose an arbitrary point R ∈ N below A0 such that yR ∈ [yA+
k+1

, yA+
k
)k=1,2,.... The orbit

starting from R moves between orbit ̂A+
k Ak+1 and ̂A+

k+1Ak+2 intersects with M at a point
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in segment Ak+2Ak+1, then jumps to a point of N in segment A+
k+2A+

k+1, the orbit con-
tinues to move between ̂A+

k+1Ak+2 and ̂A+
k+2Ak+3. Repeat the process indefinitely, because

limk→+∞ yA+
k

= yB+ , the intersection sequence of orbit which passes through R and the
phase set N will be attracted to point B+ eventually. Similarly, if yR ∈ [yB+

i
, yB+

i+1
)i=0,1,2,..., we

also can obtain the intersection sequence of orbit which passes through R and the phase
set N will be attracted to point B+ eventually. Therefore, the orbit starting from arbitrary
point below A0 eventually is attracted to the periodic solution ̂B+BB+.

The orbit with arbitrary point above A0 of the phase set N will intersect with N at some
point below A0 as time goes on, similar to the above discussion, the orbit with arbitrary
point above A0 will be eventually attracted to the periodic solution ̂B+BB+.

Based on the above analysis, the orbit with arbitrary point of N will eventually attracted
to periodic solution ̂B+BB+. Thus, in the region �1, the periodic solution ̂B+BB+ is attrac-
tive. This completes the proof. �

See Figure 6(a); let the orbit passing through point A+
1 intersect N at point G+ and

g(G+) = G1 ∈ M, then G1 jumps to point G+
1 ∈ N under the action of the impulse.

Theorem 3.4 If the conditions of 0 < (1 – a)h < h ≤ xE < K and yA0 < yG+
1

< yA+
1

hold, then
system (2) exists a unique order-1 periodic solution in region �1 which is attractive.

Proof We still suppose that ̂B+BB+ is the order-1 periodic solution of system (2). Firstly,
we analyze the uniqueness of ̂B+BB+.

Select two points I0, J0 ∈ A0A+
1 such that yJ0 > yI0 > yA0 , the orbits starting from points

J0 and I0, respectively, intersect M at J1, I1, then jump to J+
1 , I+

1 ∈ N under the action of
impulse, respectively (see Figure 6(b)). Because any two orbits are disjoint, then yI1 > yJ1 ,
yI+

1
> yJ+

1
, f (J0) = yJ+

1
–yJ0 , f (I0) = yI+

1
–yI0 , we get f (J0)– f (I0) = (yJ+

1
–yI+

1
)+(yI0 –yJ0 ) < 0, thus,

in the segment A0A+
1 , the successor function f is monotonically decreasing, therefore, for

system (2) there exists a unique point S+ ∈ A0A+
1 such that f (B+) = 0.

Next, in the region �1, the attractiveness of the periodic solution ̂B+BB+ is proved. See
Figure 6(a), Let g(G+

1 ) = G2 ∈ M, then G2 jumps to point G+
2 ∈ N . In view of any two orbits

Figure 6 The schematic of the attractiveness of the order-1 periodic solution with conditions
0 < (1 – a)h < h ≤ xE < K and yA0 < yG+1

< yA+1
. (a) The attractiveness of the order-1 periodic solution. (b) The

uniqueness of the order-1 periodic solution
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are disjoint and yA0 < yG+
1

< yA+
1
, then yG1 < yG2 < yA1 , yG+

1
< yG+

2
< yA+

1
. Let g(G+

2 ) = G3 ∈ M,
then G3 jumps to point G+

3 ∈ N , we have yG1 < yG3 < yG2 , yG+
1

< yG+
3

< yG+
2

. Repeating the
steps, we obtain two sequences {Gk}k=1,2,... ∈ M and {G+

k }k=1,2,... ∈ N satisfying yG+
1

< · · · <
yG+

2k–1
< yG+

2k+1
< · · · < yG+

2k
< yG+

2k–2
< yG+

2
, then f (G+

2k–1) = yG+
2k

– yG+
2k–1

> 0, and f (G+
2k) =

yG+
2k+1

– yG+
2k

< 0. By the proof of Theorem 3.3, we get limk→+∞ yG+
2k–1

= limk→+∞ yG+
2k

= yB+ .
The orbit with arbitrary point in segment A+

1 G+ will intersect N as time goes on, un-
der the action of impulses, it passes through a point in segment G+

2k–1G+
2k+1 or G+

2kG+
2k–2,

here G+
0 = A+

1 . Similar to the discussion of Theorem 3.3, the orbit with arbitrary point in
segment A+

1 G+ will be eventually attracted to the periodic solution ̂B+BB+.
Assume a point H0 ∈ M jumps to point G+ ∈ N under the action of impulse. Let �(H0) =

H+
1 . Assume a point H1 ∈ M jumps to point H+

1 ∈ N under the action of impulse. Let
�(H1) = H+

2 . Repeat the process until the phase set N exists a H+
K0

(K0 ∈ Z+) such that
yH+

K0
< c. Then there are two sequences {Hk}k=1,2,...K0–1 ∈ M and {H+

k }k=1,2,...K0 ∈ N such
that �(Hk–1) = H+

k , yH+
k

< yH+
k–1

, here H+
0 = G+. For arbitrary point of N below G+, it must

in segment H+
k H+

k+1, where k = 1, 2, . . . , K0 and yH+
k+1

= 0. Under k + 1 times the impulsive
action, the orbit with arbitrary point that below G+ will passes through some point of
segment A+

1 G+ and will be attracted to the periodic solution ̂B+BB+ eventually. Thus, the
order-1 periodic solution with the initial point that below G+ is nonexistent.

The orbit with arbitrary point above A+
1 of N will intersect with N at some point below

G+ as time goes on, then the orbit will be attracted to the periodic solution ̂B+BB+. Thus,
the order-1 periodic solution with the initial point that above A+

1 is nonexistent.
Based on the above analysis, system (2) exists a unique order-1 periodic solution which

is attractive. That completes the proof. �

Like by the discussions of Theorem 3.3 and Theorem 3.4, we find the following.

Theorem 3.5 If 0 < (1–a)h < xE < h < K , xP2 ≥ (1–a)h and yD+ ≤ yA0 , and system (2) exists
a unique order-1 periodic solution, then the periodic solution in region �2 is attractive,
where �2 = R+ – Q1 and Q1 is an open region enclosed by orbit ̂P0P2P1 (see Figure 4(a)).
Meanwhile if yD+ > yA0 , then for system (2) there exists a unique order-1 periodic solution
in region �2 which is attractive.

Theorem 3.6 If (ii) of II in Theorem 3.2 is true, and yP+
1

≤ yF2 and system (2) exists a
unique order-1 periodic solution, then the periodic solution in region �3 is attractive, where
�3 = R+ – Q2 and Q2 is an open region enclosed by orbit ̂P0F1F2P1 (see Figure 4(b)). And if
yP+

1
> yF2 , then for system (2) also there exists a unique order-1 periodic solution in region

�3 which is attractive.

3.3 Stability of order-1 periodic solution of system (2)
Theorem 3.7 Denote (φ(t),ϕ(t)) as a T-periodic solution in system (2), and φ0 = φ(0),
ϕ0 = ϕ(0). Under the conditions of Theorem 3.2, if

∣
∣
∣
∣
[r(1 – a)h(1 – (1–a)h

K ) – α
√

(1 – a)hϕ0](ϕ0 – c)
[rh(1 – h

K ) – α
√

h · ϕ0–c
1+b ](1 – a)ϕ0

∣
∣
∣
∣ < 1,

then system (2) has a stable order-1 periodic solution.
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Proof It is easy to see that φ1 = φ(T) = h, ϕ1 = ϕ(T); φ+
1 = φ(T+), ϕ+

1 = ϕ(T+), then

φ+
1 = φ0 = (1 – a)h, ϕ+

1 = ϕ0 = (1 + b)ϕ1 + c.

Let �(x, y) = –ax, �(x, y) = by + c, η(x, y) = x – h.
Then

∂�

∂x
= –a,

∂�

∂y
= b,

∂η

∂x
= 1,

∂�

∂x
=

∂�

∂y
=

∂η

∂y
= 0,

�1 =
P+( ∂�

∂y
∂η

∂x – ∂�
∂x

∂η

∂y + ∂η

∂x ) + Q+( ∂�
∂x

∂η

∂y – ∂�
∂y

∂η

∂x + ∂η

∂y )

P ∂η

∂x + Q ∂η

∂y

=
P(φ+

1 ,ϕ+
1 )(b × 1 – 0 × 0 + 1) + Q(φ+

1 ,ϕ+
1 )(–a × 0 + 0 × 1 + 0)

P(φ1,ϕ1) × 1 + Q(φ1,ϕ1) × 0

=
rφ0(1 – φ0

K ) – α
√

φ0ϕ0

rφ1(1 – φ1
K ) – α

√
φ1ϕ1

,

and

∫ T

0

(
∂P
∂x

+
∂Q
∂y

)

dt =
∫ T

0

(

r –
2r
K

x(t) –
αy(t)

2
√

x(t)
– d + αβ

√
x(t)

)

dt

=
∫ T

0

( ˙φ(t)
φ(t)

+
˙ϕ(t)

ϕ(t)

)

dt

=
∫ T

0
d lnφ(t)ϕ(t)

= ln
φ(1)ϕ(1)
φ(0)ϕ(0)

.

Thus

μ2 = �1 exp
∫ T

0

(
∂P
∂x

+
∂Q
∂y

)

dt

=
rφ0(1 – φ0

K ) – α
√

φ0ϕ0

rφ1(1 – φ1
K ) – α

√
φ1ϕ1

× φ(1)ϕ(1)
φ(0)ϕ(0)

=
[r(1 – a)h(1 – (1–a)h

K ) – α
√

(1 – a)hϕ0](ϕ0 – c)
[rh(1 – h

K ) – α
√

h · ϕ0–c
1+b ](1 – a)ϕ0

.

Therefore, |μ2| < 1, and by Lemma 2.2, system (2) has a stable order-1 periodic solution.
�

4 Simulations and conclusion
We show an example in this section. For system (2), let r = 1.2, K = 1.8, α = 0.85, β = 0.7,
d = 0.5. By calculation, the equilibrium point of system (4) is E(0.7062, 0.7209). Then we
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Figure 7 Numerical simulations in Case I. (a) Phase portrait of x(t) and y(t) on h = 0.4. (b) Time series of x(t).
(c) Time series of y(t)

Figure 8 Numerical simulations in Case I. (a) Phase portrait of x(t) and y(t) on h = 0.65. (b) Time series of x(t).
(c) Time series of y(t)

have
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x′(t) = 1.2x(t)(1 – x(t)
1.8 ) – 0.85

√
x(t)y(t),

y′(t) = y(t)(0.595
√

x(t) – 0.5),

⎫
⎬

⎭
x �= h,

�x(t) = –ax(t),

�y(t) = by(t) + c,

⎫
⎬

⎭
x = h.

(6)

Let h = 0.4, a = 0.3, b = –0.2 and c = 0.2 satisfy the condition 0 < (1 – a)h < h < xE < K ,
and the initial value is (0.3, 0.4) satisfying x0 < h. Figure 7 indicates that for system (6)
there exists an order-1 periodic solution which is stable, and arbitrary orbit of system (6)
is attracted to the periodic solution.

Let h = 0.65, a = 0.2, b = 0.1 and c = 0.09 satisfy the condition 0 < (1 – a)h < h < xE < K
and the initial value be (0.5, 0.5). Figure 8 illustrates that for system (6) there exists a stable
order-1 periodic solution, and an arbitrary orbit of system (6) is attracted to the periodic
solution.

The phase portrait and time series of prey density and predator density with condition
0 < (1 – a)h < xE < h < K are shown in Figure 9 for h = 0.8, a = 0.4, b = 0.15 and c = 0.1
with the initial value (0.5, 0.6). It indicates that for system (6) there exists a stable order-1
periodic solution, and an arbitrary orbit of system (6) is attracted to the periodic solution.

In order to prevent the extinction of predator under the herd behavior of the prey (such
as the drifting herbivores observed in the savanna), this paper presents a prey–predator
system with square root response function under state-dependent control strategy. In dif-
ferent cases, we discuss the existence of the order-1 periodic solution by the successor
function method. Then we analyze the uniqueness and attractiveness of the periodic so-
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Figure 9 Numerical simulations in Case II. (a) Phase portrait of x(t) and y(t) on h = 0.8. (b) Time series of x(t).
(c) Time series of y(t)

lution. Furthermore, we prove order-1 periodic solution is stable under certain condi-
tions. Numerical simulations with an example are carried out which illustrate that the
state-dependent impulse control strategy is effective. Compared with the literature [16],
our research is more comprehensive, which is an improvement and complement for the
results of the above literature.
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