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Abstract
This paper studies the bounded input bounded output stability for the Lurie system
with time-varying delay. Utilizing the Lyapunov method and linear matrix inequality
technology, new bounded input bounded output stability criteria are derived. The
numerical simulation is carried out to show the system’s dynamic response, and
demonstrate the effectiveness of theoretical results.
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1 Introduction
As one of the important nonlinear systems, the Lurie system can be deemed to consist of
the linear forward path part, and the nonlinear feedback path part which satisfies the non-
linear bounded constraints. Since the pioneering work in the last century by Lurie [1, 2],
much related research has been carried out [3–7]. For instance, [8] studied the indirect
regulation on a nonlinear system with delay argument; [9] investigated the stabilization
on a nonlinear system with time delay. These results have possible applications in fields
such as complex networks and chaotic systems which are Lurie systems [10–16].

The analysis on bounded input bounded output (BIBO) stability of systems is very im-
portant for its possible application in single/double loop � modulators, issues connected
with bilinear input/output maps and so on, and they have received a lot of attention from
scholars. For instance, [17] studied the BIBO stability of 2D discrete delayed systems, [18]
researched the BIBO stability of fractional systems, [19] investigated study the BIBO sta-
bility of switched uncertain neutral systems, [20] concerned the BIBO stability of per-
turbed interconnected power systems, and [21] focused on the BIBO stability of feedback
control systems. However, the results on BIBO stability for the Lurie system is seldom
found at present. These motivate our research.

In addition, time-varying delay exists in practical systems widely [22–28], which will
make impacts to the stability of Lurie systems. The requirement that the derivative of
time-varying delay is less than 1 will restrict the applied scope of the criteria.

With the above concerns, the problem on the bounded input bounded output stability
for the Lurie system with time-varying delay will be discussed. The remainder of this paper
is organized as follows. Model description and preliminaries will be presented in Section 2.
Based on Lyapunov function constructed and linear matrix inequalities [29], the bounded
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input bounded output criteria will be derived in Section 3. Typical numerical examples will
be included to show the effectiveness of theoretical results obtained in Section 4. Finally,
the paper will be concluded in Section 5.

Notation R denotes the set of real numbers. R+ denotes the set of nonnegative real num-
bers. Rn denotes the set of n-dimensional real column vectors. Rn×n denotes the set of
n × n real matrix. ∗ denotes the symmetric part in matrix. A > 0 means that A is a real
symmetric positive definitive matrix. I denotes the identity matrix with appropriate di-
mensions. diag{· · · } denotes the diagonal matrix. λmin(·) denotes the minimum eigenvalue
of a matrix. λmax(·) denotes the maximum eigenvalue of a matrix. Ln∞ denotes the set of
bounded function r : R+ → Rn×n with norm ‖r‖∞ = supt0≤t<∞ ‖r(t)‖ < +∞. sup denotes
the supremum. ‖ · ‖∞ denotes the infinite norm.

2 Model description and preliminaries
Consider the following Lurie system with time-varying delay:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) + Bx(t – τ (t)) + Df (t, z(t)) + Hu(t),

z(t) = Lx(t) + Nx(t – τ (t)),

u(t) = Gx(t) + r(t),

Y (t) = Jx(t),

x(t0 + θ ) = ϕ(θ ), θ ∈ [–h 0],

(1)

where x(t) ∈ Rn is the state vector of the system, 0 ≤ τ (t) ≤ h is the time-varying delay,
ϕ(θ ) ∈ Ln,h is the initial condition of the system. u(t) ∈ Rl is the control input, Y (t) ∈ Rm is
the system output, r(t) ∈ Rl is the reference input, f (t, z(t)) ∈ Rn is the system’s nonlinear
term, satisfying the bounded sector constraint,

f T(
t, z(t)

)(
f
(
t, z(t)

)
– Kz(t)

) ≤ 0,

where K is a positive scalar.
Hence,

–2f T (t)f (t) + 2f T (t)K
(
Lx(t) + Nx

(
t – τ (t)

)) ≥ 0.

Lurie system (1) can be represented as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = y(t),

y(t) = Ax(t) + Bx(t – τ (t)) + Df (t, z(t)) + Hu(t),

z(t) = Lx(t) + Nx(t – τ (t)),

u(t) = Gx(t) + r(t),

Y (t) = Jx(t),

x(t0 + θ ) = ϕ(θ ), θ ∈ [–h 0].

(2)

In the paper, the following lemma and definitions are needed.
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Lemma 1 ([30]) For any constant matrices E, G and F with appropriate dimensions,
FT F ≤ kI , k is a positive scalar, then

2xT EFGy ≤ cxT EET x +
k
c

yT GT Gy, (3)

where c is a positive scalar, x ∈ Rn and y ∈ Rn.

Definition 1 ([31]) A real-valued vector r(t) ∈ Ln∞, if ‖r‖∞ = supt0≤t<∞ ‖r(t)‖ < +∞.

Definition 2 ([31]) The control system with reference input r(t) is bounded input
bounded output stable, if there exist some positive constants θ1, θ2, satisfies

∥
∥Y (t)

∥
∥ ≤ θ1‖r‖∞ + θ2 (4)

for every reference input r(t) ∈ Ln∞.

3 Main results
In this section, based on the Lyapunov method and linear matrix inequality techniques,
the following stability criteria are derived.

Theorem 1 For the given positive scalars h and k, Lurie system (1) is bounded input
bounded output stable, if there exist matrices P, R, Q, S, P2, P3, U , V , W , and positive
scalar σ , such that

� + � + �T + hekhW < 0,
[

W U ,
∗ S – R22

]

> 0, (5)

[
W V
∗ S

]

> 0,

where

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�1,1 �1,2 �1,3 �1,4 �1,5 �1,6

∗ �2,2 �2,3 �2,4 �2,5 �2,6

∗ ∗ �3,3 �3,4 0 0
∗ ∗ ∗ �4,4 0 0
∗ ∗ ∗ ∗ �5,5 0
∗ ∗ ∗ ∗ ∗ �6,6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�1,1 = P2A + AT PT
2 + P2HG + GT HT PT

2 + kP + Q, �2,4 = P3D,

�1,2 = P – P2 + AT PT
3 + GT HT PT

3 , �3,4 = NT KT ,

�2,2 = hekhS – P3 – PT
3 , �4,4 = –2I,

�1,3 = P2B + RT
12, �5,5 = –Qe–kh,

�2,3 = P3B, �1,6 = P2H ,
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�3,3 = hR11 – R12 – RT
12, �2,6 = P3H ,

�1,4 = P2D + LT KT , �6,6 = –σ I,

� =
[
U 0 –U + V 0 –V 0

]
.

Proof Choose the Lyapunov-Krasovskii functional [32] as

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t),

where

V1(t) =
(
xT (t) yT (t)

)
[

I 0
0 0

][
P 0

PT
2 PT

3

]
(
xT (t) yT (t)

)T ,

V2(t) =
∫ 0

–h

∫ t

t+β

yT (α)ek(α–t+h)Sy(α) dα dβ ,

V3(t) =
∫ t

–h

∫ β

β–τ (β)
ηT ek(β–t)Rη dα dβ ,

V4(t) =
∫ 0

–h

∫ t

t+β

ξT (α)ek(α–t+h)Wξ (α) dα dβ ,

V5(t) =
∫ t

t–h
xT (s)ek(s–t)Qx(s) ds,

η =
[
x(β – τ (β)) y(α)

]T ,

ξ =
[
xT (t) yT (t) xT (t – τ (t)) f T (t) xT (t – h) rT (t)

]T .

The derivative of V (t) along trajectory of system (2) is given by

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) + V̇5(t),

where

V̇1(t) = 2
[
xT (t) yT (t)

]
[

g(t)Pi P2

0 P3

][
y(t)

0

]

= 2g(t)xT (t)Piy(t) + 2
(
xT (t)P2 + yT (t)P3

)(
–y(t) + (A + HG)x(t)

+ Bx
(
t – τ (t)

)
+ Df (t) + Hr(t)

)
,

V̇2(t) = hyT (t)ekhSy(t) –
∫ t

t–τ (t)
yT (s)ek(s–t+h)Sy(s) ds –

∫ t–τ (t)

t–h
yT (s)ek(s–t+h)Sy(s) ds

– kV2(t)

≤ hyT (t)ekhSy(t) –
∫ t

t–τ (t)
yT (s)Sy(s) ds –

∫ t–τ (t)

t–h
yT (s)Sy(s) ds – kV2(t),

V̇3(t) = τ (t)xT(
t – τ (t)

)
R11x

(
t – τ (t)

)
+ 2xT(

t – τ (t)
)
R12x(t)

– 2xT(
t – τ (t)

)
R12x

(
t – τ (t)

)
+

∫ t

t–τ (t)
y(s)R22y(s) ds – kV3(t)
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≤ hxT(
t – τ (t)

)
R11x

(
t – τ (t)

)
+ 2xT (t)RT

12x
(
t – τ (t)

)

– 2xT(
t – τ (t)

)
R12x

(
t – τ (t)

)
+

∫ t

t–τ (t)
y(s)R22y(s) ds – kV3(t),

V̇4(t) = hξT (t)ekhWξ (t) –
∫ t

t–τ (t)
ξT (s)ek(s–t+h)Wξ (s) ds

–
∫ t–τ (t)

t–h
ξT (s)ek(s–t+h)Wξ (s) ds – kV4(t)

≤ hξT (t)ekhWξ (t) –
∫ t

t–τ (t)
ξT (s)Wξ (s) ds –

∫ t–τ (t)

t–h
ξT (s)Wξ (s) ds – kV4(t),

V̇5(t) = xT (t)Qx(t) – xT (t – h)e–khQx(t – h) – kV5(t).

According to the Leibniz–Newton formula [33]

2ξT U
[

x(t) – x
(
t – τ (t)

)
–

∫ t

t–τ (t)
yT (s) ds

]

= 0,

2ξT V
[

x
(
t – τ (t)

)
– x(t – h) –

∫ t–τ (t)

t–h
yT (s) ds

]

= 0.

Therefore,

V̇ (t) ≤ ξT(
� + 
 + 
T + hekhW

)
ξ –

∫ t

t–τ (t)
ζ T�1ζ ds –

∫ t–τ (t)

t–h
ζ T�2ζ ds

– kV (t) + σ
∥
∥r(t)

∥
∥2

∞,

where

ζ =
[
ξT yT (s)

]T ,

�1 =

[
W U
∗ S – R22

]

,

�2 =

[
W V
∗ S

]

.

According to (5)

V̇ (t) ≤ –kV (t) + σ
∥
∥r(t)

∥
∥2

∞.

We will have the following formula:

(
V (t)ekt)′ ≤ (

V̇ (t) + kV (t)
)
ekt ≤ σ

∥
∥r(t)

∥
∥2

∞ekt .

We integrate the above inequality from t0 to t

V (t)ekt ≤ V (t0)ekt0 + σ
∥
∥r(t)

∥
∥2

∞

∫ t

t0

eks ds.
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We will obtain

λmin(P)‖x‖2 ≤ V (t) ≤ V (t0)e–k(t–t0) + σ
∥
∥r(t)

∥
∥2

∞

∫ t

t0

e–k(t–s) ds.

Consider
∫ t

t0

e–k(t–s) ds = e–kt
∫ t

t0

eks ds

= e–kt (ekt – ekt0 )
k

=
1
k

–
ek(t0–t)

k

≤ 1
k

.

One can get

λmin(P)‖x‖2 ≤ V (t0)e–k(t–t0) +
σ‖r(t)‖2∞

k
.

Let us define

ψ = max
{

sup
h≤θ≤0

∥
∥ϕ(t0 + θ )

∥
∥, sup

h≤θ≤0

∥
∥ϕ′(t0 + θ )

∥
∥
}

.

According to the definition of V (t), we have

V (t0) ≤ [
λmax(P) + h2ekhλmax(S) + h2λmax(R) + h2ekhλmax(W ) + hλmax(Q)

]
ψ2.

The following inequality can be concluded:

‖x‖2 ≤ a
λmin(P)

ψ2 +
σ

kλmin(P)
∥
∥r(t)

∥
∥2

∞

≤
(√

a
λmin(P)

ψ +
√

σ

kλmin(P)
∥
∥r(t)

∥
∥∞

)2

,

where

a = λmax(P) + h2ekhλmax(S) + h2λmax(R) + h2ekhλmax(W ) + hλmax(Q) > 0.

We will obtain

‖Y‖ ≤ ‖J‖‖x‖ ≤ θ1 + θ2
∥
∥r(t)

∥
∥∞,

where

θ1 = ‖J‖
√

a
λmin(P)

ψ ,

θ2 = ‖J‖
√

σ

kλmin(P)
.
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Hence, Lurie system (1) is bounded input bounded output stable. The proof of Theorem 1
is thus completed. �

4 Extension
Next, we consider Lurie system (1) with nonlinear term, which satisfies the following
bounded sector constraint:

(
f T(

t, z(t)
)

– K1z(t)
)(

f
(
t, z(t)

)
– K2z(t)

) ≤ 0,

where K1 and K2 are positive scalars, such that

K2 > K1.

Let

FT(
t, z(t)

)
= f T(

t, z(t)
)

– K1z(t).

We have

FT(
t, z(t)

)(
F
(
t, z(t)

)
– Kz(t)

) ≤ 0,

where

K = K2 – K1.

The following inequality can be derived:

–2FT (t)F(t) + 2FT (t)K
(
Lx(t) + Nx

(
t – τ (t)

)) ≥ 0.

Therefore Lurie system (1) can be transformed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Āx(t) + B̄x(t – τ (t)) + DF(t, z(t)) + Hu(t),

z(t) = Lx(t) + Nx(t – τ (t)),

u(t) = Gx(t) + r(t),

Y (t) = Jx(t),

x(t0 + θ ) = ϕ(θ ), θ ∈ [–h 0],

(6)

where

Ā = A + DK1L,

B̄ = B + DK1N .

Then based on Theorem 1, the following theoretical result can be concluded.
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Theorem 2 For the given positive scalars h and k, Lurie system (6) is bounded input
bounded output stable, if there exist matrices P, R, Q, S, P2, P3, U , V , W , and positive
scalar σ , such that

� + � + �T + hekhW < 0,
[

W U
∗ S – R22

]

> 0, (7)

[
W V
∗ S

]

> 0,

where

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�1,1 �1,2 �1,3 �1,4 �1,5 �1,6

∗ �2,2 �2,3 �2,4 �2,5 �2,6

∗ ∗ �3,3 �3,4 0 0
∗ ∗ ∗ �4,4 0 0
∗ ∗ ∗ ∗ �5,5 0
∗ ∗ ∗ ∗ ∗ �6,6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�1,1 = P2(A + DK1L) + (A + DK1L)T PT
2 + P2HG + GT HT PT

2 + kP + Q, �2,4 = P3D,

�1,2 = P – P2 + (A + DK1L)T PT
3 + GT HT PT

3 , �3,4 = NT KT ,

�2,2 = hekhS – P3 – PT
3 , �4,4 = –2I,

�1,3 = P2(B + DK1N) + RT
12, �5,5 = –Qe–kh,

�2,3 = P3(B + DK1N), �1,6 = P2H ,

�3,3 = hR11 – R12 – RT
12, �2,6 = P3H ,

�1,4 = P2D + LT KT , �6,6 = –σ I,

� =
[
U 0 –U + V 0 –V 0

]
.

5 Simulation
In this section, some typical simulation examples will be included to verify the correctness
of the theoretical results.

Consider the following Lurie system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) + Bx(t – τ (t)) + Df (t, z(t)) + Hu(t),

z(t) = Lx(t) + Nx(t – τ (t)),

u(t) = Gx(t) + r(t),

Y (t) = Jx(t),

x(t0 + θ ) = ϕ(θ ), θ ∈ [–h 0]

with

A =

[
–1 0.5
0.5 –2

]

, B =

[
–0.4 0
0.3 –0.4

]

, D =

[
–0.4 0.3

0 –0.3

]

,
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H =

[
0.4 0
0 0.4

]

, L =

[
0.2 0
0 0.2

]

, N =

[
0.3 0
0 0.3

]

,

G =

[
0.2 0
0 0.2

]

, J =

[
1 0
0 1

]

,

r(t) =
[

2 cos(2t) sin

(
et

t + 1

)

; sin(2t) cos
(
et)

]

,

f (t, z) =
[|z + 1| + |z – 1|]/2,

τ (t) = 1 + 0.5 sin2(6t), K = I.

Let h = 1.5, k = 0.1, according to Theorem 1, we can get

P =

[
6.9034 0.3387
0.3387 6.4575

]

, P2 =

[
4.6360 0.9507
1.0990 2.8319

]

,

P3 =

[
3.6444 0.6788
0.9099 2.3317

]

, R11 =

[
0.4741 0.0962
0.0962 0.3748

]

,

R12 =

[
0.5787 0.1252
0.1452 0.4494

]

, R22 =

[
1.0521 0.3290
0.3290 0.7846

]

,

S =

[
2.0780 0.4701
0.4701 1.3947

]

, Q =

[
3.4753 –0.6448

–0.6448 4.3384

]

,

σ = 6.0819.

Remark 1 For the given example, 1 ≤ τ̇ (t) ≤ 1.5, our criterion is still available because it
is independent of the derivative of the time-varying delay of the system.

Remark 2 When the parameter k is fixed, the allowable upper bound hmax of time delay
h of Lurie system (1) can be determined by solving the following optimization problem
based on LMI method:

⎧
⎨

⎩

hmax = maxk∈[0,0.3]{h}
when LMI (5) is satisfied.

For the given example, we can get Table 1.

Remark 3 Table 1 shows the relationship between the parameter k and the allowable upper
bound hmax of time delay. It can be seen that the allowable upper bound hmax of time delay
decreases with the increase of the parameter k, and it takes the maximum value 2.5973
when k is zero.

Next, set the system initial state ϕ(θ ) = [–1.5; 1.5]T , t ∈ (–1.5, 0) and the numerical simu-
lation step 0.001 s. Corresponding numerical simulation results are shown in Figures 1–4.

Table 1 Relationship between k and hmax

k = 0 k = 0.1 k = 0.2 k = 0.3
hmax = 2.5973 hmax = 2.1693 hmax = 1.8842 hmax = 1.6736
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Figure 1 Time response of reference input variable r1(t) of the Lurie system

Figure 2 Time response of reference input variable r2(t) of the Lurie system
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Figure 3 Time response of output variable Y1(t) of the Lurie system

Figure 4 Time response of output variable Y2(t) of the Lurie system
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Remark 4 Figures 1 and 2 depict the time response of reference input variables r1(t) and
r2(t) of the Lurie system. It can be seen that the motion of the system reference input
variables are restricted in a set range. Figures 3 and 4 depict the time response of output
variables Y1(t) and Y2(t) of the Lurie system. It can be seen that the system output variables
move within a bounded range. The Lurie system in the example is bounded input bounded
output stable.

6 Conclusions
In this paper, we have studied the bounded input bounded output stability for the Lurie
system with time-varying delay. Based on the Lyapunov method and linear matrix inequal-
ity technology, new bounded input bounded output stability criteria for the Lurie system
have been derived. A typical numerical simulation example has been included to verify
the correctness of the presented theoretical results.
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