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Abstract
In this work, a prey-predator model with both state-dependent impulsive harvesting
and constant rate harvesting is investigated, where the replenishment rate of prey
and the harvesting rate are linearly related with the selected threshold. By first using
the successor function method and differential equation geometry theory, the
existence, uniqueness and asymptotic stability of the order-1 periodic solution are
discussed. And then numerical simulations with an example are given to illustrate the
feasibility of the theorem-related results. Moreover, in order to increase the total profit,
the optimization strategy is presented and the optimal threshold is obtained.
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1 Introduction
Fishery is the natural source and basis of fishery production, and it is also one of the im-
portant food sources for human beings. If fishery resources are used properly, it can adapt
to the natural regeneration ability of the resource and maintain the optimum sustainable
yield. If people harvest fish unrestricted, it will lead to the extinction of the species [1–4].
Therefore, looking for a reasonable harvest strategy to ensure the sustainable development
of fishery resources has become the focus of research.

In the past few decades, various harvest strategies have been proposed and implemented
in fishing industry. In general, if a species is harvested frequently and regularly, we can
adopt the strategy with constant rate harvesting [5–8]. And due to the seasonal and eco-
nomic reasons, periodic harvesting is an effective harvesting strategy for the infrequent
harvesting. This periodic harvesting can be described by impulsive differential equations
[9–16]. There are some papers studying the effects of periodic impulse harvesting strat-
egy to the species resource. For example, Pei et al. [17] proposed a continuous impulsive
harvesting strategy for a prey-predator system with stage structure and time delay, and
analysed the global attractivity of extinction periodic solution of the mature predator. Jiao
et al. [18] considered a periodic impulsive harvesting prey-predator system with prey hi-
bernation, and they obtained the conditions of the global asymptotic stability criterion
for the predator-extinction boundary and the permanent conditions. However, these two
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methods of harvesting are carried out without knowing the number of species, which can
lead to overexploitation and even depletion of resources.

Recently, state-dependent impulse feedback control has attracted the attention of many
scholars [19–23], a novel strategy based on state-dependent impulse feedback control is
proposed and applied in the harvest [24–27] and pest management [28–33]. The proce-
dure goes like this: when the number of species reaches a specific requirement, the har-
vesting strategy is implemented, otherwise the harvesting behavior is suppressed. Some
other related studies can be found in [34–39] and the references therein.

Brauer and Soudack [5] considered the following prey-predator system with constant
rate harvest for predator:

⎧
⎨

⎩

x′ = xf1(x, y),

y′ = yf2(x, y) – H ,
(1)

and analyzed the asymptotically stable interval of the system under different cases, where
f1(x, y), f2(x, y), respectively, are the average growth rate of x and y. After further research
on renewable resources, Huang et al. [40, 41] combined constant rate harvesting with
state-dependent impulse harvesting, and introduced a real-time monitoring system, fur-
ther improved the harvesting approach. And they proved the existence, uniqueness and
stability of periodic solution. However, when implementing impulse strategy, they only
considered the harvest of the predator, while ignoring that the prey was also harvested
at the same time, and the control parameters were not linearly related to the threshold.
Therefore, for the system (1), we introduce the state-dependent impulse fishing strategy,
assuming that predators are produced by supplementing preys, let f1(x, y) = a(1 – x

K ) – by,
f2(x, y) = λbx – d, we obtain the following impulsive differential system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x′(t) = ax(t)(1 – x(t)
K ) – bx(t)y(t),

y′(t) = y(t)(λbx(t) – d) – H ,

⎫
⎬

⎭
x > h,

�x(t) = –p(x)x(t) + τ (x),

�y(t) = –q(x)y(t),

⎫
⎬

⎭
x = h,

(2)

where

⎧
⎪⎪⎨

⎪⎪⎩

p(x) = pmax – (pmax – pmin) x–hmin
hmax–hmin

,

τ (x) = τmax – (τmax – τmin) x–hmin
hmax–hmin

,

q(x) = qmax – (qmax – qmin) x–hmin
hmax–hmin

,

(3)

x(t) and y(t) refer to the prey fish and predator fish densities at time t. a > 0 and K > 0
denote the intrinsic birth rate and the carrying capacity for the prey fish when y ≡ 0, re-
spectively. b > 0 is the predation coefficient, 0 < λ < 1 represents the conversion coefficient,
and H > 0 denotes the constant harvesting rate of predator fish. h > 0 is a threshold. When
the prey fish density is greater than h, i.e., x > h, it shows that the prey fish is sufficient and
there is no need for impulse control. If the prey fish density decreases to h, i.e., x = h, the
ecological balance of the fishery will be in disorder, we must replenish the prey fish at the
replenishment rate τ > 0, and harvest the predator fish at rate q ∈ (0, 1), we also harvest
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the prey fish at rate p ∈ (0, 1) while harvesting the predator fish. The control parame-
ters p(x), τ (x) and q(x) are continuous functions defined on [hmin, hmax] (see [42]), where
hmin and hmax are, respectively, the minimum value and maximum value of the thresh-
old which satisfy 0 < hmin ≤ h ≤ hmax < K–τmin

1–pmin
. Furthermore, p(hmax) = pmin, p(hmin) = pmax,

τ (hmax) = τmin, τ (hmin) = τmax, q(hmax) = qmin and q(hmin) = qmax. Denote ph = p(h), τh = τ (h)
and qh = q(h).

The main contents of this work are organized as follows. In Section 2, some main defi-
nitions and lemmas are provided. In Section 3, the existence, uniqueness and asymptotic
stability of the order-1 periodic solution of system (2) are mainly discussed under some
conditions. The theoretical results are then verified by numerical simulations, and the op-
timization problem is presented and solved for obtaining the maximum harvesting profits
in Section 4. This work ends with a conclusion.

2 Preliminaries
Definition 2.1 ([43]) Consider the general differential system with state-dependent im-
pulse

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x′(t) = P(x, y),

y′(t) = Q(x, y),

⎫
⎬

⎭
(x, y) /∈ M,

�x(t) = α(x, y),

�y(t) = β(x, y),

⎫
⎬

⎭
(x, y) ∈ M.

(4)

The dynamic system constituted by the solution mappings of system (4) is called a semi-
continuous dynamic system, which is denoted as (�, g, I, M). Let the initial point A ∈ � =
R2

+ \ M, and the function I is a continuous impulse mapping that satisfies I : M → N .
M and N are, respectively, the impulsive set and the phase set which represent the curves
or straight lines in the plane R2

+.

Remark 2.1 Based on system (2), we get M = {(x, y) | x = h, y ≥ 0}, N = {(x, y) | x = (1 –
ph)h + τh, y ≥ 0}, for any point (x, y) ∈ M, when x = h, we get I : (h, y) ∈ M → ((1 – ph)h +
τh, (1 – qh)y) ∈ N . For this article, the coordinate of the arbitrary point A ∈ R+

2 is marked
as (xA, yA).

Definition 2.2 ([44]) If there exist a point A ∈ N and a time T such that g(A, T) = B ∈ M
and I(B) = I(g(A, T)) = A ∈ N , then g(A, t) is defined as an order-1 periodic solution of
system (4) with period T .

Definition 2.3 ([45]) Assume � = g(A, t) is an order-1 periodic solution of system (4).
The order-1 periodic solution � is orbitally asymptotically stable if for any ε > 0, there
must exist δ > 0 and t0 ≥ 0, such that, for any point A1 ∈ U(A, δ) ∩ N and t > t0, we have
ρ(g(A1, t),�) < ε.

Definition 2.4 ([46]) Assuming that the impulse set M and the phase set N are both
straight lines; see Figure 1. For any point B1 ∈ N , we have �(B1, t) = C1 ∈ M, I(C1) = B2 ∈
N , then B2 is defined as the successor point of B1, and g(B1) = yB2 – yB1 is defined as the
successor function of point B1.
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Figure 1 The schematic diagram of successor function.

Lemma 2.1 ([47]) Successor function g(B1) is continuous.

Lemma 2.2 ([48]) In system (4), if there exist A ∈ N , B ∈ N satisfying successor function
g(A)g(B) < 0, then there must exist a point S (S ∈ N ) satisfying S between point A and point
B such that g(S) = 0, thus system (4) has an order-1 periodic solution.

3 Dynamical analysis of system (2)
The dynamical properties of the order-1 periodic solution of system (2) are mainly inves-
tigated in this section. Before these discussions, we firstly analyze the qualitative charac-
teristics of system (2) without control, and the conditions that system (2) without control
has no closed orbit are discussed.

3.1 Qualitative analysis of system (2) without control
Consider the continuous system of system (2) without control as follows:

⎧
⎨

⎩

x′(t) = ax(t)(1 – x(t)
K ) – bx(t)y(t) = P(x, y),

y′(t) = y(t)(λbx(t) – d) – H = Q(x, y).
(5)

By setting

⎧
⎨

⎩

ax(t)(1 – x(t)
K ) – bx(t)y(t) = 0,

y(t)(λbx(t) – d) – H = 0,
(6)

we have

aλ

K
x2 –

(

aλ +
ad
bK

)

x +
ad
b

+ H = 0.

Let

� =
(

aλ +
ad
bK

)2

– 4
aλ

K

(
ad
b

+ H
)

,



Wang et al. Advances in Difference Equations  (2018) 2018:41 Page 5 of 14

thus we find that if the condition

(H1) :
(

λ +
d

bK

)2

> 4
λ

aK

(
ad
b

+ H
)

holds, then the system (5) has two positive equilibria which are denoted as E1(xE1 , yE1 ) and
E2(xE2 , yE2 ), where

xE1 = K
a(λ + d

bK ) –
√

�

2aλ
=

K
2

+
d

2λb
–

K
√

�

2aλ
, yE1 =

a
b

(

1 –
xE1

K

)

,

xE2 = K
a(λ + d

bK ) +
√

�

2aλ
=

K
2

+
d

2λb
+

K
√

�

2aλ
, yE2 =

a
b

(

1 –
xE2

K

)

.

Next, the stability of these two equilibria are discussed. The Jacobian matrix at equilib-
rium Ei, i = 1, 2, is

J(Ei) =

(
a – 2a

K xEi – byEi –bxEi

λbyEi λbxEi – d

)

.

By calculations, we have

Det
(
J(Ei)

)
=

(

a –
2a
K

xEi – byEi

)

(λbxEi – d) + λb2xEi yEi

=
2abλxEi

K

(
K
2

+
d

2λb
– xEi

)

,

Tr
(
J(Ei)

)
= a –

2a
K

xEi – byEi + λbxEi – d

=
(

λb –
a
K

)

xEi – d.

It is easy to see that Det(J(E1)) > 0 and Det(J(E2)) < 0, thus E1(xE1 , yE1 ) is an elementary
but not saddle-type positive equilibrium, and E2(xE2 , yE2 ) is a saddle.

On the other hand, if the condition

(H2) : λb –
a
K

< 0

holds, then Tr(J(E1)) < 0, which means E1(xE1 , yE1 ) is a locally asymptotically stable focus
or node.

In the following, let Dulac function B = x–1, then we get

D =
∂(BP)

∂x
+

∂(BQ)
∂y

= λb –
a
K

– dx–1 < 0.

According to the Bendixson-Dulac theorem, the closed orbit of system (5) does not exist
in the plane R2

+. In conclusion, the following theorem is obtained.
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Figure 2 Phase diagram of system (5) with a = 4,
K = 8, b = 0.6, λ = 0.5, d = 0.2, H = 1.8.

Figure 3 The existence and uniqueness of the order-1 periodic solution of system (2) in Case I. (a) The
existence of the periodic solution. (b) The uniqueness of the periodic solution.

Theorem 3.1 System (5) has two positive equilibrium: a locally asymptotically stable focus
or node E1(xE1 , yE1 ) and a saddle E2(xE2 , yE2 ), and there is no closed trajectory in the plane
R2

+ if the conditions (H1) and (H2) hold (see Figure 2).

3.2 Existence, uniqueness and stability of order-1 periodic solution
According to ecological significance, system (2) should satisfy 0 < h < (1 – ph)h + τh < K . By
the discussion in the previous subsection, we have the x-isoline x′ = 0 intersects y-isoline
y′ = 0 at point E1(xE1 , yE1 ) and point E2(xE2 , yE2 ) (see Figure 3(a)). For notation simplicity,
let the x-axis intersect the line x = h (impulse set M) at point A(h, 0) and intersect the line
x = (1 – ph)h + τh (phase set N ) at point B((1 – ph)h + τh, 0), the x-isoline x′ = 0 intersect
the lines x = h and x = (1 – ph)h + τh at points C′ and D′, respectively, the y-isoline y′ = 0
intersect the lines x = h and x = (1 – ph)h + τh, respectively, at points F1 and F2. C, D and F
are, respectively, the intersections between the stable flow of E2(xE2 , yE2 ) and the line x = h,
the line x = (1 – ph)h + τh, x-axis. C0 and D0 are, respectively, the intersections between
the unstable flow of E2(xE2 , yE2 ) and the line x = h, the line x = (1 – ph)h + τh.
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Theorem 3.2 System (2) exists a unique order-1 periodic solution if the conditions (H1),
(H2) and 0 < h < (1 – ph)h + τh < K hold.

Proof For different threshold h, let us consider three cases as follows.
Case I. 0 < h < xE1 < (1 – ph)h + τh < xE2 .
There exists a threshold h ∈ (0, xE1 ) such that qh ∈ [qmin, qmax], due to impulsive effects,

point C jumps to a point D1 ∈ D0D′ ⊂ N , then yD0 < yD1 = (1 – qh)yC < yD′ . Besides, the
orbit of system (2) starting from point D1 must pass through a point C1 ∈ M, then jumps
back to a point D2 ∈ N . Because distinct orbits are disjoint, then yC′ < yC1 < yC and yD2 =
(1 – qh)yC1 < (1 – qh)yC = yD1 , thus the successor function of point D1 is g(D1) = yD2 –
yD1 < 0.

Moreover, another point Dε ∈ D0D′ is selected and satisfies yDε = yD0 + ε (ε > 0 suf-
ficiently small). There must be an orbit starting from point Dε and passing through
point Cε ∈ M, and point Cε is next to point C, due to impulsive effects, point Cε jumps
to a point Dε+1 ∈ N . Because distinct orbits are disjoint, we know yC1 < yCε < yC and
yDε < yD2 = (1 – qh)yC1 < (1 – qh)yCε = yDε+1 . Then we have g(Dε) = yDε+1 – yDε > 0.

We can easily get g(D1)g(Dε) < 0, there is a point S ∈ DεD1 such that f (S) = 0 by
Lemma 2.2, i.e. the order-1 periodic solution is existent.

In the following, the uniqueness of the order-1 periodic solution is proved. Arbitrarily
select two points B1 and B2 in the line x = (1 – p)hh + τh which meet yD0 < yB1 < yB2 < yD′

(see Figure 3(b)). The orbits of system (2) starting from points B1 and B2, respectively,
reach points B–

1 ∈ M and B–
2 ∈ M, and satisfy yC′ < yB–

2
< yB–

1
< yC , then jump back to the

line x = (1 – ph)h + τh at B+
1 and B+

2 by impulsive effects, respectively. Then the successor
functions of points B1 and B2 must satisfy

g(B2) – g(B1) = (yB+
2

– yB2 ) – (yB+
1

– yB1 )

= (yB+
2

– yB+
1
) + (yB1 – yB2 ) < 0,

which illustrates the successor function g in the segment D0D′ is monotonically decreas-
ing, thus there is only one point S ∈ D0D′ that makes g(S) = 0.

For any point S1 ∈ DD′, the orbit of system (2) starting from point S1 intersects a point in
the line x = h which is denoted as S–

1 , then jumps to a point S+
1 ∈ N after impulsive effects.

Because distinct orbits are disjoint, then yC′ < yS–
1

< yC and yS+
1

= (1 – qh)yS–
1

< (1 – qh)yC =
yD1 < yS1 , thus we get g(S1) = yS+

1
– yS1 < 0, which says there is no order-1 periodic orbit

passing through point S1 ∈ DD′. In addition, for any point S2 ∈ BD0, the orbit starting
from point S2 eventually passes through the line y = 0 and unaffected by any impulse,
namely, there is no order-1 periodic orbit passing through point S2.

Case II. xE1 ≤ h < (1 – ph)h + τh ≤ xE2 .
The following steps are similar to the Case I and omitted thereby (see Figure 4).
Case III. xE1 < h < xE2 < (1 – ph)h + τh < K .
For this subcase, the stable flow of E2 intersects the line x = (1 – p)hh +τh at point G1, and

the unstable flow of E2 intersects the line x = (1 – p)hh at point H1. We can select a point
Gε satisfying yGε = yG1 + ε, there must exist an orbit starting from point Gε and passing
through point Hε ∈ M, and point Hε is next to point H1. By impulsive effects, point Hε

jumps to a point Gε+1 ∈ N which is above Gε . Then g(Gε) = yGε+1 – yGε > 0.
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Figure 4 The existence of the order-1 periodic
solution of system (2) in Case II.

Figure 5 The existence and uniqueness of the order-1 periodic solution of system (2) in Case III.
(a) The existence of the periodic solution. (b) The uniqueness of the periodic solution.

Furthermore, we can select another orbit that is far from the stable flow and unstable
flow of E2 which passes through point G2 ∈ N , and reaches point H2 ∈ M, then jumps
back to the line x = (1 – ph)h + τh at point G3, and point G3 is below point G2, then g(G2) =
yG3 – yG2 < 0.

We can easily get g(Gε)g(G2) < 0. Then there is a point S ∈ GεG2 such that g(S) = 0,
namely, the order-1 periodic solution is existent (see Figure 5(a)).

Next, we prove the uniqueness of the periodic solution. From Figure 5(b), arbitrarily
select two points B3 ∈ N and B4 ∈ N which meet yG1 < yB3 < yB4 < yG2 . The orbits of system
(2) starting from points B3 and B4 respectively reach at points B–

3 ∈ M and B–
4 ∈ M, and

satisfy yH1 < yB–
3

< yB–
4

< yH2 , then jump back to the line x = (1 – ph)h + τh at B+
3 and B+

4 due
to impulsive effects, respectively. Point B+

3 is above B3 and point B+
4 is blow B4. Then the
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successor functions of points B3 and B4 must satisfy

g(B4) – g(B3) = (yB+
4

– yB4 ) – (yB+
3

– yB3 ) < 0,

which illustrates, in the segment G1G2, the successor function f is monotonically decreas-
ing, thus there is only one point S ∈ G1G2 that makes g(S) = 0.

For any point S3 ∈ G1B, the orbit starting from point S3 eventually passes through the
line y = 0 and unaffected by any impulse, namely, there is no order-1 periodic orbit passing
through point S3 ∈ G1B. �

In this paper, we assume that the order-1 periodic solution of system (2) is ̂SS–S, where
S ∈ N and S– ∈ M. Next we prove the stability of the periodic solution ̂SS–S. Since the
methods used in the above three cases are similar, we only prove Case II.

Theorem 3.3 The periodic solution ̂SS–S is orbitally asymptotically stable if xE1 < h < (1 –
ph)h + τh < xE2 and a

b (1 – qh)(1 – h
K ) ≥ H

λb[(1–ph)h+τh]–d hold under Theorem 3.2.

Proof From Figure 4 we can see yF2 = H
λb[(1–ph)h+τh]–d > yD0 . Besides, by yC′ = a

b (1 – h
K ) and

a
b (1 – qh)(1 – h

K ) ≥ H
λb[(1–ph)h+τh]–d , it is easy to know (1 – qh)yC′ ≥ yF2 > yD0 , then, for any

point S4 ∈ CC′, we get (1 – qh)yS4 ≥ (1 – qh)yC′ ≥ yF2 > yD0 . We know the periodic solution
̂SS–S is unique, where S ∈ D0D1. From Figure 6 we can see the orbit of system (2) starting
from D1 intersects the line x = h at point C1, then jumps bake to the line x = (1 – ph)h + τh

at point D2 due to impulsive effects. Because distinct orbits are disjoint, we have yC′ <
yC1 < yS– and yD0 < yD2 < yS . The orbit starting from D2 intersects the line x = h at point
C2, then jumps bake to the line x = (1 – ph)h + τh at point D3 after impulsive effects, where
yS– < yC2 < yC and yS < yD3 < yD1 .

Repeat the above process, the orbit starting from point D0 will be subjected to impulsive
effects infinitely times. Denote the successor point of point Di as Di+1, i = 0, 1, 2, . . . , then
we get

yD0 < yD2 < yD4 < · · · < yD2i < yD2(i+1) < · · · < yS

Figure 6 The stability of the order-1 periodic
solution of system (2).
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and

yD1 > yD3 > yD5 > · · · > yD2i+1 > yD2(i+1)+1 > · · · > yS.

Therefore, the sequence {D2i} is monotonically increasing and the sequence {D2i+1} is
monotonically decreasing. Besides,

yD2i → yS, as i → ∞,

and

yD2i+1 → yS, as i → ∞.

We select any point P0 ∈ D0D1 and let yD0 < yP0 < yS (otherwise, yD1 > yP0 > yS , the proofs
are similar), then there must be a positive integer k0 which satisfy yD2k0

< yP0 < yD2(k0+1) .
The orbit starting from point P0 will be affected by impulse infinitely times. Affected by
the jth impulse, the corresponding phase point is denoted as Pj, j = 1, 2, . . . , then, for any
n, we get yD2(k0+n) < yP2n < yD2(k0+n+1) and yD2(k0+n+1) < yP2n+1 < yD2(k0+n)+1 , n = 0, 1, 2, . . . , thus
{yP2n} is monotonically increasing, and {yP2n+1} is monotonically decreasing, and

yD2n → yS, as n → ∞,

and

yD2n+1 → yS, as n → ∞.

Therefore, all the successor points in the segment D′D0 are attracted to point S after the
corresponding impulsive effect, then the periodic solution ̂SS–S is orbitally asymptotically
stable. That completes the proof. �

4 Simulations and optimization
4.1 Numerical simulations
A specific model is given in this subsection to verify the effectiveness of our conclusions.
Let a = 4, K = 8, b = 0.6, λ = 0.5, d = 0.2, H = 1.8, hmax = 6, hmin = 1.3, pmax = 0.01, pmin =
0.001, τmax = 1.4, τmin = 1.27, qmax = 0.7, qmin = 0.52. By calculation, the equilibrium points
of system (5) are E1(1.8344, 5.1380) and E2(6.8322, 0.9731). These parameter values are
substituted into system (2), then we find

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x′(t) = 4x(t)(1 – x(t)
8 ) – 0.6x(t)y(t),

y′(t) = y(t)(0.3x(t) – 0.2) – 1.8,

⎫
⎬

⎭
x > h,

�x(t) = –p(x)x(t) + τ (x),

�y(t) = –q(x)y(t),

⎫
⎬

⎭
x = h.

(7)

Let h = 1.5 satisfy the condition 0 < h < xE1 , we select the orbit starting from (4, 4). A di-
rected calculation yields p1.5 = 0.0096, τ1.5 = 1.3945 and q1.5 = 0.6923 which satisfy the
condition h < xE1 < (1 – ph)h + τh < xE2 . Then there exists an order-1 periodic solution
in system (7) which is unique and asymptotically stable; see Figures 7(a), 7(b) and 7(c).



Wang et al. Advances in Difference Equations  (2018) 2018:41 Page 11 of 14

Figure 7 Numerical simulations in the case 0 < h < xE1 < (1 – ph)h + τh < xE2 . (a) Phase portrait of prey
fish density and predator fish density on h = 1.5. (b) Time series of prey fish density. (c) Time series of predator
fish density.

Figure 8 Numerical simulations in the case xE1 < h < (1 – ph)h + τh < xE2 . (a) Phase portrait of prey fish
density and predator fish density on h = 4. (b) Time series of prey fish density. (c) Time series of predator fish
density.

Figure 9 Numerical simulations in case xE1 < h < xE2 < (1 – ph)h + τh < K . (a) Phase portrait of prey fish
density and predator fish density on h = 5.8. (b) Time series of prey fish density. (c) Time series of predator fish
density.

Furthermore, we obtain the period of order-1 periodic solution is T = 3.5667 by observ-
ing from Figure 7(b).

The phase portrait and time series of prey fish density and predator fish density are
shown in Figure 8 for h = 4 with the initial value (5, 3.5), by calculation we obtain p4 =
0.0048, τ4 = 1.3253 and q4 = 0.5966 which satisfy the condition xE1 < h < (1 – ph)h + τh <
xE2 . Then system (7) exists a unique and orbitally asymptotically stable order-1 periodic
solution, and the period is T = 1.4625; see Figures 8(a), 8(b) and 8(c).

For the case of xE1 < h < xE2 < (1 – ph)h + τh < K , for example h = 5.8 and the orbit of
system (7) starting from (7, 2.5), by calculation, we get p5.8 = 0.0014, τ5.8 = 1.2755 and q5.8 =
0.5277. Then system (7) exists an order-1 periodic solution which is unique and orbitally
asymptotically stable and its period is T = 1.7083; see Figures 9(a), 9(b) and 9(c).
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4.2 Determination of optimal threshold h
The practical significance of studying the order-1 periodic solution is that it provides the
possibility to determine the replenishment rate of prey fish and the harvesting rate of
predator fish, which makes the impulsive control to be not a real-time monitoring of fish-
eries, but rather a periodic one. In order to maintain the ecological balance of fisheries,
further determine the optimal replenishment rate of prey fish and the optimal harvesting
rate of predator fish, and make sure the harvest period is shortest and the profit is highest,
we consider the following optimization problem to find the optimal threshold.

Let l1 denote the unit cost of prey fish replenished including the cost of dealing with
fisheries environment, l2 be the unit income of predator fish. Our objective is to minimize
costs and maximize profits in this process. Denote F as the total profit in one period of
system (7), which is a function of replenishment rate of prey fish τh and the harvesting
rate of predator fish qh. Since H is constant and has no effect on the change in profits,
then we no longer consider it and have F(h) = l2qh – l1τh. Thus, the optimization model is
formulated as

max
F(h)
T(h)

s.t. hmin ≤ h ≤ hmax

The optimization problem is solved to yield the optimal threshold h∗, which results in
the optimal replenishment rate of prey fish τ ∗ = ph∗ , the optimal harvesting rate of preda-
tor fish q∗ = qh∗ , and the optimal impulse period T∗ = T(τ ∗, q∗). The impulse period T
varies with the threshold h, as shown in Figure 10(a), and the relationship between the
profit per unit time F/T and the threshold h is presented in Figure 10(b), where l1 = 200,
l2 = 5000, i.e., l2/l1 = 25. From Figure 10, the optimal threshold is h∗ = 5, then the optimal
replenishment rate of prey fish τ ∗ = 1.2977, the optimal harvesting rate of predator fish
q∗ = 0.5583, and the optimal impulse period is T∗ = 1.2767.

5 Conclusion
This work presents a prey-predator system with both state-dependent impulsive harvest-
ing and constant rate harvesting, where the harvesting frequency of constant harvesting

Figure 10 The variety in the period T and the profit per unit time F/T on the threshold h. (a) The
variety in the period T on the threshold h. (b) The profit per unit time F/T on the threshold h.
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is more frequent than that of impulse harvesting. Moreover, the combination of these
two harvesting methods is more practical which provides higher commercial value and
avoids the exhaustion of resources. Meanwhile, the existence, uniqueness and stability of
the order-1 periodic solution are proved by using the method of successor functions and
differential equation geometry theory. Numerical simulations with a specific example are
given to verify feasibility of the impulsive strategy. Furthermore, to maximize economic
benefit, we provide an optimization strategy for the pisciculture and obtain the optimal
threshold. However, the optimization results have some deviations which need to be fur-
ther improved.
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