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Abstract
The method of robust approach is applied to estimate drift function and diffusion
function of diffusion processes with discrete-time observations. The proposed
method combines the ideas of local linear regression technique and maximum
likelihood type estimation technique, so the advantages of local linear estimators
persist and overcome the disadvantages of least-squares estimator. Moreover, a
variable bandwidth instead of a constant bandwidth is considered in the local
maximum likelihood type estimators. The consistency and asymptotic normality of
the local maximum likelihood type estimators for drift and diffusion functions are
developed under some given conditions. We perform a simulation study to evaluate
the robust performances of the proposed estimators.
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1 Introduction
Diffusion processes X defined by the following stochastic differential equation are consid-
ered in this article:

dXt = μ(Xt) dt + σ (Xt) dBt , (1)

where {Bt , t ≥ 0} is a standard Brownian motion, μ(·) is an unknown measurable function
(drift function) and σ (·) is an unknown positive function (diffusion function). It is well
known that diffusion processes driven by Brown motion have been widely used in the fi-
nancial and economic fields, and it is often used to model and analyze dynamic changes
in asset prices, interest rates, and exchange rates. For example, [1] investigated an appli-
cation of Ornstein-Uhlenbeck process to commodity pricing in Thailand. Reference [2]
improved estimation of drift parameters of diffusion processes for interest rates by incor-
porating information in bond prices. So, recently in the literature, the statistical inference
for diffusion processes based on discrete observations has often been of concern; for ex-
ample, see [3–6] and its references for parametric estimation, see [7–9] and the references
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therein for a semi-parametric estimation and see [10–16] and the references therein for a
nonparametric estimation.

As is well known, the first to consider nonparametric estimation for the diffusion co-
efficient in model (1) with discrete-time observation was [17], where a kernel type esti-
mator was considered. Thereafter, [18] proposed a nonparametric identification and an
estimation procedure for the diffusion function after [17], and derived a consistent non-
parametric estimator for the drift function by combining their estimator of the diffusion
function. Reference [19] constructed the first-, second-, and third-order approximation
formulas for drift and diffusion functions by using an infinitesimal generator and Tay-
lor expansion. Reference [12] generalized Stanton’s idea and introduced the local polyno-
mial estimators for drift and diffusion functions. Since a local linear method may produce
negative values for the diffusion function, [14] proposed a new nonparametric estimation
procedure of the diffusion function based on re-weighting the Nadaraya–Watson estima-
tor.

However, local linear regression methods are very sensitive to outliers, and individual
outliers can lead to large changes in the results of statistical inference, therefore lead-
ing to irrational and even erroneous conclusions. Such statistical methods like the lo-
cal linear regression approach are not strong enough to adapt the complex changing
reality, in other words, the local linear regression method is not robust when it comes
to outliers or heavy-tailed distributions. In recent years, various robust methods have
been proposed for abnormal observation, which has become increasingly crucial and
frequent in many research fields. Reference [20] defined maximum likelihood type ro-
bust estimates of regression and investigated the asymptotic properties. From then on,
the maximum likelihood type robust estimation (M-estimation) has been discussed by
many authors, for example, [21, 22] and the references therein. Meanwhile, some mod-
ified maximum likelihood type estimators were developed, such as the local maximum
likelihood type estimator (local M-estimators), which is a combination of the local lin-
ear regression and the M-estimation regression, so the nice properties of local linear
estimator and M-estimator persist. For instance, [23] constructed variable bandwidth
local linear M-estimator for a regression function. Reference [24] proposed a nonpara-
metric estimator of the regression function by combining local polynomial regression
and M-estimation regression. Reference [25] developed robust version of local linear re-
gression smoothers for stationary time series sequence. Reference [26] considered local
M-estimation of the unknown drift and diffusion functions of integrated diffusion pro-
cesses.

The purpose of this paper is to investigate the local linear and variable bandwidth M-
estimators of the drift and diffusion functions in model (1) based on high-frequency data,
that is, the sample observations are only selected at discrete-time points, say at n equally
spaced {i�, i = 0, 1, . . . , n}, where � is the sampling interval, and � → 0 as n → ∞. Fur-
thermore, the consistency and asymptotic normality of the local M-estimators will be
proved under general assumptions. Since the new the local linear and variable bandwidth
M-estimators have a good control of outliers, which are common in financial, economic,
physical, engineering and other fields, the proposed estimators in this paper greatly pro-
mote the application of diffusion model (1) in these fields, and they provide the theory and
application foundation for dynamic modeling in these fields.
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The article is organized as follows. The second section constructs the variable band-
width local M-estimators of drift and diffusion functions, and the consistency and asymp-
totic normality of the new estimators are developed in the same section. Section 3 presents
the results of a simulation study. Proofs and auxiliary results are given in Section 4.

2 Local M-estimators and asymptotic theory
Local M-estimation of drift function μ(x) and diffusion function σ 2(x) depend on the
equations

E
(

X(i+1)� – Xi�

�

∣∣∣Xi� = x
)

= μ(x) + o(1), (2)

E
(

(X(i+1)� – Xi�)2

�

∣∣∣Xi� = x
)

= σ 2(x) + o(1), (3)

as � → 0. The reader can refer to [19] or [27] for more details as regards (2) and (3).
Neglecting the smaller-order terms, the local linear estimator with the variable band-

width for μ(x) is defined as the solution to the problem: Choose a1 and b1 to minimize the
weighted sum as

n∑
i=1

(
X(i+1)� – Xi�

�
– a1 – b1(Xi� – x)

)2

β1(Xi�)K
(

Xi� – x
h

β1(Xi�)
)

,

and the local linear estimator with the variable bandwidth for σ 2(x) is defined as the solu-
tion to the problem: Choose a2 and b2 to minimize the weighted sum as follows:

n∑
i=1

(
(X(i+1)� – Xi�)2

�
– a2 – b2(Xi� – x)

)2

β2(Xi�)K
(

Xi� – x
h

β2(Xi�)
)

,

where K(·) is kernel function and h = hn is the bandwidth. β1(·) and β2(·) are nonnega-
tive functions reflecting the variable amount of smoothing at each data point. h/β1(Xi�)
and h/β2(Xi�) are called variable bandwidth. For more detailed information on variable
bandwidths, see [28–30], among others.

In fact, the aforementioned method used to establish estimators are based on least-
squares approach and are not robust. As a result, we choose a1 and b1 to minimize

n∑
i=1

ρ1

(
X(i+1)� – Xi�

�
– a1 – b1(Xi� – x)

)
β1(Xi�)K

(
Xi� – x

h
β1(Xi�)

)

and a2 and b2 to minimize

n∑
i=1

ρ2

(
(X(i+1)� – Xi�)2

�
– a2 – b2(Xi� – x)

)
β2(Xi�)K

(
Xi� – x

h
β2(Xi�)

)
,

or to satisfy the following estimation equations:

n∑
i=1

ψ1

(
X(i+1)� – Xi�

�
– a1 – b1(Xi� – x)

)
β1(Xi�)K

(
Xi� – x

h/β1(Xi�)

)(
1

Xi�–x
h

)
=

(
0
0

)
(4)
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and

n∑
i=1

ψ2

(
(X(i+1)� – Xi�)2

�
– a2 – b2(Xi� – x)

)
β2(Xi�)K

(
Xi� – x

h/β2(Xi�)

)(
1

Xi�–x
h

)

=

(
0
0

)
, (5)

where ρ1(·) and ρ2(·) are given outlier-resistant functions and ψ1(·) and ψ2(·) are the
derivatives of ρ1(·) and ρ2(·), respectively.

The maximum likelihood type estimators of μ(x) and μ′(x) are denoted μ̂(x) = â1

and μ̂′(x) = b̂1, which are the solutions of (4), the maximum likelihood type estimators
of σ 2(x) and (σ 2(x))′ are denoted σ̂ 2(x) = â2 and (σ̂ 2(x))′ = b̂2, which are the solutions
of (5).

For a given point x0, our lemmas and asymptotic theory results are based on the follow-
ing conditions.

C 1 ([10])
(i) The initial condition X0 ∈ L2 and is considered to be independent of {Bt , t ≥ 0}.

(ii) The unknown functions μ(·) and σ (·) are time-homogeneous and measurable
functions on D = (l, u) with –∞ ≤ l < u ≤ ∞. We also assume the two functions are
at least twice continuously differentiable, and satisfy local Lipschitz and growth
conditions, that is, for any compact subset J ⊆D, for all x, y ∈ J , there exist
constants L1 and L2 such that

∣∣μ(x) – μ(y)
∣∣ +
∣∣σ (x) – σ (y)

∣∣≤ L1|x – y|,

and

∣∣μ(x)
∣∣ +
∣∣σ (x)

∣∣≤ L2
[
1 + |x|].

(iii) σ 2(·) > 0 on D;
(iv) Let S(z) =

∫ z
z0

exp(
∫ y

z0
–2μ(x)
σ 2(x) dx) dy, z0 ∈D, suppose S(z) satisfies

lim
z→l

S(z) = –∞,

lim
z→u

S(z) = ∞.

Remark 1 The condition C1 ensures the existence and uniqueness of a strong solution to
model (1), see [31] for details.

C 2
(i)
∫ u

l s(x) dx < ∞, where s(x) = 2/S′(x)σ 2(x).
(ii) The initial point X0 has a stationary distribution P0, where P0 is the invariant

distribution of the process (Xt)t∈[0,∞).
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Remark 2 The conditions C1 and C2 ensure that X is stationary, and from Kolmogorov
forward equation we can get the stationary density p(x) of X:

p(x) =
s(x)∫ u

l s(x) dx
=

ξ

σ 2(x)
exp

{∫ x

z0

2μ(x)
σ 2(x)

dx
}

,

where z0 is an arbitrary point inside D and ξ is a normalizing constant.

C 3 Let D = (l, u) be the state space of X, suppose that

lim sup
x→u

(
μ(x)
σ (x)

–
σ ′(x)

2

)
< 0,

lim sup
x→l

(
μ(x)
σ (x)

–
σ ′(x)

2

)
> 0.

Moreover, the mixing coefficient α(k) satisfies
∑

k≥1 ka(α(k))γ /(2+γ ) < ∞ for some a >
γ /(2 + γ ), where γ is given in the condition C8.

Remark 3 The condition C3 guarantees that the process X is α-mixing; see [32] for details.

C 4
(i) The kernel function K(·) is a continuous probability density function compactly

supported on [–1, 1].
(ii) The bandwidth h satisfies h → 0, nh → ∞ and nh� → ∞ as n → ∞.

C 5 The density function p(x) of the process X is continuous at the point x0, and p(x0) > 0.
Moreover, the joint density function of Xi� and Xj� is bounded for all i, j.

C 6
(i) minx β1(x) > 0, and β1(·) is continuous at the point x0;

(ii) minx β2(x) > 0, and β2(·) is continuous at the point x0.

C 7
(i) E[ψ1(ui�)|Xi� = x] = o(1) with ui� = X(i+1)�–Xi�

�
– μ(Xi�);

(ii) E[ψ2(vi�)|Xi� = x] = o(1) with vi� = (X(i+1)�–Xi�)2

�
– σ 2(Xi�).

C 8
(i) The function ψ1(·) is continuous and has a derivative ψ ′

1(·) almost everywhere.
Additionally, we assume that the following three functions: E[ψ ′

1(ui�)|Xi� = x],
E[ψ2

1 (ui�)|Xi� = x], E[ψ ′
1

2(ui�)|Xi� = x] are all positive for any x and continuous at
the point x0, and there exists a constant γ > 0 such that E[|ψ1(ui�)|2+γ |Xi� = x],
E[|ψ ′

1(ui�)|2+γ |Xi� = x] are bounded in a neighborhood of x0.
(ii) The function ψ2(·) is continuous and has a derivative ψ ′

2(·) almost everywhere.
Additionally, we assume that the following three functions: E[ψ ′

2(vi�)|Xi� = x],
E[ψ2

2 (vi�)|Xi� = x], E[ψ ′
2

2(vi�)|Xi� = x] are all positive for any x and continuous at
the point x0, and there exists a constant γ > 0 such that E[|ψ2(vi�)|2+γ |Xi� = x],
E[|ψ ′

2(vi�)|2+γ |Xi� = x] are bounded in a neighborhood of x0.
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C 9
(i) The function ψ ′

1(·) satisfies

E
[

sup
|z|≤δ

∣∣ψ ′
1(ui� + z) – ψ ′

1(ui�)
∣∣|Xi� = x

]
= o(1)

and

E
[

sup
|z|≤δ

∣∣ψ1(ui� + z) – ψ1(ui�) – ψ ′
1(ui�)z

∣∣|Xi� = x
]

= o(δ),

as δ → 0 uniformly in x in a neighborhood of x0;
(ii) The function ψ ′

2(·) satisfies

E
[

sup
|z|≤δ

∣∣ψ ′
2(vi� + z) – ψ ′

2(vi�)
∣∣|Xi� = x

]
= o(1)

and

E
[

sup
|z|≤δ

∣∣ψ2(vi� + z) – ψ2(vi�) – ψ ′
2(vi�)z

∣∣|Xi� = x
]

= o(δ),

as δ → 0 uniformly in x in a neighborhood of x0.

C 10
(i) For any i, j, suppose that

E
[
ψ2

1 (ui�) + ψ2
1 (uj�)|Xi� = x, Xj� = y

]
,

E
[
ψ ′

1
2(ui�) + ψ ′

1
2(uj�)|Xi� = x, Xj� = y

]

are bounded in the neighborhood of x0;
(ii) For any i, j, suppose that

E
[
ψ2

2 (vi�) + ψ2
2 (vj�)|Xi� = x, Xj� = y

]
,

E
[
ψ ′

2
2(vi�) + ψ ′

2
2(vj�)|Xi� = x, Xj� = y

]

are bounded in the neighborhood of x0.

Remark 4 In fact, the conditions C7–C10 imposed on ψ1(·) and ψ2(·) are mild and satisfied
for many applications, such as Huber’s ψ(·) function. For more detailed information on
these conditions please refer to [23] or [25].

C 11 Suppose that there exist a sequence of positive integers qn such that qn → ∞, qn =
o((nh)1/2) and (n/h)1/2α(qn) → 0 as n → ∞.

C 12 For γ in the condition C8 and all x in a neighborhood of x0, there exists τ > 2 +
γ such that the two functions E{|ψ1(ui�)|τ |Xi� = x}, E{|ψ2(vi�)|τ |Xi� = x} are bounded.
Furthermore, we assume α(n) = O(n–θ ), where θ ≥ (2 + γ )τ /{2(τ – 2 – γ )}.



Tang and Wang Advances in Difference Equations  (2018) 2018:51 Page 7 of 21

C 13 Assume n–γ /4h(2+γ )/τ–1–γ /4 = O(1), where γ is given in the condition C8 and τ is
given in the condition C12.

Remark 5 The assumptions in condition C3 and C11 on mixing coefficient α(k) is suffi-
cient conditions for mixing coefficient, [25] pointed out this assumptions on mixing co-
efficient are satisfied given some general conditions. Condition C13 is also satisfied under
some weak constraints on γ or τ .

Throughout the whole paper, let

Kl =
∫

K(u)ul du, Jl =
∫

ulK2(u) du, for l ≥ 0.

U1 =

(
K0

K1
β1(x0)

K1
β1(x0)

K2
β2

1 (x0)

)
, V1 =

(
J0

J1
β1(x0)

J1
β1(x0)

J2
β2

1 (x0)

)
, A1 =

(
K2
K3

β1(x0)

)
,

U2 =

(
K0

K1
β2(x0)

K1
β2(x0)

K2
β2

2 (x0)

)
, V2 =

(
J0

J1
β2(x0)

J1
β2(x0)

J2
β2

2 (x0)

)
, A2 =

(
K2
K3

β2(x0)

)
,

G1(x) = E
[
ψ ′

1(ui�)|Xi� = x
]
, G2(x) = E

[
ψ2

1 (ui�)|Xi� = x
]
,

G3(x) = E
[
ψ ′

1
2(ui�)|Xi� = x

]
, H1(x) = E

[
ψ ′

2(vi�)|Xi� = x
]
,

H2(x) = E
[
ψ2

2 (vi�)|Xi� = x
]
, H3(x) = E

[
ψ ′

2
2(vi�)|Xi� = x

]
.

We now develop the asymptotic theory for the proposed local M-estimators:

Theorem 1 Under the conditions C1–C5 and the conditions (i) of C6–C10, there exist
solutions μ̂(x0) and μ̂′(x0) to equations (4) such that

(i)

(
μ̂(x0) – μ(x0)

h(μ̂′(x0) – μ′(x0))

)
P→ 0, n → ∞.

(ii) Furthermore, if the conditions C11–C13 hold, then

√
nh

[(
μ̂(x0) – μ(x0)

h(μ̂′(x0) – μ′(x0))

)
–

h2μ′′(x0)
2β2

1 (x0)
U–1

1 A1

]
D→N(0,
1),

where


1 =
G2(x0)β1(x0)
G2

1(x0)p(x0)
U–1

1 V1U–1
1 .

Theorem 2 Under the conditions C1–C5 and the conditions (ii) of C6–C10, there exist
solutions σ̂ 2(x0) and (σ̂ 2(x0))′ to equations (5) such that

(i)

(
σ̂ 2(x0) – σ 2(x0)

h((σ̂ 2(x0))′ – (σ 2(x0))′)

)
P→0, n → ∞.
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(ii) Furthermore, if the conditions C11–C13 hold, then

√
nh

[(
σ̂ 2(x0) – σ 2(x0)

h[(σ̂ 2(x0))′ – (σ 2(x0))′]

)
–

h2(σ 2(x0))′′

2β2
2 (x0)

U–1
2 A2

]
D→N(0,
2),

where


2 =
H2(x0)β2(x0)
H2

1 (x0)p(x0)
U–1

2 V2U–1
2 .

3 Simulation study
We now perform a Monte Carlo simulation study to evaluate the finite sample perfor-
mance of the variable bandwidth local M-estimators by comparing the mean square error
(MSE) between them and the Nadaraya–Watson estimators.

We consider the following diffusion process X:

dXt =
(

–Xt + 0.5
√

1 + X2
t

)
dt + 0.1 dBt

for t ∈ [0, T] = [0, 100]. Throughout the simulation, we take Huber’s function ψ1(z) =
max{–c, min(c, z)} with c = 0.135. The uniform kernel K(u) = 1

2 I(|u| ≤ 1) is selected as the
kernel function, and the bandwidth h is chosen by minimizing the MSE as follows:

1
n

n∑
i=1

(
μ̂(xi) – μ(xi)

)2,

where {xi, i = 1, 2, . . . , n} are chosen uniformly to cover the range of sample path of Xt .
Throughout the study, we use iterative method to obtain μ̂(·), for any initial value μ̂0(x),

we have
(

μ̂t(x)
μ̂′

t(x)

)
=

(
μ̂t–1(x)
μ̂′

t–1(x)

)
–
[
Wn
(
μ̂t–1(x), μ̂′

t–1(x)
)]–1

�n
(
μ̂t–1(x), μ̂′

t–1(x)
)
,

where μ̂t–1(x) and μ̂′
t–1(x) are the tth iteration value of μ̂′(x) and μ̂(x), and

Wn(a1, b1) =
(

∂�n(a1, b1)
∂a1

,
∂�n(a1, b1)

∂b1

)
,

�n(a1, b1) =
n∑

i=1

ψ1

(
X(i+1)� – Xi�

�
– a1 – b1(Xi� – x)

)
β1(Xi�)

× K
(

Xi� – x
h/β1(Xi�)

)(
1

Xi�–x
h

)
.

When the following conditions are satisfied, the procedure terminates:
∥∥∥∥∥
(

μ̂t(x)
μ̂′

t(x)

)
–

(
μ̂t–1(x)
μ̂′

t–1(x)

)∥∥∥∥∥≤ 1 × 10–4.

Figure 1 shows the five sample paths of the process Xt . Table 1 lists the MSEs of the
Nadaraya–Watson estimator and the variable bandwidth local M-estimator for the drift
function μ(·) when n = 100, n = 500, n = 1000, n = 5000, n = 10,000. The figures in Table 1
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Figure 1 The five sample paths of the process Xt

Table 1 The MSEs of Nadaraya–Watson estimator (MSE1) and variable bandwidth local M-estimator
(MSE2) for drift function μ(·)
Sample size n MSE1 MSE2

n = 100 0.0628 0.0667
n = 500 0.0042 0.0036
n = 1000 0.0023 0.0019
n = 5000 0.0014 0.0011
n = 10,000 0.0012 0.0007

indicate that
(i) The MSEs of the two types of estimators decrease toward zero as the sample size n

increases.
(ii) The variable bandwidth local M-estimator performs better than the

Nadaraya–Watson estimator.

4 Lemmas and proofs
The following lemmas are needed to prove the main results of this paper.

Lemma 1 Under the conditions C1–C5 and the conditions (i) of the C6–C10, we have

n∑
i=1

ψ ′
1(ui�)β1(Xi�)K

(
Xi� – x0

h/β1(Xi�)

)
(Xi� – x0)l

= nhl+1 G1(x0)
β l

1(x0)
p(x0)Kl

(
1 + op(1)

)

and

n∑
i=1

ψ ′
1(ui�)R1(Xi�)β1(Xi�)K

(
Xi� – x0

h/β1(Xi�)

)
(Xi� – x0)l

= nhl+3 G1(x0)
2β l+2

1 (x0)
μ′′(x0)p(x0)Kl+2

(
1 + op(1)

)
,

where R1(Xi�) = μ(Xi�) – μ(x0) – μ′(x0)(Xi� – x0).
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Proof of Lemma 1 Since the second part of Lemma 1 can be proved by the same arguments
as the first one, we only prove the first part. Let

Zn,i = ψ ′
1(ui�)β1(Xi�)K

(
Xi� – x0

h/β1(Xi�)

)
(Xi� – x0)l.

By a change of variable and the continuity at the point x0 of β1(·), K(·), G1(·) and p(·), we
obtain

E(Zn,1) =
∫

G1(x)β1(x)K
(

x – x0

h/β1(x)

)
(x – x0)lp(x) dx

=
∫

G1(x0 + yh)β1(x0 + yh)K
(
yβ1(x0 + yh)

)
(yh)lp(x0 + yh)h dy

= hl+1G1(x0)β1(x0)p(x0)
∫

K
(
yβ1(x0)

)
yl dy

(
1 + o(1)

)

= hl+1G1(x0)
p(x0)
β l

1(x0)

∫
K(u)ul du

(
1 + o(1)

)

= hl+1G1(x0)
p(x0)
β l

1(x0)
Kl(1 + o(1)

)
.

Therefore, we have

E

( n∑
i=1

ψ ′
1(ui�)β1(Xi�)K

(
Xi� – x0

h/β1(Xi�)

)
(Xi� – x0)l

)
= nhl+1G1(x0)

p(x0)
β l

1(x0)
Kl(1 + o(1)

)
.

Note that

n∑
i=1

Zn,i = E

( n∑
i=1

Zn,i

)
+ Op

(√√√√Var

( n∑
i=1

Zn,i

))

and

Var

( n∑
i=1

Zn,i

)
= nEZ2

n,1 + 2
n∑

j=2

(n – j + 1) Cov(Zn,1, Zn,j).

By a change of variable and the continuity at the point x0 of β1(·), K(·), G3(·) and p(·), we
obtain

EZ2
n,1 =

∫
G3(x)β2

1 (x)K2
(

x – x0

h/β1(x)

)
(x – x0)2lp(x) dx

=
∫

G3(x0 + yh)β2
1 (x0 + yh)K2(yβ1(x0 + yh)

)
(yh)2lp(x0 + yh)h dy

= h2l+1G3(x0)β2
1 (x0)p(x0)

∫
K2(yβ1(x0)

)
y2l dy

(
1 + o(1)

)

= h2l+1G3(x0)β1–2l
1 (x0)p(x0)

∫
K2(u)u2l du

(
1 + o(1)

)

= O
(
h2l+1).
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Let dn be a sequence of positive integers satisfying dn → ∞ and hdn → 0. Then we have

n∑
j=2

∣∣Cov(Zn,1, Zn,j)
∣∣ =

dn∑
j=2

∣∣Cov(Zn,1, Zn,j)
∣∣ +

n∑
j=dn+1

∣∣Cov(Zn,1, Zn,j)
∣∣.

By the conditions C6(i), C10(i) and the bounded support of K(·), we have

|EZn,iZn,j|
≤ E|Zn,iZn,j|

= E
∣∣∣∣E[ψ ′

1(ui�)ψ ′
1(uj�)|Xi�, Xj�

]
β1(Xi�)K

(
Xi� – x0

h/β1(Xi�)

)
(Xi� – x0)l

× β1(Xj�)K
(

Xj� – x0

h/β1(Xj�)

)
(Xj� – x0)l

∣∣∣∣
≤ C1E

∣∣∣∣β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)
(Xi� – x0)lβ1(Xj�)K

(
Xj� – x0

h/β1(Xj�)

)
(Xj� – x0)l

∣∣∣∣
≤ C2h2l+2,

where C1 and C2 are constants. Therefore, we have

dn∑
j=2

∣∣Cov(Zn,1, Zn,j)
∣∣≤ C2h2l+2

dn∑
j=2

1 = o
(
nh2l+1).

By using the Davydov inequality, we have

∣∣Cov(Zn,1, Zn,j)
∣∣≤ C3

[
α(j – 1)

]γ /(2+γ )(E|Zn,1|2+γ
)2/(2+γ ),

and by the condition C8(i), we have

E|Zn,i|2+γ = E
∣∣∣∣E[ψ ′

1(ui�)|Xi�
]
β1(Xi�)K

(
Xi� – x0

h/β1(Xi�)

)
(Xi� – x0)l

∣∣∣∣
2+γ

≤ C4E
∣∣∣∣β1(Xi�)K

(
Xi� – x0

h/β1(Xi�)

)
(Xi� – x0)l

∣∣∣∣
2+γ

≤ C5h(2+γ )l+1,

where C3, C4 and C5 are constants. Therefore, by using the condition C3 and choosing dn

such that da
nhγ /(2+γ ) = O(1), we have

n∑
j=dn+1

∣∣Cov(Zn,1, Zn,j)
∣∣ ≤ C6

n∑
j=dn+1

[
α(j – 1)

]γ /2+γ (h(2+γ )l+1)2/(2+γ )

= C6h2l+2/(2+γ )
n∑

k=dn

[
α(k)

]γ /2+γ

≤ C6d–a
n h2l+2/(2+γ )

n∑
k=dn

ka[α(k)
]γ /2+γ = o

(
nh2l+1),
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where C6 is a constant. In summary, we have

Var

( n∑
i=1

Zn,i

)
= O
(
nh2l+1).

Therefore,

n∑
i=1

ψ ′
1(ui�)β1(Xi�)K

(
Xi� – x0

h/β1(Xi�)

)
(Xi� – x0)l = nhl+1 G1(x0)

β l
1(x0)

p(x0)Kl
(
1 + op(1)

)
.

This completes the lemma. �

Lemma 2 Under the conditions C1–C5 and the conditions (ii) of C6–C10, we have

n∑
i=1

ψ ′
2(vi�)β2(Xi�)K

(
Xi� – x0

h/β2(Xi�)

)
(Xi� – x0)l

= nhl+1 H1(x0)
β l

2(x0)
p(x0)Kl

(
1 + op(1)

)

and

n∑
i=1

ψ ′
2(vi�)R2(Xi�)β2(Xi�)K

(
Xi� – x0

h/β2(Xi�)

)
(Xi� – x0)l

= nhl+3 H1(x0)
2β l+2

2 (x0)
p(x0)

(
σ 2(x0)

)′′Kl+2
(
1 + op(1)

)
,

where R2(Xi�) = σ 2(Xi�) – σ 2(x0) – (σ 2(x0))′(Xi� – x0).

Proof of Lemma 2 Using the same techniques in proving Lemma 1, we omit the proof
process. �

Lemma 3 Under the conditions C1–C5, C6–C8(i) and C10(i)–13, we have

1√
nh

( ∑n
i=1 ψ1(ui�)β1(Xi�)K( Xi�–x0

h/β1(Xi�) )∑n
i=1 ψ1(ui�)β1(Xi�)K( Xi�–x0

h/β1(Xi�) ) Xi�–x0
h

)
D→N(0,
3),

where 
3 = G2(x0)p(x0)β1(x0)V1.

Proof of Lemma 3 Let

Wn =
n∑

i=1

Wn,i =
n∑

i=1

ψ1(ui�)β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)(
1

Xi�–x0
h

)
,

then by the condition C7(i), we have EWn = 0, and

Var Wn = Var

( n∑
i=1

Wn,i

)
= nEW 2

n,1 + 2
n∑

j=2

(n – j + 1) Cov(Wn,1, Wn,j).
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Similar to the proof methods in Lemma 1, we have

Var Wn = nhG2(x)p(x0)β1(x0)V1
(
1 + o(1)

)
.

Next, we will show the asymptotic normality of 1√
nh

Wn, and this can be shown by using
similar methods to Theorem 2 of [25]. This completes the lemma. �

Lemma 4 Under the conditions C1–C5, C6–C8(ii) and C10(ii)–13, we have

1√
nh

( ∑n
i=1 ψ2(vi�)β2(Xi�)K( Xi�–x0

h/β2(Xi�) )∑n
i=1 ψ2(vi�)β2(Xi�)K( Xi�–x0

h/β2(Xi�) ) Xi�–x0
h

)
D→N(0,
4),

where 
4 = H2(x0)p(x0)β2(x0)V2.

Proof of Lemma 4 The proof methods are similar to those used in Lemma 3. �

Proof of Theorem 1 (i) We now show that the new robust estimators of μ(x) and μ′(x) are
consistent. Let

r = (a1, hb1)T , r0 =
(
μ(x0), hμ′(x0)

)T ,

ri� = (r – r0)T

(
1

Xi�–x0
h

)
,

and

Ln(r) =
n∑

i=1

ρ1

(
X(i+1)� – Xi�

�
– a1 – b1(Xi� – x0)

)
β1(Xi�)K

(
Xi� – x0

h/β1(Xi�)

)
.

Then we have

ri� = (r – r0)T

(
1

Xi�–x0
h

)

=
(
a1 – μ(x0), hb1 – hμ′(x0)

)( 1
Xi�–x0

h

)

= a1 – μ(x0) +
(
hb1 – hμ′(x0)

)Xi� – x0

h
= a1 – μ(x0) +

(
b1 – μ′(x0)

)
(Xi� – x0)

= a1 + b1(Xi� – x0) – μ(x0) – μ′(x0)(Xi� – x0)

= a1 + b1(Xi� – x0) + R1(Xi�) – μ(Xi�)

= a1 + b1(Xi� – x0) + R1(Xi�) –
(

X(i+1)� – Xi�

�
– ui�

)
.

W denote the circle centered at r0 and with radius δ by Sδ . ∀δ > 0, we prove

lim
n→∞ P

{
inf
r∈Sδ

Ln(r) > Ln(r0)
}

= 1. (6)
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For r ∈ Sδ ,

Ln(r) – Ln(r0)

=
n∑

i=1

ρ1

(
X(i+1)� – Xi�

�
– a1 – b1(Xi� – x0)

)
β1(Xi�)K

(
Xi� – x0

h/β1(Xi�)

)

–
n∑

i=1

ρ1

(
X(i+1)� – Xi�

�
– μ(x0) – μ′(x0)(Xi� – x0)

)
β1(Xi�)K

(
Xi� – x0

h/β1(Xi�)

)

=
n∑

i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)[
ρ1
(
ui� + R1(Xi�) – ri�

)
– ρ1

(
ui� + R1(Xi�)

)]

=
n∑

i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)∫ ui�+R1(Xi�)–ri�

ui�+R1(Xi�)
ψ1(t) dt

=
n∑

i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)∫ ui�+R1(Xi�)–ri�

ui�+R1(Xi�)
ψ1(ui�) dt

+
n∑

i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)∫ ui�+R1(Xi�)–ri�

ui�+R1(Xi�)
ψ ′

1(ui�)(t – ui�) dt

+
n∑

i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)

×
∫ ui�+R1(Xi�)–ri�

ui�+R1(Xi�)

[
ψ1(t) – ψ1(ui�) – ψ ′

1(ui�)(t – ui�)
]

dt

=: Ln1 + Ln2 + Ln3.

Next, we will show that

Ln1 = op(nhδ), (7)

Ln2 =
nh
2

(r – r0)T G1(x0)p(x0)U1
(
1 + op(1)

)
(r – r0) + Op

(
nh3δ

)
, (8)

Ln3 = op
(
nhδ2). (9)

For (7), we have

Ln1 =
n∑

i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)∫ ui�+R1(Xi�)–ri�

ui�+R1(Xi�)
ψ1(ui�) dt

=
n∑

i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)
ψ1(ui�)(–ri�)

= –(r – r0)T
n∑

i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)
ψ1(ui�)

(
1

Xi�–x0
h

)

= –(r – r0)T Wn,
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where

Wn =
n∑

i=1

Wn,i =
n∑

i=1

ψ1(ui�)β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)(
1

Xi�–x0
h

)
.

By the proof of Lemma 3, we have EWn = 0, and

Var Wn = nhG2(x)p(x0)β1(x0)V1
(
1 + o(1)

)
.

Note that

Wn =
n∑

i=1

Wn,i = E

( n∑
i=1

Wn,i

)
+ Op

(√√√√Var

( n∑
i=1

Wn,i

))
,

so we have Wn = Op(
√

nh), which means that (7) holds.
For (8), we have

Ln2 =
n∑

i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)∫ ui�+R1(Xi�)–ri�

ui�+R1(Xi�)

[
ψ ′

1(ui�)(t – ui�)
]

dt

=
1
2

n∑
i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)
ψ ′

1(ui�)
(
r2

i� – 2R1(Xi�)ri�
)

=
1
2

n∑
i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)
ψ ′

1(ui�)(r – r0)T

(
1 Xi�–x0

h
Xi�–x0

h
(Xi�–x0)2

h2

)
(r – r0)

–
n∑

i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)
ψ ′

1(ui�)R1(Xi�)ri�

=: Ln21 + Ln22.

From Lemma 1 with l = 0, l = 1 and l = 2, we get

Ln21 =
1
2

n∑
i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)
ψ ′

1(ui�)(r – r0)T

(
1 Xi�–x0

h
Xi�–x0

h
(Xi�–x0)2

h2

)
(r – r0)

=
nh
2

(r – r0)T G1(x0)p(x0)

(
K0

K1
β1(x0)

K1
β1(x0)

K2
β2

1 (x0)

)(
1 + op(1)

)
(r – r0)

=
nh
2

(r – r0)T G1(x0)p(x0)U1
(
1 + op(1)

)
(r – r0)

and

Ln22 = –
n∑

i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)
ψ ′

1(ui�)R1(Xi�)ri�

= –(r – r0)T
n∑

i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)
ψ ′

1(ui�)R1(Xi�)

(
1

Xi�–x0
h

)
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= –
nh3

2
(r – r0)T G1(x0)μ′′(x0)p(x0)

⎛
⎝

K2
β2

1 (x0)
K3

β3
1 (x0)

⎞
⎠(1 + op(1)

)

= Op
(
nh3δ

)
.

Therefore,

Ln2 = Ln21 + Ln22

=
nh
2

(r – r0)T G1(x0)p(x0)U1
(
1 + op(1)

)
(r – r0) + Op

(
nh3δ

)
.

For (9), by the integral mean value theorem, we have

Ln3 =
n∑

i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)

×
∫ ui�+R1(Xi�)–ri�

ui�+R1(Xi�)

[
ψ1(t) – ψ1(ui�) – ψ ′

1(ui�)(t – ui�)
]

dt

=
n∑

i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)∫ R1(Xi�)–ri�

R1(Xi�)

[
ψ1(t + ui�) – ψ1(ui�) – ψ ′

1(ui�)t
]

dt

=
n∑

i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)[
ψ1(zi� + ui�) – ψ1(ui�) – ψ ′

1(ui�)zi�
]
(–ri�)

= –(r – r0)T
n∑

i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)[
ψ1(zi� + ui�) – ψ1(ui�) – ψ ′

1(ui�)zi�
]

×
(

1
Xi�–x0

h

)
,

where zi� (i = 1, 2, . . . , n) lies between R1(Xi�) and R1(Xi�) – ri�.
By |Xi� – x0| ≤ h

minx β1(x) , we have

max
i

|zi�| ≤ max
i

∣∣R1(Xi�)
∣∣ +

∣∣∣∣∣(r – r0)T

(
1

Xi�–x0
h

)∣∣∣∣∣
≤ max

i

∣∣R1(Xi�)
∣∣ +
(

1 +
1

minx β1(x)

)
δ, (10)

and according to Taylor’s expansion,

max
i

∣∣R1(Xi�)
∣∣ = max

i

∣∣μ(Xi�) – μ(x0) – μ′(x0)(Xi� – x0)
∣∣

= max
i

∣∣∣∣12μ′′(ξi)(Xi� – x0)2
∣∣∣∣

≤ Op
(
h2), (11)

where ξi lies between x0 and Xi�, i = 1, 2, . . . , n.
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∀η > 0, let Dη = {(δ1�, δ2�, . . . , δn�)T : |δi�| ≤ η,∀i ≤ n}, by the condition C9(i) and
|Xi� – x0| ≤ h

minx β1(x) , we get

E

[
sup
Dη

∣∣∣∣∣
n∑

i=1

[
ψ1(δi� + ui�) – ψ1(ui�) – ψ ′

1(ui�)δi�
]
β1(Xi�)K

(
Xi� – x0

h/β1(Xi�)

)
(Xi� – x0)l

∣∣∣∣∣
]

≤ E

[ n∑
i=1

sup
Dη

∣∣ψ1(δi� + ui�) – ψ1(ui�) – ψ ′
1(ui�)δi�

∣∣β1(Xi�)

× K
(

Xi� – x0

h/β1(Xi�)

)
|Xi� – x0|l

]

≤ aηδE

[ n∑
i=1

β1(Xi�)K
(

Xi� – x0

h/β1(Xi�)

)
|Xi� – x0|l

]

≤ bηδ,

where aη > 0, bη > 0 are two sequences, and satisfy aη → 0 and bη → 0 as η → 0. From
(10) and (11), we can see that

n∑
i=1

[
ψ1(zi� + ui�) – ψ1(ui�) – ψ ′

1(ui�)zi�
]
β1(Xi�)K

(
Xi� – x0

h/β1(Xi�)

)
(Xi� – x0)l

= op
(
nhl+1δ

)
,

we get (9) immediately.
Let U1 be a positive definite matrix, λ be the smallest eigenvalue of the U1. Accordingly,

for any r ∈ Sδ ,

Ln(r) – Ln(r0)

= Ln1 + Ln2 + Ln3

=
nh
2

G1(x0)p(x0)(r – r0)T U1(r – r0)
(
1 + op(1)

)
+ Op

(
nh3δ

)

≥ nh
2

G1(x0)p(x0)λδ2(1 + op(1)
)

+ Op
(
nh3δ

)
.

So as n → ∞, we have

P
{

inf
r∈Sδ

Ln(r) – Ln(r0) >
nh
2

G1(x0)p(x0)λδ2 > 0
}

→ 1,

it follows that (6) holds. In view of (6), one can easily see that Ln(r) has a local minimum in
the interior of Sδ , thus there exist solutions to equation (4). Let (hμ̂(x0), hμ̂′(x0))T denote
the closest solution to r0 = (μ(x0),μ′(x0))T , then

lim
n→∞ P

{(
μ̂(x0) – μ(x0)

)2 + h2(μ̂′(x0) – μ′(x0)
)2 ≤ δ2} = 1,

we finish the proof of the consistency of the proposed estimators of μ(x) and μ′(x).
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(ii) We derive the asymptotic normality of the new robust estimators of μ(x) and μ′(x).
Let

η̂i� = R1(Xi�) –
(
μ̂(x0) – μ(x0)

)
–
(
μ̂′(x0) – μ′(x0)

)
(Xi� – x0). (12)

Then we have

X(i+1)� – Xi�

�
= μ(Xi�) + ui�

= ui� + μ(Xi�) – μ(x0) – μ′(x0)(Xi� – x0) + μ(x0) + μ′(x0)(Xi� – x0)

= ui� + R1(Xi�) + μ̂(x0) + μ̂′(x0)(Xi� – x0) + η̂i� – R1(Xi�)

= μ̂(x0) + μ̂′(x0)(Xi� – x0) + ui� + η̂i�.

Therefore by (4), we have

n∑
i=1

ψ1(ui� + η̂i�)β1(Xi�)K
(

Xi� – x
h/β1(Xi�)

)(
1

Xi�–x
h

)
= 0. (13)

Let

Tn1 =
n∑

i=1

ψ1(ui�)β1(Xi�)K
(

Xi� – x
h/β1(Xi�)

)(
1

Xi�–x
h

)
= Wn,

Tn2 =
n∑

i=1

ψ ′
1(ui�)η̂i�β1(Xi�)K

(
Xi� – x

h/β1(Xi�)

)(
1

Xi�–x
h

)
,

Tn3 =
n∑

i=1

[
ψ1(ui� + η̂i�) – ψ1(ui�) – ψ ′

1(ui�)η̂i�
]
β1(Xi�)K

(
Xi� – x

h/β1(Xi�)

)(
1

Xi�–x
h

)
.

In view of (13), one can get Tn1 + Tn2 + Tn3 = 0. Lemma 1 and (12) imply that

Tn2 =
n∑

i=1

ψ ′
1(ui�)R1(Xi�)β1(Xi�)K

(
Xi� – x

h/β1(Xi�)

)(
1

Xi�–x
h

)
–

n∑
i=1

ψ ′
1(ui�)β1(Xi�)

· K
(

Xi� – x
h/β1(Xi�)

)(
(μ̂(x0) – μ(x0)) + (μ̂′(x0) – μ′(x0))(Xi� – x0)

Xi�–x
h [(μ̂(x0) – μ(x0)) + (μ̂′(x0) – μ′(x0))(Xi� – x0)]

)

=
n∑

i=1

ψ ′
1(ui�)R1(Xi�)β1(Xi�)K

(
Xi� – x

h/β1(Xi�)

)(
1

Xi�–x
h

)

–
n∑

i=1

ψ ′
1(ui�)β1(Xi�)K

(
Xi� – x

h/β1(Xi�)

)(
1 Xi�–x

h
Xi�–x

h
(Xi�–x)2

h2

)(
μ̂(x0) – μ(x0)

h(μ̂′(x0) – μ′(x0))

)

=
nh3

2
G1(x0)μ′′(x0)p(x0)

⎛
⎝

K2
β2

1 (x0)
K3

β3
1 (x0)

⎞
⎠(1 + op(1)

)

– nhG1(x0)p(x0)

(
K0

K1
β1(x0)

K1
β1(x0)

K2
β2

1 (x0)

)(
1 + op(1)

)( μ̂(x0) – μ(x0)
h(μ̂′(x0) – μ′(x0))

)
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=
nh3G1(x0)μ′′(x0)p(x0)

2β2
1 (x0)

A1
(
1 + op(1)

)

– nhG1(x0)p(x0)U1
(
1 + op(1)

)( μ̂(x0) – μ(x0)
h(μ̂′(x0) – μ′(x0))

)
=: Tn21 + Tn22.

Since we have already got the consistency of (μ̂(x0), hμ̂′(x0)) and using |Xi� – x0| ≤
h

minx β1(x) , we have

sup
i

|η̂i�| = sup
i

∣∣R1(Xi�) –
(
μ̂(x0) – μ(x0)

)
–
(
μ̂′(x0) – μ′(x0)

)
(Xi� – x0)

∣∣

≤ sup
i

∣∣R1(Xi�)
∣∣ +
∣∣μ̂(x0) – μ(x0)

∣∣ +
h

minx β1(x)
∣∣μ̂′(x0) – μ′(x0)

∣∣
= Op

(
h2 +

(
μ̂(x0) – μ(x0)

)
+ h
(
μ̂′(x0) – μ′(x0)

))
= op(1),

then, by the condition C9(i) and the same argument as that in the first part of Theorem 1,
we have

Tn3 =
n∑

i=1

[
ψ1(ui� + η̂i�) – ψ1(ui�) – ψ ′

1(ui�)η̂i�
]
β1(Xi�)K

(
Xi� – x

h/β1(Xi�)

)(
1

Xi�–x
h

)

= op(nh)
[
h2 +

(
μ̂(x0) – μ(x0)

)
+ h
(
μ̂′(x0) – μ′(x0)

)]
= op(Tn22).

Therefore, using the fact that Tn1 + Tn2 + Tn3 = 0, we have

(
μ̂(x0) – μ(x0)

h(μ̂′(x0) – μ′(x0))

)

=
1

nh
G–1

1 (x0)p–1(x0)U–1
1
(
1 + op(1)

)
Wn +

h2

2β2
1 (x0)

μ′′(x0)U–1
1 A1

(
1 + op(1)

)
,

it follows that

√
nh

[(
μ̂(x0) – μ(x0)

h(μ̂′(x0) – μ′(x0))

)
–

h2μ′′(x0)
2β2

1 (x0)
U–1

1 A1
(
1 + op(1)

)]

= G–1
1 (x0)p–1(x0)U–1

1
(
1 + op(1)

) 1√
nh

Wn.

According to Lemma 3 and the Slutsky theorem, we have

√
nh

[(
μ̂(x0) – μ(x0)

h(μ̂′(x0) – μ′(x0))

)
–

h2μ′′(x0)
2β2

1 (x0)
U–1

1 A1

]

D→G–1
1 (x0)p–1(x0)U–1

1 N(0,
3)

= N
(

0,
G2(x0)β1(x0)
G2

1(x0)p(x0)
U–1

1 V1U–1
1

)

= N(0,
1).

This completes the proof. �
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Proof of Theorem 2 By using Lemma 2 and Lemma 4 instead of Lemma 1 and 3, the proof
of this theorem is similar to Theorem 1, so it is omitted here. �

5 Conclusions
In this paper, new variable bandwidth nonparametric robust estimators for the drift func-
tion and diffusion function of diffusion processes based on discrete-time observations are
devised. The new estimators are based on the local linear regression technique and the
maximum likelihood type estimation technique, and they have a good control of outliers.
The proposed estimators are proved to be consistent and asymptotically normal.

The authors of [23–25] developed robust version estimators of regression function for
stationary time series sequence under independent data and dependent data, respectively.
Based on their research, in this paper, we studied a continuous-time diffusion process de-
termined by a stochastic differential equation, and our robust estimators based on local
linear regression techniques; the reader can consider a robust estimator for a diffusion
process by using local polynomial regression techniques. Moreover, the basic ideas of this
paper have good generality and can be extended to other continuous-time stochastic mod-
els.

In addition, in this paper, we only considered robust estimators for the one dimensional
diffusion process; in fact, the basic ideas of our methodology hold for the case of multidi-
mensional diffusion processes and situations.
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