
Jiang et al. Advances in Difference Equations  (2018) 2018:83 
https://doi.org/10.1186/s13662-018-1503-4

R E S E A R C H Open Access

Asymptotic behavior of impulsive neutral
delay differential equations with positive
and negative coefficients of Euler form
Fangfang Jiang1*, Jianhua Shen2 and Zhicheng Ji3

*Correspondence:
jiangfangfang87@126.com
1School of Science, Jiangnan
University, Wuxi, China
Full list of author information is
available at the end of the article

Abstract
In this paper, we are concerned with asymptotic properties of solutions for a class of
neutral delay differential equations with forced term, positive and negative
coefficients of Euler form, and constant impulsive jumps of the form

{
[x(t) – C(t)g(x(τ (t)))]′ + P(t)

t f (x(αt)) –
Q(t)
t f (x(βt)) = h(t), t ≥ t0 > 0, t �= tk ,

x(t+k ) – x(tk) = αk , k ∈ Z+.

By constructing auxiliary functions and applying the technique of considering
asymptotic properties of nonoscillatory and oscillatory solutions we establish some
sufficient conditions to guarantee that every solution of the system tends to zero as
t → +∞.

MSC: 34K45; 34D05; 34K20
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1 Introduction
According to the order of derivative, differential equations can be classified into integer-
order and fractional differential equations. Fractional differential equations are a general-
ization of arbitrary noninteger-order equations. Both of them are unified and widely used
in mathematical modeling of practical applications in the real world. For more detail on
the theory, see, for example, [1–3] and references therein. However, many dynamical sys-
tems possess an impulsive dynamical behavior due to abrupt changes at certain instants
during the evolution process. The mathematical description of these phenomena leads to
impulsive differential equations [4]. Indeed, they appeared as a more natural framework
for mathematical modeling of many real-world phenomena often and occur in applied sci-
ence and engineering [4–8], for example, in as physics, population dynamics, ecology sys-
tems, optimal control, industrial robotic, etc. The idea of impulsive differential equations
has been a subject of interest not only among mathematicians, but also among physicists
and engineers.

In recent years, the research on relevant issues of solutions are of main interest; see, for
example, [9–13] on the existence of solutions for some (singular) fractional differential

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1503-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1503-4&domain=pdf
mailto:jiangfangfang87@126.com


Jiang et al. Advances in Difference Equations  (2018) 2018:83 Page 2 of 10

equations under different conditions and [6, 7, 14–23] on the asymptotic behavior of so-
lutions for various kinds of impulsive differential equations. As is well known, there are
two main methods for investigating the asymptotic properties of solutions. The first one is
the Lyapunov method; see, for example, [14–19] and references therein. Wei and Shen [18]
studied the following nonlinear impulsive neutral delay differential equation with positive
and negative coefficients:

⎧⎪⎪⎨
⎪⎪⎩

[x(t) – c(t)x(t – τ )]′ + p(t)f (x(t – δ)) – q(t)f (x(t – σ )) = 0, t ≥ t0 > 0, t �= tk ,

x(t+
k ) = bkx(tk)

+ (1 – bk)(
∫ tk

tk –δ
p(s + δ)f (x(s)) ds –

∫ tk
tk –σ

q(s + σ )f (x(s)) ds), k ∈ Z+,

(1.1)

and obtained that every solution of (1.1) tends to a constant as t → +∞ (i.e. asymp-
totic constancy). Similar impulsive perturbations were considered in [14] by studying the
asymptotic constancy of an impulsive neutral differential equation of Euler form with un-
bounded delays,

⎧⎨
⎩[x(t) – C(t)x(αt)]′ + P(t)

t x(βt) = 0, t ≥ t0 > 0, t �= tk ,

x(t+
k ) = bkx(tk) + (1 – bk)

∫ tk
βtk

P(s/β)
s x(s) ds, k ∈ Z+.

(1.2)

Note that the impulsive terms in (1.1)–(1.2) contain integral expressions, which implies
that the impulsive jumps x(t+

k ) – x(tk) not only depend on values of the state x at tk but
also depend on previous values of tk . As practice shows, the appearance of such impulsive
perturbations leads to application of the Lyapunov method.

The other method is the technique of considering asymptotic properties of nonoscil-
latory and oscillatory solutions; see, for example, [20–23] and references therein. In [22],
the authors studied the asymptotic behavior of the following linear impulsive neutral delay
differential equation:

⎧⎨
⎩[x(t) – px(t – τ )]′ +

∑n
i=1 qi(t)f (x(t – σi)) = h(t), t �= tk ,

x(t+
k ) – x(tk) = bkx(tk), k ∈ Z+,

(1.3)

where qi, h ∈ C0([0, +∞),R). Moreover, there are also several papers dedicated to this sub-
ject for some types of systems with constant impulsive jumps, i.e. x(t+

k ) – x(tk) = αk , and αk

are constants. The constant impulse is a class of common impulsive perturbations appear-
ing in many physical applications. However, the aforementioned two methods cannot be
simply and directly applied to derive sufficient conditions such that every solution tends
to a constant, and even to zero, as t → +∞. In fact, the Lyapunov method can only be
applied to deal with the specific impulse of the integral term, but the constant jumps αk

lead to the failure of positive definiteness of Lyapunov function/functional.
In this paper, inspired by (1.1)–(1.3), we investigate the asymptotic behavior of solutions

for a class of impulsive neutral differential equations with unbounded delays, positive and
negative coefficients of Euler form, forced term, and constant impulsive jumps as follows

⎧⎨
⎩[x(t) – C(t)g(x(τ (t)))]′ + P(t)

t f (x(αt)) – Q(t)
t f (x(βt)) = h(t), t ≥ t0 > 0, t �= tk ,

x(t+
k ) – x(tk) = αk , k ∈ Z+,

(1.4)
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where P, Q, h ∈ PC([t0, +∞),R) satisfy P(t) > 0, Q(t) > 0, and PC(·, ·) denotes a set of piece-
wise continuous functions. Hereinafter, to obtain the desired results, we introduce the
function H(t) =

∫ +∞
t h(s) ds for t ∈ (tk , tk+1] and H(tk) =

∫ +∞
tk

h(s) ds + α+
k–1, k ∈ Z+, which

establishes a link between the constant impulsive jumps and the force term. We cannot
simply and directly apply any one of the two methods mentioned. However, by construct-
ing auxiliary functions and applying the technique of considering properties of nonoscil-
latory and oscillatory solutions we provide some new sufficient conditions to guarantee
that every (non)oscillatory solution of (1.4) tends to zero as t → +∞.

This paper is organized as follows. In Section 2, we present some preliminaries. In Sec-
tion 3, we state and prove our main results. In Section 4, we give an example to illustrate
the obtained results. Conclusion is outlined in Section 5.

2 Preliminaries
Consider the impulsive neutral differential equation with positive and negative coefficients
of Euler form, unbounded delays, and constant impulsive jumps

⎧⎨
⎩[x(t) – C(t)g(x(τ (t)))]′ + P(t)

t f (x(αt)) – Q(t)
t f (x(βt)) = h(t), t ≥ t0 > 0, t �= tk ,

x(t+
k ) – x(tk) = αk , k ∈ Z+,

(2.1)

where C ∈ C0([t0, +∞),R), g, f ∈ C0(R,R), P, Q, h ∈ PC([t0, +∞),R) with P(t) > 0 and
Q(t) > 0; τ (t) is increasing and satisfies τ (t) ≤ t and limt→+∞ τ (t) = +∞, α and β are con-
stants satisfying 0 < α,β < 1, {tk} denotes an impulsive time sequence satisfying t0 < tk <
tk+1 ↑ +∞ as k → +∞, {αk} is a constant impulsive perturbed sequence, R denotes the set
of real numbers,Z+ denotes the set of positive integers, and PC([t0, +∞),R) denotes the set
of functions ϕ : [t0, +∞) →R such that ϕ is continuous everywhere except at some points
tk , k ∈ Z+, and the limits ϕ(t+

k ) = limt→t+
k
ϕ(t), ϕ(t–

k ) = limt→t–
k
ϕ(t) exist with ϕ(tk) = ϕ(t–

k ).
In this paper, we assume the following hypotheses for (2.1).
(H1) There exist M2 ≥ M1 > 0 such that M1 ≤ f (x)

x ≤ M2 for x �= 0.
(H2) There exist 0 < N1 ≤ N2 ≤ 1 such that N1 ≤ g(x)

x ≤ N2 for x �= 0.
(H3) The integral

∫ +∞
t h(s) ds is convergent for t ≥ t0.

(H4) τ (tk), k ∈ Z+, are not impulsive points.
We associate with (2.1) the initial value condition

x(t) = ϕ(t), t ∈ [t0 – γ , t0], (2.2)

where γ = t0 – min{inft≥t0{t – τ (t)}, (1 – α)t0, (1 – β)t0}.
It is easy to show the global existence and uniqueness of solutions of the initial value

problem (2.1)–(2.2). In the following, we give two relevant definitions.

Definition 2.1 A function x(t) is called as a solution of (2.1)–(2.2) if
(1) x(t) = ϕ(t) for t ∈ [t0 – γ , t0], and x(t) is continuous for t ≥ t0, t �= tk , k ∈ Z+;
(2) x(t) – C(t)g(x(τ (t))) is continuously differentiable for t ≥ t0, t �= tk , t �= tk/α, t �= tk/β ,

k ∈ Z+, and satisfies (2.1);
(3) x(t+

k ) and x(t–
k ) exist with x(tk) = x(t–

k ), k ∈ Z+, and satisfy (2.1).
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Definition 2.2 A solution x(t) is said to be eventually positive (negative) if it is positive
(negative) for all sufficiently large t. It is called an oscillatory solution if it is neither even-
tually positive nor eventually negative. Otherwise, it is called as a nonoscillatory solution.

3 Main results
Theorem 3.1 Let (H1)–(H4) hold. Assume that lim supt→+∞ |C(t)| = C < 1, limk→+∞ α+

k =
0, P(t/α)

t – Q(t/β)
t ≥ 0 for sufficiently large t,

∫ +∞

t0

[
P(t/α)

t
–

Q(t/β)
t

]
dt = +∞, (3.1)

and there exists a constant λ > 0 such that

∫ t

αt

P(s/α)
s

ds ≤ λ <
1 – CN2

M2
(3.2)

for t large enough, where α+
k = max{αk , 0}, k ∈ Z+, and CN2 < 1. Then every nonoscillatory

solution of (2.1) tends to zero as t → +∞.

Proof Choose sufficiently large tN such that (3.2) holds for t ≥ tN . Since limt→+∞ τ (t) =
+∞, there exists a positive integer m large enough such that τ (tm) > tN , where m is the
smallest subscript satisfying τ (tm) > tN . Let x(t) be any nonoscillatory solution of (2.1)
and assume that it is an eventually positive solution. The case where x(t) is eventually
negative is symmetric. Now we let x(t) > 0 for t ≥ tN and set

y(t) = x(t) – C(t)g
(
x
(
τ (t)

))
–

∫ t

αt

P(s/α)
s

f
(
x(s)

)
ds +

∫ t

βt

Q(s/β)
s

f
(
x(s)

)
ds + H(t) – α(t) (3.3)

for t ≥ tM � max{tm, tN /r} and r = min{α,β}, where α(t) and H(t) are of the form

α(t) =

{
α+

Mt , t > tM+1,
0, t ∈ [tM, tM+1],

(3.4)

where Mt denotes the largest subscript of impulsive points in (tM, t), and

H(t) =

{∫ +∞
t h(s) ds, t ∈ (tk , tk+1],∫ +∞
t h(s) ds + α+

k–1, t = tk , k ∈ Z+,
(3.5)

with α0 = 0. When t > tM and t �= tk , it follows that α′(t) = 0. Furthermore, for t > tM , t �= tk ,
t �= tk/α, t �= tk/β , and k ∈ Z+, we have

y′(t) =
[
x(t) – C(t)g

(
x
(
τ (t)

))]′ –
P(t/α)

t
f
(
x(t)

)
+

P(t)
t

f
(
x(αt)

)
+

Q(t/β)
t

f
(
x(t)

)
–

Q(t)
t

f
(
x(βt)

)
– h(t)

=
[

–
P(t/α)

t
+

Q(t/β)
t

]
f
(
x(t)

)
, (3.6)
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whereas for t = tM+1, we have that y(t+
M+1) – y(tM+1) = αM+1 – α+

M – α+
M+1 ≤ 0, and for t = tk ,

k = M + 2, M + 3, . . . , it follows from (3.4)–(3.5) that

y
(
t+
k
)

– y(tk) = αk – α+
k–1 – α+

k + α+
k–1 ≤ 0. (3.7)

Hence from (3.6)–(3.7) it follows that y(t) is nonincreasing on [tM, +∞).
Let L = limt→+∞ y(t). We claim that L ∈ R. Otherwise L = –∞, and then x(t) is un-

bounded. If x(t) is bounded, then there exists a constant G > 0 such that

y(t) ≥ x(t) – CN2x
(
τ (t)

)
– G

∫ t

αt

P(s/α)
s

ds + H(t) – α(t).

As t → +∞, by (H3)–(H4) and (3.2) we have that L > –∞, a contradiction, and so x(t) is
unbounded. Due to L = –∞, we choose t∗ ≥ tM (sufficiently large if necessary) such that
y(t∗) – H(t∗) + α(t∗) < 0 and x(t∗) = max{x(t) : min{rt∗, τ (t∗)} ≤ t ≤ t∗}. Furthermore, we
have that

0 > y
(
t∗) – H

(
t∗) + α

(
t∗) > x

(
t∗) – CN2x

(
τ
(
t∗)) – M2

∫ t∗

αt∗

P(s/α)
s

x(s) ds

> x
(
t∗)[1 – CN2 – M2

∫ t∗

αt∗

P(s/α)
s

ds
]

> 0.

This is a contradiction, and so L ∈R.
By integrating (3.6) from tM to t we have that

∫ t

tM

[
P(s/α)

s
–

Q(s/β)
s

]
f
(
x(s)

)
ds = –

∫ t

tM

y′(s) ds

= y(tM) – y(t) +
∑

tM<tk≤t

[
y
(
t+
k
)

– y(tk)
]

< y(tM) – L. (3.8)

Then
∫ +∞

t0
[ P(s/α)

s – Q(s/β)
s ]f (x(s)) ds < +∞, and it follows from (3.1) that f (x(t)) ∈

L1([tM, +∞),R), and thus lim inft→+∞ f (x(t)) = 0. We next show that

lim inf
t→+∞ x(t) = 0. (3.9)

Choose a sequence {Sm} satisfying Sm → +∞ as m → +∞ such that limm→+∞ f (x(Sm)) = 0.
Then lim infm→+∞ x(Sm) = ξ = 0. In fact, if ξ > 0, then there exists a subsequence {Smk }
such that x(Smk ) ≥ ξ

2 for k sufficiently large. Furthermore, f (x(Smk )) ≥ M1ξ

2 > 0 for k large
enough, a contradiction. Hence (3.9) holds.

Now we show that the limit limt→+∞ x(t) exists and is finite. Set

z(t) = y(t) +
∫ t

αt

P(s/α)
s

f
(
x(s)

)
ds –

∫ t

βt

Q(s/β)
s

f
(
x(s)

)
ds – H(t) + α(t). (3.10)

By the preceding proofs we have that limt→+∞ z(t) = μ exists and is finite, which, together
with (3.4) and (3.10), means that

lim
t→+∞

[
x(t) – C(t)g

(
x
(
τ (t)

))]
= μ. (3.11)
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Since 0 ≤ lim inft→+∞ |C(t)| ≤ lim supt→+∞ |C(t)| = C < 1, we have three possible cases.
Case I. If 0 < lim inft→+∞ |C(t)| < lim supt→+∞ |C(t)| = C < 1, then C(t) is eventually pos-

itive or eventually negative. Otherwise there exists a sequence {ξk} with ξk → +∞ as
k → +∞ such that limk→+∞ C(ξk) = 0, a contradiction. Hence we can find a sufficiently
large T such that 0 < |C(t)| < 1 for t > T .

Let η = lim supt→+∞ x(t) and assume that there exist two sequences {un} and {vn} satis-
fying un → +∞ and vn → +∞ as n → +∞ such that

lim
t→+∞ x(un) = 0, lim

t→+∞ x(vn) = η.

It follows that there exists sufficiently large n0 such that τ (un) ≥ tM and τ (vn) ≥ tM for all
n ≥ n0.

(1) –1 < C(t) < 0 for t > max{T , τ (un0 ), τ (vn0 )}. We have that

μ = lim
n→+∞

[
x(un) – C(un)x

(
τ (un)

)] ≤ lim
n→+∞ x(un) + lim sup

n→+∞
[
–C(un)x

(
τ (un)

)] ≤ Cη,

μ = lim
n→+∞

[
x(vn) – C(vn)x

(
τ (vn)

)] ≥ lim
n→+∞ x(vn) + lim inf

n→+∞
[
–C(vn)x

(
τ (vn)

)] ≥ η.

Since η ≥ 0 and 0 < C < 1, it follows that η = 0, and so limt→+∞ x(t) = 0.
(2) 0 < C(t) < 1 for t > max{T , τ (un0 ), τ (vn0 )}. We have that

0 = lim
n→+∞ x(un) ≥ lim

n→+∞
[
x(un) – C(un)x

(
τ (un)

)]
+ lim inf

n→∞
[
C(un)x

(
τ (un)

)] ≥ μ,

η = lim
n→+∞ x(vn) ≤ lim

n→∞
[
x(vn) – C(vn)x

(
τ (vn)

)]
+ lim sup

n→∞

[
C(vn)x

(
τ (vn)

)] ≤ μ + Cη.

Since 0 < C < 1 and η ≥ 0, it follows that η = 0, and so limt→+∞ x(t) = 0.
Case II. If 0 = lim inft→+∞ |C(t)| < lim supt→+∞ |C(t)| = C, then as in Case I, we get

limt→+∞ x(t) = 0.
Case III. If lim inft→+∞ |C(t)| = lim supt→+∞ |C(t)| = C, then the proof is as in Theo-

rem 2.1 in [22] and so is omitted. The proof is complete. �

Theorem 3.2 Let (H1)–(H4) hold. Assume that lim supt→+∞ |C(t)| = C < 1 satisfies CN2 <
1/2, lim supk→+∞ |αk| = 0, and there exists a constant λ > 0 such that

lim sup
t→+∞

(
I1(t) + I2(t)

) ≤ λ <
1 – 2CN2

2M2
, (3.12)

where I1(t) =
∫ t/α
αt

�(s)
s ds with �(t) = P(t/α) – Q(t/β) > 0 for t ≥ t0 and I2(t) =

∫ βt
αt

Q(s/β)
s ds

with α < β . Then every oscillatory solution of (2.1) tends to zero as t → +∞.

Proof Let x(t) be any oscillatory solution of (2.1). We first show that x(t) is bounded. Oth-
erwise x(t) is unbounded, and then there exists a positive integer N sufficiently large such
that limt→+∞ supτ (tN )≤s≤t |x(s)| = +∞ and supτ (tN )≤s≤t |x(s)| = suptN /α≤s≤t |x(s)| for t > tN /α.
Set

y(t) = x(t) – C(t)g
(
x
(
τ (t)

))
–

∫ t

αt

�(s)
s

f
(
x(s)

)
ds –

∫ βt

αt

Q(s/β)
s

f
(
x(s)

)
ds + H(t) – α(t), (3.13)
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where H(t) is defined as in (3.5), and α(t) � α+
kt for t > t0, where kt denotes the largest

subscript of impulsive points in (t0, t). When t > tN /α, we have that

∣∣y(t)
∣∣ ≥ ∣∣x(t)

∣∣ – CN2
∣∣x(

τ (t)
)∣∣ – M2

∫ t

αt

�(s)
s

∣∣x(s)
∣∣ds

– M2

∫ βt

αt

Q(s/β)
s

∣∣x(s)
∣∣ds –

∣∣H(t)
∣∣ –

∣∣α(t)
∣∣

≥ ∣∣x(t)
∣∣ – sup

τ (tN )≤s≤t

∣∣x(s)
∣∣[CN2 + M2

(
I1(t) + I2(t)

)]
–

∣∣H(t)
∣∣ –

∣∣α(t)
∣∣.

Furthermore,

sup
tN /α≤s≤t

∣∣y(s)
∣∣ ≥ sup

tN /α≤s≤t

∣∣x(s)
∣∣[1 – CN2 – M2

(
I1(t) + I2(t)

)]
– sup

tN /α≤s≤t

∣∣H(s)
∣∣ – sup

tN /α≤s≤t

∣∣α(s)
∣∣. (3.14)

It follows from (3.12) that 1 – CN2 – M2λ > 0, and then lim supt→+∞ |y(t)| = +∞ due to
(H3)–(H4).

On the other hand, when t �= tk , t �= tk/α, t �= tk/β , we have that

y′(t) = –
�(t)

t
f
(
x(t)

)
(3.15)

and y(t+
k ) – y(tk) ≤ 0 for t = tk , k ∈ Z+. So y′(t) is oscillatory by (H1). Furthermore, there

exists a sufficiently large ξ ≥ tN /α such that

∣∣y(ξ /α)
∣∣ = sup

tN /α≤s≤ξ /α

∣∣y(s)
∣∣, y′(ξ ) = 0.

Hence x(ξ ) = 0. Integrating (3.15) from ξ to ξ /α, we have that

y(ξ /α) ≤ y(ξ ) –
∫ ξ /α

ξ

[
P(t/α)

t
–

Q(t/β)
t

]
f
(
x(t)

)
dt

= –C(ξ )g
(
x
(
τ (ξ )

))
–

∫ ξ /α

αξ

�(t)
t

f
(
x(t)

)
dt –

∫ βξ

αξ

Q(t/β)
t

f
(
x(t)

)
dt + H(ξ ) – α(ξ ). (3.16)

Furthermore,

∣∣y(ξ /α)
∣∣ ≤ sup

τ (tN )≤s≤ξ /α

∣∣x(s)
∣∣[CN2 + M2

(
I1(ξ ) + I2(ξ )

)]
+

∣∣H(ξ )
∣∣ +

∣∣α(ξ )
∣∣. (3.17)

Together with (3.14) and (3.17), this gives

[
–1 + 2CN2 + 2M2

(
I1(ξ ) + I2(ξ )

)]
+

|H(ξ )| + |α(ξ )|
supτ (tN )≤s≤ξ /α |x(s)| +

suptN /α≤s≤ξ /α |H(s)| + suptN /α≤s≤ξ /α |α(s)|
supτ (tN )≤s≤ξ /α |x(s)| ≥ 0.
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Let ξ → +∞ and note that limξ→+∞ supτ (tN )≤s≤ξ /α |x(s)| = +∞, so it follows from (H3)–
(H4) and (3.12) that [–1 + 2CN2 + 2M2λ] ≥ 0. This is a contradiction, and thus x(t) is
bounded.

Now we show that μ = lim supt→+∞ |x(t)| = 0. Similarly, we analyze the function y(t) of
the form

y(t) = x(t) – C(t)g
(
x
(
τ (t)

))
–

∫ t

αt

�(s)
s

f
(
x(s)

)
ds –

∫ βt

αt

Q(s/β)
s

f
(
x(s)

)
ds + H(t) – α(t).

Then y(t) is bounded, and for sufficiently large t, we have that

∣∣y(t)
∣∣ ≥ ∣∣x(t)

∣∣ – CN2
∣∣x(

τ (t)
)∣∣ – M2 sup

tN /α≤s≤t

∣∣x(s)
∣∣(I1(t) + I2(t)

)
–

∣∣H(t)
∣∣ –

∣∣α(t)
∣∣.

Hence from (H3)–(H4) we have that

β = lim sup
t→+∞

∣∣y(t)
∣∣ ≥ μ

[
1 – CN2 – M2 lim sup

t→+∞
(
I1(t) + I2(t)

)]
. (3.18)

On the other hand, for t �= tk , t �= tk/α, t �= tk/β , k ∈ Z+, it follows that

y′(t) =
[

–
P(t/α)

t
+

Q(t/β)
t

]
f
(
x(t)

)
, (3.19)

and y′(t) is oscillatory. Hence there exists a sequence {ξm} satisfying limm→+∞ ξm = +∞
such that

lim
m→+∞

∣∣y(ξm)
∣∣ = β , y′(ξm) = 0,

and then x(ξm) = 0 for m = 1, 2, 3, . . . .
Integrating (3.19) from ξm to ξm/α, with analysis similar to (3.16), we get

∣∣y(ξm/α)
∣∣ ≤ sup

τ (ξm)≤s≤ξm/α

∣∣x(s)
∣∣[CN2 + M2

(
I1(ξm) + I2(ξm)

)]
+

∣∣H(ξm)
∣∣ +

∣∣α(ξm)
∣∣.

Letting ξm → +∞, by (H3)–(H4) it follows that

β ≤ μ
[
CN2 + M2 lim sup

m→+∞
(
I1(ξm) + I2(ξm)

)]
. (3.20)

Combining thus with (3.18) and (3.20), we get

μ
[

1 – CN2 – M2 lim sup
t→+∞

(
I1(t) + I2(t)

)] ≤ μ
[

CN2 + M2 lim sup
m→+∞

(
I1(ξm) + I2(ξm)

)]
. (3.21)

Hence μ(–1 + 2CN2 + 2M2λ) ≥ 0, which, together with (3.12) and μ ≥ 0, implies that
limt→+∞ x(t) = 0. The proof is complete. �

4 Example
Consider the following impulsive neutral delay differential equation:

{
[x(t) – 1

4 x( t
e ) sin t]′ + 1

2t(ln 1
2 t–1)

x( t
2e ) – 1

4t(ln t–1) x( t
e ) = 1

t2 , t ≥ t0 = 2e, t �= tk ,

x(k+) – x(k) = (–1)kk–1, k = 1, 2, 3, . . . .
(4.1)
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Obviously, f (x) = g(x) = x, C(t) = 1
4 sin t, P(t) = 1

2(ln 1
2 t–1)

> 0, Q(t) = 1
4(ln t–1) > 0 for t ≥

2e, τ (t) = t
e satisfies limt→+∞(1 – 1/e)t = +∞ and τ (t) < t, α = 1

2e < β = 1
e , h(t) = 1

t2 ,
αk = (–1)kk–1. It is easy to verify that (H1)–(H4) hold. Moreover, lim supt→+∞ |C(t)| =
1
4 , lim inft→+∞ |C(t)| = 0, and limt→+∞ α+

k = limt→+∞ |αk| = 0. Choosing M1 = M2 = N1 =
N2 = 1, we claim that every solution of (4.1) tends to zero as t → +∞. In fact, it follows
that, for t ≥ 2e,

�(t)
t

=
P(t/α)

t
–

Q(t/β)
t

=
1

4t ln t
> 0.

On one hand,
∫ +∞

2e
1

4t ln t dt = +∞ and
∫ t

t
2e

dt
2t ln t < 1

2 ln 2 < 1–CN2
M2

for t sufficiently large. So
by Theorem 3.1, every nonoscillatory solution of (4.1) tends to zero as t → +∞.

On the other hand, by simple computations we have I1(t) = 1
4 ln ln 2et

ln t
2e

and I2(t) = 1
4 ln

ln t
e

ln t
2e

.
Furthermore, lim supt→+∞(I1(t) + I2(t)) = 0. So by Theorem 3.2 every oscillatory solution
of (4.1) tends to zero as t → +∞. In conclusion, every solution of (4.1) tends to zero as
t → +∞.

5 Conclusion
In this paper, we have investigated asymptotic properties of solutions for an impulsive
neutral differential equation with positive and negative coefficients, unbounded delays,
forced term, and constant impulsive jumps. By constructing auxiliary functions, using an-
alytical method and combining with the technique of considering asymptotic behaviors of
nonoscillatory and oscillatory solutions, we have provided two criteria for tending to zero
of every (non)oscillatory solution of the system as t → +∞. Finally, as an application, we
have given an example to illustrate the effectiveness of the obtained results.
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